10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-25 22:52:15 +02:00

merge with MASTER

This commit is contained in:
Yann Garniron 2017-01-12 16:48:34 +01:00
commit 414a798168
257 changed files with 26027 additions and 3920 deletions

View File

@ -13,6 +13,8 @@ addons:
- gcc
- liblapack-dev
- graphviz
# - zlib1g-dev
# - libgmp3-dev
cache:
directories:
@ -23,8 +25,8 @@ python:
- "2.6"
script:
- ./configure --production ./config/gfortran.cfg
- source ./quantum_package.rc ; qp_module.py install Full_CI Full_CI_ZMQ Hartree_Fock CAS_SD mrcepa0 All_singles
- ./configure --production ./config/travis.cfg
- source ./quantum_package.rc ; qp_module.py install Full_CI Full_CI_ZMQ Hartree_Fock CAS_SD_ZMQ mrcepa0 All_singles
- source ./quantum_package.rc ; ninja
- source ./quantum_package.rc ; cd ocaml ; make ; cd -
- source ./quantum_package.rc ; cd tests ; ./run_tests.sh #-v
- source ./quantum_package.rc ; cd tests ; ./run_tests.sh -v

View File

@ -24,7 +24,7 @@ Demo
* Python >= 2.6
* GNU make
* Bash
* Blast/Lapack
* Blas/Lapack
* unzip
* g++ (For ninja)
@ -137,6 +137,10 @@ interface: ezfio
#FAQ
### Opam error: cryptokit
You need to install `gmp-dev`.
### Error: ezfio_* is already defined.
#### Why ?

View File

@ -13,7 +13,7 @@
FC : gfortran -g -ffree-line-length-none -I . -static-libgcc
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --assert --align=32
IRPF90_FLAGS : --ninja --align=32
# Global options
################

View File

@ -38,7 +38,7 @@ FCFLAGS : -xSSE4.2 -O2 -ip -ftz -g
#################
#
[PROFILE]
FC : -p -g -traceback
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
@ -53,7 +53,6 @@ FCFLAGS : -xSSE4.2 -O2 -ip -ftz
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0
IRPF90_FLAGS : --openmp
# OpenMP flags
#################

62
config/travis.cfg Normal file
View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : gfortran -ffree-line-length-none -I . -g
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 1 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -march=native
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -fcheck=all -g
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

30
configure vendored
View File

@ -71,8 +71,8 @@ d_dependency = {
"emsl": ["python"],
"gcc": [],
"g++": [],
"zeromq" : [ "g++" ],
"f77zmq" : [ "zeromq", "python" ],
"zeromq" : [ "g++", "make" ],
"f77zmq" : [ "zeromq", "python", "make" ],
"python": [],
"ninja": ["g++", "python"],
"make": [],
@ -102,7 +102,7 @@ curl = Info(
default_path=join(QP_ROOT_BIN, "curl"))
zlib = Info(
url='http://zlib.net/zlib-1.2.8.tar.gz',
url='http://www.zlib.net/zlib-1.2.10.tar.gz',
description=' zlib',
default_path=join(QP_ROOT_LIB, "libz.a"))
@ -150,7 +150,6 @@ f77zmq = Info(
url='{head}/zeromq/f77_zmq/{tail}'.format(**path_github),
description=' F77-ZeroMQ',
default_path=join(QP_ROOT_LIB, "libf77zmq.a") )
# join(QP_ROOT, "src", "ZMQ", "f77zmq.h") )
p_graphviz = Info(
url='https://github.com/xflr6/graphviz/archive/master.tar.gz',
@ -166,7 +165,7 @@ d_info = dict()
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz",
"zeromq", "f77zmq","bats" ]:
"zeromq", "f77zmq","bats"]:
exec ("d_info['{0}']={0}".format(m))
@ -487,7 +486,6 @@ def create_ninja_and_rc(l_installed):
l_rc = [
'export QP_ROOT={0}'.format(QP_ROOT),
'#export QP_NIC=ib0 # Choose the correct network inuterface',
'export QP_EZFIO={0}'.format(path_ezfio.replace(QP_ROOT,"${QP_ROOT}")),
'export QP_PYTHON={0}'.format(":".join(l_python)), "",
'export IRPF90={0}'.format(path_irpf90.replace(QP_ROOT,"${QP_ROOT}")),
@ -495,12 +493,24 @@ def create_ninja_and_rc(l_installed):
'export PYTHONPATH="${QP_EZFIO}/Python":"${QP_PYTHON}":"${PYTHONPATH}"',
'export PATH="${QP_PYTHON}":"${QP_ROOT}"/bin:"${QP_ROOT}"/ocaml:"${PATH}"',
'export LD_LIBRARY_PATH="${QP_ROOT}"/lib:"${LD_LIBRARY_PATH}"',
'export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"', "",
'source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh', "",
'source ${HOME}/.opam/opam-init/init.sh > /dev/null 2> /dev/null || true',
""
'export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"',
'export C_INCLUDE_PATH="${C_INCLUDE_PATH}":"${QP_ROOT}"/include',
'',
'source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh',
'',
'# Choose the correct network interface',
'# export QP_NIC=ib0',
'# export QP_NIC=eth0',
''
]
qp_opam_root = os.getenv('OPAMROOT')
if not qp_opam_root:
qp_opam_root = '${HOME}/.opam'
l_rc.append('export QP_OPAM={0}'.format(qp_opam_root))
l_rc.append('source ${QP_OPAM}/opam-init/init.sh > /dev/null 2> /dev/null || true')
l_rc.append('')
path = join(QP_ROOT, "quantum_package.rc")
with open(path, "w+") as f:
f.write("\n".join(l_rc))

View File

@ -25,7 +25,7 @@ import sys, os
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode']
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

0
include/.empty Normal file
View File

View File

@ -4,7 +4,11 @@
BUILD=_build/${TARGET}
rm -rf -- ${BUILD}
mkdir ${BUILD} || exit 1
tar -zxf Downloads/${TARGET}.tar.gz --strip-components=1 --directory=${BUILD} || exit 1
if [[ -f Downloads/${TARGET}.tar.gz ]] ; then
tar -zxf Downloads/${TARGET}.tar.gz --strip-components=1 --directory=${BUILD} || exit 1
elif [[ -f Downloads/${TARGET}.tar.bz2 ]] ; then
tar -jxf Downloads/${TARGET}.tar.bz2 --strip-components=1 --directory=${BUILD} || exit 1
fi
_install || exit 1
rm -rf -- ${BUILD} _build/${TARGET}.log
exit 0

View File

@ -10,10 +10,4 @@ function _install()
mv curl.ermine ${QP_ROOT}/bin/curl || return 1
}
BUILD=_build/${TARGET}
rm -rf -- ${BUILD}
mkdir ${BUILD} || exit 1
tar -xvjf Downloads/${TARGET}.tar.bz2 --strip-components=1 --directory=${BUILD} || exit 1
_install || exit 1
rm -rf -- ${BUILD} _build/${TARGET}.log
exit 0
source scripts/build.sh

View File

@ -7,10 +7,9 @@ function _install()
cd ..
QP_ROOT=$PWD
cd -
export C_INCLUDE_PATH="${C_INCLUDE_PATH}":"${QP_ROOT}"/lib
set -e
set -u
export ZMQ_H="${QP_ROOT}"/lib/zmq.h
export ZMQ_H="${QP_ROOT}"/include/zmq.h
cd "${BUILD}"
make -j 8 || exit 1
mv libf77zmq.a "${QP_ROOT}"/lib || exit 1

17
install/scripts/install_gmp.sh Executable file
View File

@ -0,0 +1,17 @@
#!/bin/bash -x
TARGET=gmp
function _install()
{
rm -rf -- ${TARGET}
mkdir ${TARGET} || exit 1
cd ..
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure --prefix=$QP_ROOT && make -j 8 || exit 1
make install || exit 1
}
source scripts/build.sh

View File

@ -8,8 +8,7 @@ function _install()
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure && make || exit 1
ln -sf ${PWD}/src/m4 ${QP_ROOT}/bin || exit 1
./configure --prefix=$QP_ROOT && make || exit 1
}
source scripts/build.sh

View File

@ -5,11 +5,11 @@ QP_ROOT=$PWD
cd -
# Normal installation
PACKAGES="core cryptokit ocamlfind sexplib ZMQ"
PACKAGES="core cryptokit.1.10 ocamlfind sexplib ZMQ"
#ppx_sexp_conv
# Needed for ZeroMQ
export C_INCLUDE_PATH="${QP_ROOT}"/lib:"${C_INCLUDE_PATH}"
export C_INCLUDE_PATH="${QP_ROOT}"/include:"${C_INCLUDE_PATH}"
export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"
export LD_LIBRARY_PATH="${QP_ROOT}"/lib:"${LD_LIBRARY_PATH}"

View File

@ -9,11 +9,11 @@ function _install()
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure --prefix=${QP_ROOT}/install/${TARGET} && make || exit 1
./configure --prefix=${QP_ROOT} && make || exit 1
make install || exit 1
cd -
cp ${TARGET}/bin/${TARGET} ${QP_ROOT}/bin || exit 1
rm -R -- ${TARGET} || exit 1
}
source scripts/build.sh
source scripts/build.sh

View File

@ -7,22 +7,13 @@ function _install()
cd ..
QP_ROOT=$PWD
cd -
export C_INCLUDE_PATH="${C_INCLUDE_PATH}":./
set -e
set -u
ORIG=$(pwd)
cd "${BUILD}"
./configure --without-libsodium || exit 1
./configure --prefix=$QP_ROOT --without-libsodium || exit 1
make -j 8 || exit 1
rm -f -- "${QP_ROOT}"/lib/libzmq.a "${QP_ROOT}"/lib/libzmq.so "${QP_ROOT}"/lib/libzmq.so.?
cp .libs/libzmq.a "${QP_ROOT}"/lib
cp .libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.5
# cp src/.libs/libzmq.a "${QP_ROOT}"/lib
# cp src/.libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.4
cp include/{zmq.h,zmq_utils.h} "${QP_ROOT}"/lib
cd "${QP_ROOT}"/lib
ln -s libzmq.so.5 libzmq.so
# ln -s libzmq.so.4 libzmq.so
make install || exit 1
cd ${ORIG}
return 0
}

View File

@ -11,11 +11,8 @@ function _install()
cd -
cd ${BUILD}
./configure && make || exit 1
make install prefix=$QP_ROOT/install/${TARGET} || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/lib/libz.so $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/lib/libz.a $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/include/zlib.h $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/include/zconf.h $QP_ROOT/lib || exit 1
./configure --prefix=$QP_ROOT && make || exit 1
make install || exit 1
}
source scripts/build.sh

View File

@ -42,7 +42,7 @@ end = struct
assert (String.is_prefix ~prefix:"inproc://" x);
x
let create name =
Printf.sprintf "ipc://%s" name
Printf.sprintf "inproc://%s" name
let to_string x = x
end

View File

@ -36,9 +36,11 @@ let read_element in_channel at_number element =
let to_string_general ~fmt ~atom_sep b =
let to_string_general ~fmt ~atom_sep ?ele_array b =
let new_nucleus n =
Printf.sprintf "Atom %d" n
match ele_array with
| None -> Printf.sprintf "Atom %d" n
| Some x -> Printf.sprintf "%s" (Element.to_string x.(n-1))
in
let rec do_work accu current_nucleus = function
| [] -> List.rev accu
@ -56,12 +58,12 @@ let to_string_general ~fmt ~atom_sep b =
do_work [new_nucleus 1] 1 b
|> String.concat ~sep:"\n"
let to_string_gamess =
to_string_general ~fmt:Gto.Gamess ~atom_sep:""
let to_string_gamess ?ele_array =
to_string_general ?ele_array ~fmt:Gto.Gamess ~atom_sep:""
let to_string_gaussian b =
let to_string_gaussian ?ele_array b =
String.concat ~sep:"\n"
[ to_string_general ~fmt:Gto.Gaussian ~atom_sep:"****" b ; "****" ]
[ to_string_general ?ele_array ~fmt:Gto.Gaussian ~atom_sep:"****" b ; "****" ]
let to_string ?(fmt=Gto.Gamess) =
match fmt with

View File

@ -14,7 +14,7 @@ val read_element :
in_channel -> Nucl_number.t -> Element.t -> (Gto.t * Nucl_number.t) list
(** Convert the basis to a string *)
val to_string : ?fmt:Gto.fmt -> (Gto.t * Nucl_number.t) list -> string
val to_string : ?fmt:Gto.fmt -> ?ele_array:Element.t array -> (Gto.t * Nucl_number.t) list -> string
(** Convert the basis to an MD5 hash *)
val to_md5 : (Gto.t * Nucl_number.t) list -> MD5.t

View File

@ -1,26 +1,22 @@
open Core.Std
module Id : sig
type t
val of_int : int -> t
val to_int : t -> int
val of_string : string -> t
val to_string : t -> string
val increment : t -> t
val decrement : t -> t
end
= struct
module Id = struct
type t = int
let of_int x =
assert (x>0); x
let to_int x = x
let of_string x =
Int.of_string x
int_of_string x
|> of_int
let to_string x =
Int.to_string x
string_of_int x
let increment x = x + 1
let decrement x = x - 1
let compare = compare
end
module Task = struct

23
ocaml/Id.mli Normal file
View File

@ -0,0 +1,23 @@
module Id :
sig
type t
val of_int : int -> t
val to_int : t -> int
val of_string : string -> t
val to_string : t -> string
val increment : t -> t
val decrement : t -> t
val compare : t -> t -> int
end
module Task :
sig
include (module type of Id)
end
module Client :
sig
include (module type of Id)
end

View File

@ -14,13 +14,13 @@ type t =
let init ?(bar_length=20) ?(start_value=0.) ?(end_value=1.) ~title =
{ title ; start_value ; end_value ; bar_length ; cur_value=start_value ;
init_time= Time.now () ; dirty = true ; next = Time.now () }
init_time= Time.now () ; dirty = false ; next = Time.now () }
let update ~cur_value bar =
{ bar with cur_value ; dirty=true }
let increment_end bar =
{ bar with end_value=(bar.end_value +. 1.) ; dirty=true }
{ bar with end_value=(bar.end_value +. 1.) ; dirty=false }
let increment_cur bar =
{ bar with cur_value=(bar.cur_value +. 1.) ; dirty=true }

View File

@ -124,23 +124,27 @@ let to_string t =
let find in_channel element =
In_channel.seek in_channel 0L;
let element_read, old_pos =
ref Element.X,
let loop, element_read, old_pos =
ref true,
ref None,
ref (In_channel.pos in_channel)
in
while !element_read <> element
while !loop
do
let buffer =
old_pos := In_channel.pos in_channel;
match In_channel.input_line in_channel with
| Some line -> String.split ~on:' ' line
|> List.hd_exn
| None -> ""
in
try
element_read := Element.of_string buffer
let buffer =
old_pos := In_channel.pos in_channel;
match In_channel.input_line in_channel with
| Some line -> String.split ~on:' ' line
|> List.hd_exn
| None -> raise End_of_file
in
element_read := Some (Element.of_string buffer);
loop := !element_read <> (Some element)
with
| Element.ElementError _ -> ()
| End_of_file -> loop := false
done ;
In_channel.seek in_channel !old_pos;
!element_read
@ -148,124 +152,126 @@ let find in_channel element =
(** Read the Pseudopotential in GAMESS format *)
let read_element in_channel element =
ignore (find in_channel element);
let rec read result =
match In_channel.input_line in_channel with
| None -> result
| Some line ->
if (String.strip line = "") then
result
else
read (line::result)
in
let data =
read []
|> List.rev
in
let debug_data =
String.concat ~sep:"\n" data
in
let decode_first_line = function
| first_line :: rest ->
match find in_channel element with
| Some e when e = element ->
begin
let first_line_split =
String.split first_line ~on:' '
|> List.filter ~f:(fun x -> (String.strip x) <> "")
let rec read result =
match In_channel.input_line in_channel with
| None -> result
| Some line ->
if (String.strip line = "") then
result
else
read (line::result)
in
match first_line_split with
| e :: "GEN" :: n :: p ->
{ element = Element.of_string e ;
n_elec = Int.of_string n |> Positive_int.of_int ;
local = [] ;
non_local = []
}, rest
| _ -> failwith (
Printf.sprintf "Unable to read Pseudopotential : \n%s\n"
debug_data )
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
let rec loop create_primitive accu = function
| (0,rest) -> List.rev accu, rest
| (n,line::rest) ->
begin
match
String.split line ~on:' '
|> List.filter ~f:(fun x -> String.strip x <> "")
with
| c :: i :: e :: [] ->
let i =
Int.of_string i
in
let elem =
( create_primitive
(Float.of_string e |> AO_expo.of_float)
(i-2 |> R_power.of_int),
Float.of_string c |> AO_coef.of_float
)
in
loop create_primitive (elem::accu) (n-1, rest)
let data =
read []
|> List.rev
in
let debug_data =
String.concat ~sep:"\n" data
in
let decode_first_line = function
| first_line :: rest ->
begin
let first_line_split =
String.split first_line ~on:' '
|> List.filter ~f:(fun x -> (String.strip x) <> "")
in
match first_line_split with
| e :: "GEN" :: n :: p ->
{ element = Element.of_string e ;
n_elec = Int.of_string n |> Positive_int.of_int ;
local = [] ;
non_local = []
}, rest
| _ -> failwith (
Printf.sprintf "Unable to read Pseudopotential : \n%s\n"
debug_data )
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
in
let decode_local (pseudo,data) =
let decode_local_n n rest =
let result, rest =
loop Primitive_local.of_expo_r_power [] (Positive_int.to_int n,rest)
let rec loop create_primitive accu = function
| (0,rest) -> List.rev accu, rest
| (n,line::rest) ->
begin
match
String.split line ~on:' '
|> List.filter ~f:(fun x -> String.strip x <> "")
with
| c :: i :: e :: [] ->
let i =
Int.of_string i
in
let elem =
( create_primitive
(Float.of_string e |> AO_expo.of_float)
(i-2 |> R_power.of_int),
Float.of_string c |> AO_coef.of_float
)
in
loop create_primitive (elem::accu) (n-1, rest)
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
{ pseudo with local = result }, rest
in
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
let decode_local (pseudo,data) =
let decode_local_n n rest =
let result, rest =
loop Primitive_local.of_expo_r_power [] (Positive_int.to_int n,rest)
in
{ pseudo with local = result }, rest
in
decode_local_n n rest
| _ -> failwith ("Unable to read (non-)local pseudopotential\n"^debug_data)
in
let decode_non_local (pseudo,data) =
let decode_non_local_n proj n (pseudo,data) =
let result, rest =
loop (Primitive_non_local.of_proj_expo_r_power proj)
[] (Positive_int.to_int n, data)
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
decode_local_n n rest
| _ -> failwith ("Unable to read (non-)local pseudopotential\n"^debug_data)
in
{ pseudo with non_local = pseudo.non_local @ result }, rest
in
let rec new_proj (pseudo,data) proj =
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
let result =
decode_non_local_n proj n (pseudo,rest)
and proj_next =
(Positive_int.to_int proj)+1
|> Positive_int.of_int
in
new_proj result proj_next
| _ -> pseudo
in
new_proj (pseudo,data) (Positive_int.of_int 0)
in
decode_first_line data
|> decode_local
|> decode_non_local
let decode_non_local (pseudo,data) =
let decode_non_local_n proj n (pseudo,data) =
let result, rest =
loop (Primitive_non_local.of_proj_expo_r_power proj)
[] (Positive_int.to_int n, data)
in
{ pseudo with non_local = pseudo.non_local @ result }, rest
in
let rec new_proj (pseudo,data) proj =
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
let result =
decode_non_local_n proj n (pseudo,rest)
and proj_next =
(Positive_int.to_int proj)+1
|> Positive_int.of_int
in
new_proj result proj_next
| _ -> pseudo
in
new_proj (pseudo,data) (Positive_int.of_int 0)
in
decode_first_line data
|> decode_local
|> decode_non_local
end
| _ -> empty element
include To_md5

View File

@ -127,3 +127,14 @@ let get_ezfio_default directory data =
|> aux
;;
let ezfio_work ezfio_file =
let result =
Filename.concat ezfio_file "work"
in
begin
match Sys.is_directory result with
| `Yes -> ()
| _ -> Unix.mkdir result
end;
result
;;

View File

@ -1,27 +1,35 @@
open Core.Std
open Qptypes
module RunningMap = Map.Make (Id.Task)
module TasksMap = Map.Make (Id.Task)
module ClientsSet = Set.Make (Id.Client)
type t =
{ queued : Id.Task.t list ;
running : (Id.Task.t, Id.Client.t) Map.Poly.t ;
tasks : (Id.Task.t, string) Map.Poly.t;
clients : Id.Client.t Set.Poly.t;
{ queued_front : Id.Task.t list ;
queued_back : Id.Task.t list ;
running : Id.Client.t RunningMap.t;
tasks : string TasksMap.t;
clients : ClientsSet.t;
next_client_id : Id.Client.t;
next_task_id : Id.Task.t;
number_of_queued : int;
number_of_queued : int;
number_of_running : int;
number_of_tasks : int;
number_of_clients : int;
}
let create () =
{ queued = [] ;
running = Map.Poly.empty ;
tasks = Map.Poly.empty;
clients = Set.Poly.empty;
{ queued_front = [] ;
queued_back = [] ;
running = RunningMap.empty ;
tasks = TasksMap.empty;
clients = ClientsSet.empty;
next_client_id = Id.Client.of_int 1;
next_task_id = Id.Task.of_int 1;
number_of_queued = 0;
number_of_queued = 0;
number_of_running = 0;
number_of_tasks = 0;
number_of_clients = 0;
}
@ -32,10 +40,11 @@ let add_task ~task q =
q.next_task_id
in
{ q with
queued = task_id :: q.queued ;
tasks = Map.add q.tasks ~key:task_id ~data:task ;
queued_front = task_id :: q.queued_front ;
tasks = TasksMap.add task_id task q.tasks;
next_task_id = Id.Task.increment task_id ;
number_of_queued = q.number_of_queued + 1;
number_of_tasks = q.number_of_tasks + 1;
}
@ -46,56 +55,73 @@ let add_client q =
q.next_client_id
in
{ q with
clients = Set.add q.clients client_id;
clients = ClientsSet.add client_id q.clients;
next_client_id = Id.Client.increment client_id;
number_of_clients = q.number_of_clients + 1;
}, client_id
let pop_task ~client_id q =
let { queued ; running ; _ } =
let { queued_front ; queued_back ; running ; _ } =
q
in
assert (Set.mem q.clients client_id);
match queued with
assert (ClientsSet.mem client_id q.clients);
let queued_front', queued_back' =
match queued_front, queued_back with
| (l, []) -> ( [], List.rev l)
| t -> t
in
match queued_back' with
| task_id :: new_queue ->
let new_q =
{ q with
queued = new_queue ;
running = Map.add running ~key:task_id ~data:client_id ;
number_of_queued = q.number_of_queued - 1;
queued_front= queued_front' ;
queued_back = new_queue ;
running = RunningMap.add task_id client_id running;
number_of_queued = q.number_of_queued - 1;
number_of_running = q.number_of_running + 1;
}
in new_q, Some task_id, (Map.find q.tasks task_id)
and found =
try Some (TasksMap.find task_id q.tasks)
with Not_found -> None
in new_q, Some task_id, found
| [] -> q, None, None
let del_client ~client_id q =
assert (Set.mem q.clients client_id);
assert (ClientsSet.mem client_id q.clients);
{ q with
clients = Set.remove q.clients client_id }
clients = ClientsSet.remove client_id q.clients;
number_of_clients = q.number_of_clients - 1
}
let end_task ~task_id ~client_id q =
let { running ; tasks ; _ } =
q
in
assert (Set.mem q.clients client_id);
let () =
match Map.Poly.find running task_id with
| None -> failwith "Task already finished"
| Some client_id_check -> assert (client_id_check = client_id)
assert (ClientsSet.mem client_id q.clients);
let () =
let client_id_check =
try RunningMap.find task_id running with
Not_found -> failwith "Task already finished"
in
assert (client_id_check = client_id)
in
{ q with
running = Map.remove running task_id ;
running = RunningMap.remove task_id running ;
number_of_running = q.number_of_running - 1
}
let del_task ~task_id q =
let { tasks ; _ } =
q
in
if (Map.mem tasks task_id) then
if (TasksMap.mem task_id tasks) then
{ q with
tasks = Map.remove tasks task_id ;
tasks = TasksMap.remove task_id tasks;
number_of_tasks = q.number_of_tasks - 1;
}
else
Printf.sprintf "Task %d is already deleted" (Id.Task.to_int task_id)
@ -103,36 +129,81 @@ let del_task ~task_id q =
let number q =
Map.length q.tasks
let number_of_tasks q =
assert (q.number_of_tasks >= 0);
q.number_of_tasks
let number_of_queued q =
assert (q.number_of_queued >= 0);
q.number_of_queued
let number_of_running q =
Map.length q.running
assert (q.number_of_running >= 0);
q.number_of_running
let number_of_clients q =
assert (q.number_of_clients >= 0);
q.number_of_clients
let to_string { queued ; running ; tasks ; _ } =
let to_string qs =
let { queued_back ; queued_front ; running ; tasks ; _ } = qs in
let q =
List.map ~f:Id.Task.to_string queued
|> String.concat ~sep:" ; "
(List.map Id.Task.to_string queued_front) @
(List.map Id.Task.to_string @@ List.rev queued_back)
|> String.concat " ; "
and r =
Map.Poly.to_alist running
|> List.map ~f:(fun (t,c) -> "("^(Id.Task.to_string t)^", "
RunningMap.bindings running
|> List.map (fun (t,c) -> "("^(Id.Task.to_string t)^", "
^(Id.Client.to_string c)^")")
|> String.concat ~sep:" ; "
|> String.concat " ; "
and t =
Map.Poly.to_alist tasks
|> List.map ~f:(fun (t,c) -> "("^(Id.Task.to_string t)^", \""
TasksMap.bindings tasks
|> List.map (fun (t,c) -> "("^(Id.Task.to_string t)^", \""
^c^"\")")
|> String.concat ~sep:" ; "
|> String.concat " ; "
in
Printf.sprintf "{
Tasks : %d Queued : %d Running : %d Clients : %d
queued : { %s }
running : { %s }
tasks : [ %s
]
}" q r t
}"
(number_of_tasks qs) (number_of_queued qs) (number_of_running qs) (number_of_clients qs)
q r t
let test () =
let q =
create ()
|> add_task ~task:"First Task"
|> add_task ~task:"Second Task"
in
let q, client_id =
add_client q
in
let q, task_id, task_content =
match pop_task ~client_id q with
| q, Some x, Some y -> q, Id.Task.to_int x, y
| _ -> assert false
in
Printf.printf "Task_id : %d \t\t Task : %s\n" task_id task_content;
to_string q |> print_endline ;
let q, task_id, task_content =
match pop_task ~client_id q with
| q, Some x, Some y -> q, Id.Task.to_int x, y
| _ -> assert false
in
Printf.printf "Task_id : %d \t\t Task : %s\n" task_id task_content;
let q, task_id, task_content =
match pop_task ~client_id q with
| q, None, None -> q, 0, "None"
| _ -> assert false
in
Printf.printf "Task_id : %d \t\t Task : %s\n" task_id task_content;
q
|> to_string
|> print_endline

63
ocaml/Queuing_system.mli Normal file
View File

@ -0,0 +1,63 @@
module RunningMap : Map.S with type key = Id.Task.t
module TasksMap : Map.S with type key = Id.Task.t
module ClientsSet : Set.S with type elt = Id.Client.t
type t = {
queued_front : Id.Task.t list ;
queued_back : Id.Task.t list ;
running : Id.Client.t RunningMap.t ;
tasks : string TasksMap.t ;
clients : ClientsSet.t ;
next_client_id : Id.Client.t ;
next_task_id : Id.Task.t ;
number_of_queued : int ;
number_of_running : int ;
number_of_tasks : int ;
number_of_clients : int ;
}
(** Creates a new queuing system. Returns the new queue. *)
val create : unit -> t
(** Add a new task represented as a string. Returns the queue with the added task. *)
val add_task : task:string -> t -> t
(** Add a new client. Returns the queue and a new client_id. *)
val add_client : t -> t * Id.Client.t
(** Pops a task from the queue. The task is set as running on client client_id.
Returns the queue, a task_id and the content of the task. If the queue contains
no task, the task_id and the task content are None. *)
val pop_task :
client_id:ClientsSet.elt -> t -> t * Id.Task.t option * string option
(** Deletes a client from the queuing system *)
val del_client : client_id:ClientsSet.elt -> t -> t
(** Deletes a client from the queuing system. The client is assumed to be a member
of the set of clients. Returns the queue without the removed client. *)
val end_task : task_id:RunningMap.key -> client_id:ClientsSet.elt -> t -> t
(** Deletes a task from the queuing system. The task is assumed to be a member
of the map of tasks. Returns the queue without the removed task. *)
val del_task : task_id:TasksMap.key -> t -> t
(** Returns the number of tasks, assumed >= 0 *)
val number_of_tasks : t -> int
(** Returns the number of queued tasks, assumed >= 0 *)
val number_of_queued : t -> int
(** Returns the number of running tasks, assumed >= 0 *)
val number_of_running : t -> int
(** Returns the number of connected clients, assumed >= 0 *)
val number_of_clients : t -> int
(** Prints the content of the queue *)
val to_string : t -> string
(** Test function for debug *)
val test : unit -> unit

View File

@ -48,20 +48,21 @@ let zmq_context =
ZMQ.Context.create ()
let bind_socket ~socket_type ~socket ~address =
let bind_socket ~socket_type ~socket ~port =
let rec loop = function
| 0 -> failwith @@ Printf.sprintf
"Unable to bind the %s socket : %s "
socket_type address
"Unable to bind the %s socket to port : %d "
socket_type port
| -1 -> ()
| i ->
try
ZMQ.Socket.bind socket address;
ZMQ.Socket.bind socket @@ Printf.sprintf "tcp://*:%d" port;
loop (-1)
with
| Unix.Unix_error _ -> (Time.pause @@ Time.Span.of_float 1. ; loop (i-1) )
| other_exception -> raise other_exception
in loop 60
in loop 60;
ZMQ.Socket.bind socket @@ Printf.sprintf "ipc:///tmp/qp_run:%d" port
let hostname = lazy (
@ -115,7 +116,7 @@ let stop ~port =
let req_socket =
ZMQ.Socket.create zmq_context ZMQ.Socket.req
and address =
Printf.sprintf "tcp://%s:%d" (Lazy.force ip_address) port
Printf.sprintf "ipc:///tmp/qp_run:%d" port
in
ZMQ.Socket.set_linger_period req_socket 1_000_000;
ZMQ.Socket.connect req_socket address;
@ -305,7 +306,7 @@ let del_task msg program_state rep_socket =
}
in
let more =
(Queuing_system.number new_program_state.queue > 0)
(Queuing_system.number_of_tasks new_program_state.queue > 0)
in
Message.DelTaskReply (Message.DelTaskReply_msg.create ~task_id ~more)
|> Message.to_string
@ -567,10 +568,8 @@ let start_pub_thread ~port =
let pub_socket =
ZMQ.Socket.create zmq_context ZMQ.Socket.pub
and address =
Printf.sprintf "tcp://*:%d" port
in
bind_socket ~socket_type:"PUB" ~socket:pub_socket ~address;
bind_socket ~socket_type:"PUB" ~socket:pub_socket ~port;
let pollitem =
ZMQ.Poll.mask_of
@ -608,7 +607,7 @@ let run ~port =
and address =
"inproc://pair"
in
bind_socket "PAIR" pair_socket address;
ZMQ.Socket.bind pair_socket address;
let pub_thread =
start_pub_thread ~port:(port+1) ()
@ -617,11 +616,9 @@ let run ~port =
(** Bind REP socket *)
let rep_socket =
ZMQ.Socket.create zmq_context ZMQ.Socket.rep
and address =
Printf.sprintf "tcp://*:%d" port
in
ZMQ.Socket.set_linger_period rep_socket 1_000_000;
bind_socket "REP" rep_socket address;
bind_socket "REP" rep_socket port;
let initial_program_state =
{ queue = Queuing_system.create () ;
@ -683,7 +680,7 @@ let run ~port =
Printf.sprintf "q:%d r:%d n:%d : %s\n%!"
(Queuing_system.number_of_queued program_state.queue)
(Queuing_system.number_of_running program_state.queue)
(Queuing_system.number program_state.queue)
(Queuing_system.number_of_tasks program_state.queue)
(Message.to_string message)
|> debug;
@ -721,6 +718,7 @@ let run ~port =
ZMQ.Socket.send pair_socket @@ string_of_pub_state Stopped;
Thread.join pub_thread;
ZMQ.Socket.close rep_socket

View File

@ -23,9 +23,9 @@ val debug : string -> unit
(** ZeroMQ context *)
val zmq_context : ZMQ.Context.t
(** Bind a ZMQ socket *)
(** Bind a ZMQ socket to a TCP port and to an IPC file /tmp/qp_run.<port> *)
val bind_socket :
socket_type:string -> socket:'a ZMQ.Socket.t -> address:string -> unit
socket_type:string -> socket:'a ZMQ.Socket.t -> port:int -> unit
(** Name of the host on which the server runs *)
val hostname : string lazy_t

View File

@ -88,8 +88,9 @@ let run ~multiplicity ezfio_file =
~alpha:(Elec_alpha_number.of_int alpha_new)
~beta:(Elec_beta_number.of_int beta_new) pair )
in
let c =
Array.create ~len:(List.length determinants) (Det_coef.of_float 1.)
Array.init (List.length determinants) (fun _ -> Det_coef.of_float ((Random.float 2.)-.1.))
in
determinants

View File

@ -15,7 +15,7 @@ let print_list () =
let () =
Random.self_init ()
let run ~master exe ezfio_file =
let run slave exe ezfio_file =
(** Check availability of the ports *)
@ -28,7 +28,7 @@ let run ~master exe ezfio_file =
in
let rec try_new_port port_number =
try
List.iter [ 0;1;2;3;4 ] ~f:(fun i ->
List.iter [ 0;1;2;3;4;5;6;7;8;9 ] ~f:(fun i ->
let address =
Printf.sprintf "tcp://%s:%d" (Lazy.force TaskServer.ip_address) (port_number+i)
in
@ -75,16 +75,23 @@ let run ~master exe ezfio_file =
| 0 -> ()
| i -> failwith "Error: Input inconsistent\n"
end;
begin
match master with
| Some address -> Unix.putenv ~key:"QP_RUN_ADDRESS_MASTER" ~data:address
| None -> ()
end;
(** Start task server *)
let address =
Printf.sprintf "tcp://%s:%d" (Lazy.force TaskServer.ip_address) port_number
let qp_run_address_filename =
Filename.concat (Qpackage.ezfio_work ezfio_file) "qp_run_address"
in
let () =
if slave then
try
let address =
In_channel.read_all qp_run_address_filename
|> String.strip
in
Unix.putenv ~key:"QP_RUN_ADDRESS_MASTER" ~data:address
with Sys_error _ -> failwith "No master is not running"
in
(** Start task server *)
let task_thread =
let thread =
Thread.create ( fun () ->
@ -92,7 +99,16 @@ let run ~master exe ezfio_file =
in
thread ();
in
let address =
Printf.sprintf "tcp://%s:%d" (Lazy.force TaskServer.ip_address) port_number
in
Unix.putenv ~key:"QP_RUN_ADDRESS" ~data:address;
let () =
if (not slave) then
Out_channel.with_file qp_run_address_filename ~f:(
fun oc -> Out_channel.output_lines oc [address])
in
(** Run executable *)
let prefix =
@ -111,6 +127,8 @@ let run ~master exe ezfio_file =
TaskServer.stop ~port:port_number;
Thread.join task_thread;
if (not slave) then
Sys.remove qp_run_address_filename;
let duration = Time.diff (Time.now()) time_start
|> Core.Span.to_string in
@ -119,8 +137,8 @@ let run ~master exe ezfio_file =
let spec =
let open Command.Spec in
empty
+> flag "master" (optional string)
~doc:("address Address of the master process")
+> flag "slave" no_arg
~doc:(" Needed for slave tasks")
+> anon ("executable" %: string)
+> anon ("ezfio_file" %: string)
;;
@ -138,8 +156,8 @@ Executes a Quantum Package binary file among these:\n\n"
)
)
spec
(fun master exe ezfio_file () ->
run ~master exe ezfio_file
(fun slave exe ezfio_file () ->
run slave exe ezfio_file
)
|> Command.run ~version: Git.sha1 ~build_info: Git.message

View File

@ -8,6 +8,13 @@ s.unset_skip()
s.filter_only_1h1p()
print s
s = H_apply("just_1h_1p_singles",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
s.filter_only_1h1p()
print s
s = H_apply("just_mono",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()

View File

@ -15,6 +15,7 @@ Needed Modules
* `Properties <http://github.com/LCPQ/quantum_package/tree/master/plugins/Properties>`_
* `Selectors_no_sorted <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_no_sorted>`_
* `Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============

View File

@ -49,7 +49,7 @@ subroutine routine
endif
call save_wavefunction
if(n_det_before == N_det)then
selection_criterion = selection_criterion * 0.5d0
selection_criterion_factor = selection_criterion_factor * 0.5d0
endif
enddo

View File

@ -0,0 +1,76 @@
program restart_more_singles
BEGIN_DOC
! Generates and select single and double excitations of type 1h-1p
! on the top of a given restart wave function of type CAS
END_DOC
read_wf = .true.
touch read_wf
print*,'ref_bitmask_energy = ',ref_bitmask_energy
call routine
end
subroutine routine
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:),E_before(:)
integer :: N_st, degree
integer :: n_det_before
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
i = 0
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
pt2=-1.d0
E_before = ref_bitmask_energy
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
n_det_before = N_det
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_just_1h_1p_singles(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
E_before = CI_energy
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
call save_wavefunction
if(n_det_before == N_det)then
selection_criterion_factor = selection_criterion_factor * 0.5d0
endif
enddo
threshold_davidson = 1.d-10
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i)+ pt2(i) - (CI_energy(1) + pt2(1))
enddo
endif
call ezfio_set_all_singles_energy(CI_energy)
call save_wavefunction
deallocate(pt2,norm_pert)
end

View File

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files

View File

@ -107,6 +107,7 @@ Needed Modules
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
@ -193,31 +194,6 @@ h_apply_cas_s_selected_monoexc
Assume N_int is already provided.
h_apply_cas_s_selected_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_s_selected_no_skip_diexc
Undocumented
h_apply_cas_s_selected_no_skip_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_selected_no_skip_diexcp
Undocumented
h_apply_cas_s_selected_no_skip_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.

View File

@ -93,8 +93,8 @@ program full_ci
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
call H_apply_CAS_SD_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'

View File

@ -0,0 +1,10 @@
[energy]
type: double precision
doc: "Calculated CAS-SD energy"
interface: ezfio
[energy_pt2]
type: double precision
doc: "Calculated selected CAS-SD energy with PT2 correction"
interface: ezfio

View File

@ -0,0 +1,2 @@
Generators_CAS Perturbation Selectors_CASSD ZMQ

View File

@ -0,0 +1,14 @@
==========
CAS_SD_ZMQ
==========
Selected CAS+SD module with Zero-MQ parallelization.
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -0,0 +1,255 @@
program fci_zmq
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: degree
double precision :: threshold_davidson_in
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E+PT2 = ', CI_energy(k) + pt2(k)
print *, '-----'
enddo
endif
double precision :: E_CI_before(N_states)
integer :: n_det_before, to_select
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
do while ( (N_det < N_det_max) .and. (maxval(abs(pt2(1:N_states))) > pt2_max) )
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = 2*N_det
to_select = max(64-to_select, to_select)
to_select = min(to_select,N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det == N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
endif
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
enddo
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,20)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
print *, psi_cas_coef(i,:)
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
TOUCH threshold_selectors threshold_generators
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ZMQ_selection(0, pt2)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print *, 'State', k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', E_CI_before(k)
print *, 'E+PT2 = ', E_CI_before(k)+pt2(k)
print *, '-----'
enddo
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before+pt2)
endif
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end
subroutine ZMQ_selection(N_in, pt2)
use f77_zmq
use selection_types
implicit none
character*(512) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, intent(in) :: N_in
type(selection_buffer) :: b
integer :: i, N
integer, external :: omp_get_thread_num
double precision, intent(out) :: pt2(N_states)
if (.True.) then
PROVIDE pt2_e0_denominator
N = max(N_in,1)
provide nproc
call new_parallel_job(zmq_to_qp_run_socket,"selection")
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
call zmq_set_running(zmq_to_qp_run_socket)
call create_selection_buffer(N, N*2, b)
endif
integer :: i_generator, i_generator_start, i_generator_max, step
! step = int(max(1.,10*elec_num/mo_tot_num)
step = int(5000000.d0 / dble(N_int * N_states * elec_num * elec_num * mo_tot_num * mo_tot_num ))
step = max(1,step)
do i= 1, N_det_generators,step
i_generator_start = i
i_generator_max = min(i+step-1,N_det_generators)
write(task,*) i_generator_start, i_generator_max, 1, N
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
end do
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call selection_collector(b, pt2)
else
call selection_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
if (N_in > 0) then
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN
call copy_H_apply_buffer_to_wf()
if (s2_eig) then
call make_s2_eigenfunction
endif
endif
end subroutine
subroutine selection_slave_inproc(i)
implicit none
integer, intent(in) :: i
call run_selection_slave(1,i,pt2_e0_denominator)
end
subroutine selection_collector(b, pt2)
use f77_zmq
use selection_types
use bitmasks
implicit none
type(selection_buffer), intent(inout) :: b
double precision, intent(out) :: pt2(N_states)
double precision :: pt2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer :: msg_size, rc, more
integer :: acc, i, j, robin, N, ntask
double precision, allocatable :: val(:)
integer(bit_kind), allocatable :: det(:,:,:)
integer, allocatable :: task_id(:)
integer :: done
real :: time, time0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
done = 0
more = 1
pt2(:) = 0d0
call CPU_TIME(time0)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
pt2 += pt2_mwen
do i=1, N
call add_to_selection_buffer(b, det(1,1,i), val(i))
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
end do
done += ntask
call CPU_TIME(time)
! print *, "DONE" , done, time - time0
end do
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
call sort_selection_buffer(b)
end subroutine

View File

@ -0,0 +1,79 @@
use bitmasks
BEGIN_PROVIDER [integer, exc_degree_per_selectors, (N_det_selectors)]
&BEGIN_PROVIDER [integer, double_index_selectors, (N_det_selectors)]
&BEGIN_PROVIDER [integer, n_double_selectors]
implicit none
BEGIN_DOC
! degree of excitation respect to Hartree Fock for the wave function
!
! for the all the selectors determinants
!
! double_index_selectors = list of the index of the double excitations
!
! n_double_selectors = number of double excitations in the selectors determinants
END_DOC
integer :: i,degree
n_double_selectors = 0
do i = 1, N_det_selectors
call get_excitation_degree(psi_selectors(1,1,i),ref_bitmask,degree,N_int)
exc_degree_per_selectors(i) = degree
if(degree==2)then
n_double_selectors += 1
double_index_selectors(n_double_selectors) =i
endif
enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, coef_hf_selector]
&BEGIN_PROVIDER[double precision, inv_selectors_coef_hf]
&BEGIN_PROVIDER[double precision, inv_selectors_coef_hf_squared]
&BEGIN_PROVIDER[double precision, E_corr_per_selectors, (N_det_selectors)]
&BEGIN_PROVIDER[double precision, i_H_HF_per_selectors, (N_det_selectors)]
&BEGIN_PROVIDER[double precision, Delta_E_per_selector, (N_det_selectors)]
&BEGIN_PROVIDER[double precision, E_corr_double_only ]
&BEGIN_PROVIDER[double precision, E_corr_second_order ]
implicit none
BEGIN_DOC
! energy of correlation per determinant respect to the Hartree Fock determinant
!
! for the all the double excitations in the selectors determinants
!
! E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation
!
! E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation
!
! coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants
END_DOC
PROVIDE ref_bitmask_energy psi_selectors ref_bitmask N_int psi_selectors
integer :: i,degree
double precision :: hij,diag_H_mat_elem
E_corr_double_only = 0.d0
E_corr_second_order = 0.d0
do i = 1, N_det_selectors
if(exc_degree_per_selectors(i)==2)then
call i_H_j(ref_bitmask,psi_selectors(1,1,i),N_int,hij)
i_H_HF_per_selectors(i) = hij
E_corr_per_selectors(i) = psi_selectors_coef(i,1) * hij
E_corr_double_only += E_corr_per_selectors(i)
! E_corr_second_order += hij * hij /(ref_bitmask_energy - diag_H_mat_elem(psi_selectors(1,1,i),N_int))
elseif(exc_degree_per_selectors(i) == 0)then
coef_hf_selector = psi_selectors_coef(i,1)
E_corr_per_selectors(i) = -1000.d0
Delta_E_per_selector(i) = 0.d0
else
E_corr_per_selectors(i) = -1000.d0
endif
enddo
if (dabs(coef_hf_selector) > 1.d-8) then
inv_selectors_coef_hf = 1.d0/coef_hf_selector
inv_selectors_coef_hf_squared = inv_selectors_coef_hf * inv_selectors_coef_hf
else
inv_selectors_coef_hf = 0.d0
inv_selectors_coef_hf_squared = 0.d0
endif
do i = 1,n_double_selectors
E_corr_per_selectors(double_index_selectors(i)) *=inv_selectors_coef_hf
enddo
E_corr_double_only = E_corr_double_only * inv_selectors_coef_hf
END_PROVIDER

View File

@ -0,0 +1,11 @@
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
implicit none
BEGIN_DOC
! E0 in the denominator of the PT2
END_DOC
pt2_E0_denominator(1:N_states) = CI_electronic_energy(1:N_states)
! pt2_E0_denominator(1:N_states) = HF_energy - nuclear_repulsion
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
call write_double(6,pt2_E0_denominator(1)+nuclear_repulsion, 'PT2 Energy denominator')
END_PROVIDER

View File

@ -0,0 +1,4 @@
! DO NOT MODIFY BY HAND
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
! from file /home/scemama/quantum_package/src/CAS_SD_ZMQ/EZFIO.cfg

View File

@ -0,0 +1,156 @@
subroutine run_selection_slave(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision :: pt2(N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
if(worker_id == -1) then
print *, "WORKER -1"
!call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
return
end if
buf%N = 0
ctask = 1
pt2 = 0d0
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task)
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, i_generator_start, i_generator_max, step, N
read (task,*) i_generator_start, i_generator_max, step, N
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*3, buf2)
else
if(N /= buf%N) stop "N changed... wtf man??"
end if
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
do i_generator=i_generator_start,i_generator_max,step
call select_connected(i_generator,energy,pt2,buf)
enddo
endif
if(done .or. ctask == size(task_id)) then
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
do i=1, ctask
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i))
end do
if(ctask > 0) then
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
do i=1,buf%cur
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
enddo
call sort_selection_buffer(buf2)
buf%mini = buf2%mini
pt2 = 0d0
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*)
integer :: rc
call sort_selection_buffer(b)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
if(rc /= 8*N_states) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "push"
! Activate is zmq_socket_push is a REQ
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states)
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*)
integer :: rc, rn, i
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
if(rc /= 8*N_states) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "pull"
! Activate is zmq_socket_pull is a REP
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
end subroutine

View File

@ -0,0 +1,70 @@
subroutine create_selection_buffer(N, siz, res)
use selection_types
implicit none
integer, intent(in) :: N, siz
type(selection_buffer), intent(out) :: res
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val = 0d0
res%det = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(dabs(val) >= b%mini) then
b%cur += 1
b%det(:,:,b%cur) = det(:,:)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
double precision, allocatable :: vals(:), absval(:)
integer, allocatable :: iorder(:)
integer(bit_kind), allocatable :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
nmwen = min(b%N, b%cur)
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
absval = -dabs(b%val(:b%cur))
do i=1,b%cur
iorder(i) = i
end do
call dsort(absval, iorder, b%cur)
do i=1, nmwen
detmp(:,:,i) = b%det(:,:,iorder(i))
vals(i) = b%val(iorder(i))
end do
b%det(:,:,:nmwen) = detmp(:,:,:)
b%det(:,:,nmwen+1:) = 0_bit_kind
b%val(:nmwen) = vals(:)
b%val(nmwen+1:) = 0d0
b%mini = max(b%mini,dabs(b%val(b%N)))
b%cur = nmwen
end subroutine

View File

@ -0,0 +1,93 @@
program selection_slave
implicit none
BEGIN_DOC
! Helper program to compute the PT2 in distributed mode.
END_DOC
read_wf = .False.
SOFT_TOUCH read_wf
call provide_everything
call switch_qp_run_to_master
call run_wf
end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
PROVIDE pt2_e0_denominator mo_tot_num N_int
end
subroutine run_wf
use f77_zmq
implicit none
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states)
character*(64) :: states(1)
integer :: rc, i
call provide_everything
zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection'
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
do
call wait_for_states(states,zmq_state,1)
if(trim(zmq_state) == 'Stopped') then
exit
else if (trim(zmq_state) == 'selection') then
! Selection
! ---------
print *, 'Selection'
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states)
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call selection_slave_tcp(i, energy)
!$OMP END PARALLEL
print *, 'Selection done'
endif
end do
end
subroutine update_energy(energy)
implicit none
double precision, intent(in) :: energy(N_states)
BEGIN_DOC
! Update energy when it is received from ZMQ
END_DOC
integer :: j,k
do j=1,N_states
do k=1,N_det
CI_eigenvectors(k,j) = psi_coef(k,j)
enddo
enddo
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
if (.True.) then
do k=1,N_states
ci_electronic_energy(k) = energy(k)
enddo
TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
endif
call write_double(6,ci_energy,'Energy')
end
subroutine selection_slave_tcp(i,energy)
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: i
call run_selection_slave(0,i,energy)
end

View File

@ -0,0 +1,9 @@
module selection_types
type selection_buffer
integer :: N, cur
integer(8), allocatable :: det(:,:,:)
double precision, allocatable :: val(:)
double precision :: mini
endtype
end module

View File

@ -0,0 +1,4 @@
[energy]
type: double precision
doc: Calculated energy
interface: ezfio

View File

@ -0,0 +1 @@
Determinants

View File

@ -0,0 +1,165 @@
BEGIN_PROVIDER [integer, n_points_angular_grid]
implicit none
n_points_angular_grid = 50
END_PROVIDER
BEGIN_PROVIDER [integer, n_points_radial_grid]
implicit none
n_points_radial_grid = 10000
END_PROVIDER
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_angular_grid,3) ]
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_angular_grid)]
implicit none
BEGIN_DOC
! weights and grid points for the integration on the angular variables on
! the unit sphere centered on (0,0,0)
! According to the LEBEDEV scheme
END_DOC
call cal_quad(n_points_angular_grid, angular_quadrature_points,weights_angular_points)
include 'constants.include.F'
integer :: i
double precision :: accu
double precision :: degre_rad
!degre_rad = 180.d0/pi
!accu = 0.d0
!do i = 1, n_points_integration_angular_lebedev
! accu += weights_angular_integration_lebedev(i)
! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 2.d0 * pi
! angular_quadrature_points(i,1) = dcos ( degre_rad * theta_angular_integration_lebedev(i)) &
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
! angular_quadrature_points(i,2) = dsin ( degre_rad * theta_angular_integration_lebedev(i)) &
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
! angular_quadrature_points(i,3) = dcos ( degre_rad * phi_angular_integration_lebedev(i))
!enddo
!print*,'ANGULAR'
!print*,''
!print*,'accu = ',accu
!ASSERT( dabs(accu - 1.D0) < 1.d-10)
END_PROVIDER
BEGIN_PROVIDER [integer , m_knowles]
implicit none
BEGIN_DOC
! value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996)
END_DOC
m_knowles = 3
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_radial, (n_points_radial_grid)]
&BEGIN_PROVIDER [double precision, dr_radial_integral]
implicit none
BEGIN_DOC
! points in [0,1] to map the radial integral [0,\infty]
END_DOC
dr_radial_integral = 1.d0/dble(n_points_radial_grid-1)
integer :: i
do i = 1, n_points_radial_grid-1
grid_points_radial(i) = (i-1) * dr_radial_integral
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid,n_points_radial_grid,nucl_num)]
BEGIN_DOC
! points for integration over space
END_DOC
implicit none
integer :: i,j,k
double precision :: dr,x_ref,y_ref,z_ref
double precision :: knowles_function
do i = 1, nucl_num
x_ref = nucl_coord(i,1)
y_ref = nucl_coord(i,2)
z_ref = nucl_coord(i,3)
do j = 1, n_points_radial_grid-1
double precision :: x,r
x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1]
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration
do k = 1, n_points_angular_grid ! explicit values of the grid points centered around each atom
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
BEGIN_DOC
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
! and the points are labelled by the other dimensions
END_DOC
implicit none
integer :: i,j,k,l,m
double precision :: r(3)
double precision :: accu,cell_function_becke
double precision :: tmp_array(nucl_num)
! run over all points in space
do j = 1, nucl_num ! that are referred to each atom
do k = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
do l = 1, n_points_angular_grid ! for each angular point attached to the "jth" atom
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
accu = 0.d0
do i = 1, nucl_num ! For each of these points in space, ou need to evaluate the P_n(r)
! function defined for each atom "i" by equation (13) and (21) with k == 3
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
! Then you compute the summ the P_n(r) function for each of the "r" points
accu += tmp_array(i)
enddo
accu = 1.d0/accu
weight_functions_at_grid_points(l,k,j) = tmp_array(j) * accu
! print*,weight_functions_at_grid_points(l,k,j)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
implicit none
integer :: i,j,k,l,m
double precision :: contrib
double precision :: r(3)
double precision :: aos_array(ao_num),mos_array(mo_tot_num)
do j = 1, nucl_num
do k = 1, n_points_radial_grid -1
do l = 1, n_points_angular_grid
one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0
one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
! call give_all_aos_at_r(r,aos_array)
! do i = 1, ao_num
! do m = 1, ao_num
! contrib = aos_array(i) * aos_array(m)
! one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_ao_alpha(i,m) * contrib
! one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_ao_beta(i,m) * contrib
! enddo
! enddo
call give_all_mos_at_r(r,mos_array)
do i = 1, mo_tot_num
do m = 1, mo_tot_num
contrib = mos_array(i) * mos_array(m)
one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha(i,m) * contrib
one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta(i,m) * contrib
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,54 @@
double precision function step_function_becke(x)
implicit none
double precision, intent(in) :: x
double precision :: f_function_becke
integer :: i,n_max_becke
!if(x.lt.-1.d0)then
! step_function_becke = 0.d0
!else if (x .gt.1)then
! step_function_becke = 0.d0
!else
step_function_becke = f_function_becke(x)
!!n_max_becke = 1
do i = 1, 4
step_function_becke = f_function_becke(step_function_becke)
enddo
step_function_becke = 0.5d0*(1.d0 - step_function_becke)
!endif
end
double precision function f_function_becke(x)
implicit none
double precision, intent(in) :: x
f_function_becke = 1.5d0 * x - 0.5d0 * x*x*x
end
double precision function cell_function_becke(r,atom_number)
implicit none
double precision, intent(in) :: r(3)
integer, intent(in) :: atom_number
BEGIN_DOC
! atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
! r(1:3) :: x,y,z coordinantes of the current point
END_DOC
double precision :: mu_ij,nu_ij
double precision :: distance_i,distance_j,step_function_becke
integer :: j
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
distance_i = dsqrt(distance_i)
cell_function_becke = 1.d0
do j = 1, nucl_num
if(j==atom_number)cycle
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
distance_j = dsqrt(distance_j)
mu_ij = (distance_i - distance_j)/nucl_dist(atom_number,j)
nu_ij = mu_ij + slater_bragg_type_inter_distance_ua(atom_number,j) * (1.d0 - mu_ij*mu_ij)
cell_function_becke *= step_function_becke(nu_ij)
enddo
end

View File

@ -0,0 +1,109 @@
BEGIN_PROVIDER [ double precision, integral_density_alpha_knowles_becke_per_atom, (nucl_num)]
&BEGIN_PROVIDER [ double precision, integral_density_beta_knowles_becke_per_atom, (nucl_num)]
implicit none
double precision :: accu
integer :: i,j,k,l
double precision :: x
double precision :: integrand(n_points_angular_grid), weights(n_points_angular_grid)
double precision :: f_average_angular_alpha,f_average_angular_beta
double precision :: derivative_knowles_function,knowles_function
! Run over all nuclei in order to perform the Voronoi partition
! according ot equation (6) of the paper of Becke (JCP, (88), 1988)
! Here the m index is referred to the w_m(r) weight functions of equation (22)
! Run over all points of integrations : there are
! n_points_radial_grid (i) * n_points_angular_grid (k)
do j = 1, nucl_num
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
integral_density_beta_knowles_becke_per_atom(j) = 0.d0
do i = 1, n_points_radial_grid-1
! Angular integration over the solid angle Omega for a FIXED angular coordinate "r"
f_average_angular_alpha = 0.d0
f_average_angular_beta = 0.d0
do k = 1, n_points_angular_grid
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
enddo
!
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
double precision :: contrib_integration
! print*,m_knowles
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
integral_density_alpha_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_alpha
integral_density_beta_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_beta
enddo
integral_density_alpha_knowles_becke_per_atom(j) *= dr_radial_integral
integral_density_beta_knowles_becke_per_atom(j) *= dr_radial_integral
enddo
END_PROVIDER
double precision function knowles_function(alpha,m,x)
implicit none
BEGIN_DOC
! function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
! the Log "m" function ( equation (7) in the paper )
END_DOC
double precision, intent(in) :: alpha,x
integer, intent(in) :: m
knowles_function = -alpha * dlog(1.d0-x**m)
end
double precision function derivative_knowles_function(alpha,m,x)
implicit none
BEGIN_DOC
! derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
END_DOC
double precision, intent(in) :: alpha,x
integer, intent(in) :: m
derivative_knowles_function = alpha * dble(m) * x**(m-1) / (1.d0 - x**m)
end
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
implicit none
integer :: i
BEGIN_DOC
! recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
! as a function of the nuclear charge
END_DOC
! H-He
alpha_knowles(1) = 5.d0
alpha_knowles(2) = 5.d0
! Li-Be
alpha_knowles(3) = 7.d0
alpha_knowles(4) = 7.d0
! B-Ne
do i = 5, 10
alpha_knowles(i) = 5.d0
enddo
! Na-Mg
do i = 11, 12
alpha_knowles(i) = 7.d0
enddo
! Al-Ar
do i = 13, 18
alpha_knowles(i) = 5.d0
enddo
! K-Ca
do i = 19, 20
alpha_knowles(i) = 7.d0
enddo
! Sc-Zn
do i = 21, 30
alpha_knowles(i) = 5.d0
enddo
! Ga-Kr
do i = 31, 36
alpha_knowles(i) = 7.d0
enddo
END_PROVIDER

View File

@ -0,0 +1,219 @@
subroutine cal_quad(n_quad, quad, weight)
! --------------------------------------------------------------------------------
!
! Arguments : subroutine cal_quad
! Description: evaluates quadrature points an weights
!
! Authors : B. Lévy, P. Pernot
! Date : 15 Nov 2000
! --------------------------------------------------------------------------------
implicit none
integer, intent(in) :: n_quad
double precision, intent(out) :: weight(n_quad)
double precision, intent(out) :: quad(n_quad,3)
! local:
double precision, parameter :: zero=0.d0, one= 1.d0
double precision, parameter :: p=0.707106781186547462d0
double precision, parameter :: q=0.577350269189625842d0
double precision, parameter :: r=0.301511344577763629d0
double precision, parameter :: s=0.904534033733290888d0
double precision, parameter :: fourpi= 12.5663706143591725d0
double precision, parameter :: a6=0.166666666666666657d0
double precision, parameter :: a18=0.333333333333333329d-01
double precision, parameter :: b18=0.666666666666666657d-01
double precision, parameter :: a26=0.476190476190476164d-01
double precision, parameter :: b26=0.380952380952380987d-01
double precision, parameter :: c26=0.321428571428571397d-01
double precision, parameter :: a50=0.126984126984126984d-01
double precision, parameter :: b50=0.225749559082892431d-01
double precision, parameter :: c50=0.210937500000000014d-01
double precision, parameter :: d50=0.201733355379188697d-01
double precision :: apt(3,6),bpt(3,12),cpt(3,8),dpt(3,24)
double precision :: awght,bwght,cwght,dwght
double precision :: s1, s2, s3
integer :: idim, ipt, i1, i2, i3, is1, is2, is3
integer :: iquad
! begin:
! l_here ='cal_quad'
! call enter (l_here,3)
! verifications:
! message = 'in '//trim(l_here)//', number of dimensions='//&
! trim(encode(dimensions_nb))//', must be 3'
! call ensure(message, dimensions_nb .eq. 3 )
! message = 'in '//trim(l_here)//', invalid number of quadrature points ='&
! //trim(encode(n_quad))
! call ensure(message,(n_quad-2)*(n_quad-6)*(n_quad-18)*(n_quad-26)*(n_quad-50) .eq. 0)
! initialize weights
awght = zero
bwght = zero
cwght = zero
dwght = zero
! type A points : (+/-1,0,0)
awght=a6*fourpi
ipt= 1
apt=0.
do idim = 1, 3
apt(idim,ipt)=one
ipt=ipt+1
apt(idim,ipt)=-one
ipt=ipt+1
enddo
! type B points : (+/-p,+/-p,0) with p= 1/sqrt(2)
if(n_quad.gt.6) then
awght=a18*fourpi
bwght=b18*fourpi
s1=p
s2=p
ipt= 1
bpt=0.
do idim = 1, 3
i1=idim+1
if(i1.gt.3) i1=i1-3
i2=idim+2
if(i2.gt.3) i2=i2-3
do is1= 1,2
do is2= 1,2
bpt(i1,ipt)=s1
bpt(i2,ipt)=s2
s2=-s2
ipt=ipt+1
enddo
s1=-s1
enddo
enddo
endif
! type C points : (+/-q,+/-q,+/-q) with q= 1/sqrt(3)
if(n_quad.gt.18) then
awght=a26*fourpi
bwght=b26*fourpi
cwght=c26*fourpi
s1=q
s2=q
s3=q
ipt= 1
cpt=0.
do is1= 1,2
do is2= 1,2
do is3= 1,2
cpt(1,ipt)=s1
cpt(2,ipt)=s2
cpt(3,ipt)=s3
s3=-s3
ipt=ipt+1
enddo
s2=-s2
enddo
s1=-s1
enddo
endif
! type D points : (+/-r,+/-r,+/-s)
if(n_quad.gt.26) then
awght=a50*fourpi
bwght=b50*fourpi
cwght=c50*fourpi
dwght=d50*fourpi
ipt= 1
dpt=0.
do i1= 1, 3
s1=s
s2=r
s3=r
i2=i1+1
if(i2.gt.3) i2=i2-3
i3=i1+2
if(i3.gt.3) i3=i3-3
do is1= 1,2
do is2= 1,2
do is3= 1,2
dpt(i1,ipt)=s1
dpt(i2,ipt)=s2
dpt(i3,ipt)=s3
s3=-s3
ipt=ipt+1
enddo
s2=-s2
enddo
s1=-s1
enddo
enddo
endif
! fill the points and weights tables
iquad= 1
do ipt= 1, 6
do idim = 1, 3
quad(iquad,idim)=apt(idim,ipt)
enddo
weight(iquad)=awght
iquad=iquad+1
enddo
if(n_quad.gt.6) then
do ipt= 1,12
do idim = 1, 3
quad(iquad,idim)=bpt(idim,ipt)
enddo
weight(iquad)=bwght
iquad=iquad+1
enddo
endif
if(n_quad.gt.18) then
do ipt= 1,8
do idim = 1, 3
quad(iquad,idim)=cpt(idim,ipt)
enddo
weight(iquad)=cwght
iquad=iquad+1
enddo
endif
if(n_quad.gt.26) then
do ipt= 1,24
do idim = 1, 3
quad(iquad,idim)=dpt(idim,ipt)
enddo
weight(iquad)=dwght
iquad=iquad+1
enddo
endif
! if (debug) then
! write(6,*)
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
! '------------------------------------------------------'
! write(6,'(1X,a)') trim(l_here)//'-d : '//' I Weight Quad_points'
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
! '----- ---------- -----------------------------------'
! do iquad= 1, n_quad
! write(6,'(1X,A,i5,4e12.3)') trim(l_here)//'-d : ',&
! iquad,weight(iquad),quad(iquad,1:3)
! enddo
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
! '------------------------------------------------------'
! write(6,*)
! endif
! call exit (l_here,3)
end subroutine cal_quad

View File

@ -0,0 +1,24 @@
program pouet
print*,'coucou'
read_wf = .True.
touch read_wf
print*,'m_knowles = ',m_knowles
call routine
end
subroutine routine
implicit none
integer :: i
double precision :: accu(2)
accu = 0.d0
do i = 1, nucl_num
accu(1) += integral_density_alpha_knowles_becke_per_atom(i)
accu(2) += integral_density_beta_knowles_becke_per_atom(i)
enddo
print*,'accu(1) = ',accu(1)
print*,'Nalpha = ',elec_alpha_num
print*,'accu(2) = ',accu(2)
print*,'Nalpha = ',elec_beta_num
end

View File

@ -19,10 +19,15 @@ default: 0.00001
[do_it_perturbative]
type: logical
doc: if true, you do the FOBOCI calculation perturbatively
doc: if true, when a given 1h or 1p determinant is not selected because of its perturbation estimate, then if its coefficient is lower than threshold_perturbative, it is acounted in the FOBOCI differential density matrices
interface: ezfio,provider,ocaml
default: .False.
[threshold_perturbative]
type: double precision
doc: when do_it_perturbative is True, threshold_perturbative select if a given determinant ia selected or not for beign taken into account in the FOBO-SCF treatment. In practive, if the coefficient is larger then threshold_perturbative it means that it not selected as the perturbation should not be too importan. A value of 0.01 is in general OK.
interface: ezfio,provider,ocaml
default: 0.001
[speed_up_convergence_foboscf]
type: logical
@ -49,3 +54,9 @@ doc: if true, you do all 2p type excitation on the LMCT
interface: ezfio,provider,ocaml
default: .True.
[selected_fobo_ci]
type: logical
doc: if true, for each CI step you will run a CIPSI calculation that stops at pt2_max
interface: ezfio,provider,ocaml
default: .False.

View File

@ -0,0 +1,889 @@
subroutine dressing_1h1p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(dets_in(1,1,i),dets_in(1,1,i),N_int,hij)
diag_H_elements(i) = hij
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
e_corr_singles = 0.d0
e_corr_doubles = 0.d0
e_corr_singles_total = 0.d0
e_corr_doubles_1h1p = 0.d0
c_ref = 1.d0/u_in(index_hf,1)
print*,'c_ref = ',c_ref
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(ref_bitmask,dets_in(1,1,i),N_int,hij)
contrib = hij * u_in(i,1) * c_ref
if (degree == 1)then
e_corr_singles(h1,s1) += contrib
e_corr_singles(p1,s1) += contrib
e_corr_singles_total(s1)+= contrib
else if (degree == 2)then
e_corr_doubles_1h1p += contrib
e_corr_doubles(h1) += contrib
e_corr_doubles(p2) += contrib
endif
enddo
print*,'e_corr_singles alpha = ',e_corr_singles_total(1)
print*,'e_corr_singles beta = ',e_corr_singles_total(2)
print*,'e_corr_doubles_1h1p = ',e_corr_doubles_1h1p
! repeat all the correlation energy on the singles
do i = 1,n_singles
! you can repeat all the correlation energy of the single excitation of the other spin
diag_H_elements(index_singles(i)) += e_corr_singles_total(other_spin(hole_particles_singles(i,3)))
! you can repeat all the correlation energy of the single excitation of the same spin
do j = 1, n_inact_orb
iorb = list_inact(j)
! except the one of the hole
if(iorb == hole_particles_singles(i,1))cycle
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_singles(i)) += e_corr_singles(iorb,hole_particles_singles(i,3))
enddo
! also exclude all the energy coming from the virtual orbital
diag_H_elements(index_singles(i)) -= e_corr_singles(hole_particles_singles(i,2),hole_particles_singles(i,3))
! If it is a single excitation alpha, you can repeat :
! +) all the double excitation 1h1p, appart the part involving the virtual orbital "r"
! If it is a single excitation alpha, you can repeat :
! +) all the double excitation 1h1p, appart the part involving the inactive orbital "i"
diag_H_elements(index_singles(i)) += e_corr_doubles_1h1p
if(hole_particles_singles(i,3) == 1)then ! alpha single excitation
diag_H_elements(index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,2))
else ! beta single exctitation
diag_H_elements(index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,1))
endif
enddo
! repeat all the correlation energy on the doubles
! as all the doubles involve the active space, you cannot repeat any of them one on another
do i = 1, n_doubles
! on a given double, you can repeat all the correlation energy of the singles alpha
do j = 1, n_inact_orb
iorb = list_inact(j)
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_doubles(i)) += e_corr_singles(iorb,1)
enddo
! except the part involving the virtual orbital "hole_particles_doubles(i,2)"
diag_H_elements(index_doubles(i)) -= e_corr_singles(hole_particles_doubles(i,2),1)
! on a given double, you can repeat all the correlation energy of the singles beta
do j = 1, n_inact_orb
iorb = list_inact(j)
! except the one of the hole
if(iorb == hole_particles_doubles(i,1))cycle
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_doubles(i)) += e_corr_singles(iorb,2)
enddo
enddo
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
! diag_H_elements(index_hf) += total_corr_e_2h2p
return
c_ref = c_ref * c_ref
print*,'diag_H_elements(index_hf) = ',diag_H_elements(index_hf)
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: phase_ref_other_single,diag_H_mat_elem,hijj,contrib_e2,coef_1
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_single_double,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_ref_other_single,N_int)
call i_H_j(ref_bitmask,key_tmp,N_int,hij)
diag_H_elements(index_hf) += u_in(index_singles(i),1) * u_in(index_singles(j),1) * c_ref * hij &
* phase_single_double * phase_ref_other_single
enddo
enddo
print*,'diag_H_elements(index_hf) = ',diag_H_elements(index_hf)
end
subroutine dressing_1h1p_by_2h2p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: diag_H_elements(0:dim_in)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: r,s,i0,j0,r0,s0
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(dets_in(1,1,i),dets_in(1,1,i),N_int,hij)
diag_H_elements(i) = hij
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
double precision :: delta_e
double precision :: coef_ijrs
diag_H_elements = 0.d0
do i0 = 1, n_core_inact_orb
i= list_core_inact(i0)
do j0 = i0+1, n_core_inact_orb
j = list_core_inact(j0)
print*, i,j
do r0 = 1, n_virt_orb
r = list_virt(r0)
do s0 = r0+1, n_virt_orb
s = list_virt(s0)
!!! alpha (i-->r) / beta (j-->s)
s1 = 1
s2 = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!if(i>j.and.r>s)then
!! alpha (i-->r) / alpha (j-->s)
s1 = 1
s2 = 1
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!! beta (i-->r) / beta (j-->s)
s1 = 2
s2 = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!endif
enddo
enddo
enddo
enddo
c_ref = 1.d0/u_in(index_hf,1)
do k = 1, n_singles
l = index_singles(k)
diag_H_elements(0) -= diag_H_elements(l)
enddo
! do k = 1, n_doubles
! l = index_doubles(k)
! diag_H_elements(0) += diag_H_elements(l)
! enddo
end
subroutine dressing_1h1p_full(dets_in,u_in,H_matrix,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: u_in(dim_in,N_st)
double precision, intent(inout) :: H_matrix(sze,sze)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
double precision, allocatable :: dressing_H_mat_elem(:)
allocate(dressing_H_mat_elem(N_det))
logical :: lmct
dressing_H_mat_elem = 0.d0
call dress_diag_elem_2h2p(dressing_H_mat_elem,N_det)
lmct = .False.
call dress_diag_elem_2h1p(dressing_H_mat_elem,N_det,lmct,1000)
lmct = .true.
call dress_diag_elem_1h2p(dressing_H_mat_elem,N_det,lmct,1000)
do i = 1, N_det
H_matrix(i,i) += dressing_H_mat_elem(i)
enddo
e_corr_singles = 0.d0
e_corr_doubles = 0.d0
e_corr_singles_total = 0.d0
e_corr_doubles_1h1p = 0.d0
c_ref = 1.d0/u_in(index_hf,1)
print*,'c_ref = ',c_ref
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(ref_bitmask,dets_in(1,1,i),N_int,hij)
contrib = hij * u_in(i,1) * c_ref
if (degree == 1)then
e_corr_singles(h1,s1) += contrib
e_corr_singles(p1,s1) += contrib
e_corr_singles_total(s1)+= contrib
else if (degree == 2)then
e_corr_doubles_1h1p += contrib
e_corr_doubles(h1) += contrib
e_corr_doubles(p2) += contrib
endif
enddo
print*,'e_corr_singles alpha = ',e_corr_singles_total(1)
print*,'e_corr_singles beta = ',e_corr_singles_total(2)
print*,'e_corr_doubles_1h1p = ',e_corr_doubles_1h1p
! repeat all the correlation energy on the singles
! do i = 1,n_singles
! ! you can repeat all the correlation energy of the single excitation of the other spin
! H_matrix(index_singles(i),index_singles(i)) += e_corr_singles_total(other_spin(hole_particles_singles(i,3)))
! ! you can repeat all the correlation energy of the single excitation of the same spin
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! except the one of the hole
! if(iorb == hole_particles_singles(i,1))cycle
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_singles(i),index_singles(i)) += e_corr_singles(iorb,hole_particles_singles(i,3))
! enddo
! ! also exclude all the energy coming from the virtual orbital
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_singles(hole_particles_singles(i,2),hole_particles_singles(i,3))
!
! ! If it is a single excitation alpha, you can repeat :
! ! +) all the double excitation 1h1p, appart the part involving the virtual orbital "r"
! ! If it is a single excitation alpha, you can repeat :
! ! +) all the double excitation 1h1p, appart the part involving the inactive orbital "i"
! H_matrix(index_singles(i),index_singles(i)) += e_corr_doubles_1h1p
! if(hole_particles_singles(i,3) == 1)then ! alpha single excitation
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,2))
! else ! beta single exctitation
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,1))
! endif
! enddo
! ! repeat all the correlation energy on the doubles
! ! as all the doubles involve the active space, you cannot repeat any of them one on another
! do i = 1, n_doubles
! ! on a given double, you can repeat all the correlation energy of the singles alpha
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_doubles(i),index_doubles(i)) += e_corr_singles(iorb,1)
! enddo
! ! except the part involving the virtual orbital "hole_particles_doubles(i,2)"
! H_matrix(index_doubles(i),index_doubles(i)) -= e_corr_singles(hole_particles_doubles(i,2),1)
! ! on a given double, you can repeat all the correlation energy of the singles beta
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! except the one of the hole
! if(iorb == hole_particles_doubles(i,1))cycle
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_doubles(i),index_doubles(i)) += e_corr_singles(iorb,2)
! enddo
! enddo
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
! H_matrix(index_hf) += total_corr_e_2h2p
print*,'H_matrix(index_hf,index_hf) = ',H_matrix(index_hf,index_hf)
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
print*,'i = ',i
do j = i+1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: H_array(sze),diag_H_mat_elem,hjj
do k = 1, sze
call get_excitation_degree(dets_in(1,1,k),key_tmp,degree,N_int)
H_array(k) = 0.d0
if(degree > 2)cycle
call i_H_j(dets_in(1,1,k),key_tmp,N_int,hij)
H_array(k) = hij
enddo
hjj = 1.d0/(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
! contrib_e2 = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * hij * hij))
do l = 2, sze
! pause
H_matrix(l,l) += H_array(l) * H_array(l) * hjj
! H_matrix(1,l) += H_array(1) * H_array(l) * hjj
! H_matrix(l,1) += H_array(1) * H_array(l) * hjj
enddo
enddo
enddo
print*,'H_matrix(index_hf,index_hf) = ',H_matrix(index_hf,index_hf)
end
subroutine SC2_1h1p_full(dets_in,u_in,energies,H_matrix,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: H_matrix(sze,sze)
double precision, intent(in) :: convergence
integer :: i,j,iter
print*,'sze = ',sze
H_matrix = 0.d0
do iter = 1, 1
! if(sze<=N_det_max_jacobi)then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze))
H_matrix_tmp = 0.d0
call dressing_1h1p_full(dets_in,u_in,H_matrix_tmp,dim_in,sze,N_st,Nint,convergence)
do j=1,sze
do i=1,sze
H_matrix_tmp(i,j) += H_matrix_all_dets(i,j)
enddo
enddo
print*,'passed the dressing'
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
do j=1,min(N_states_diag,sze)
do i=1,sze
u_in(i,j) = eigenvectors(i,j)
enddo
energies(j) = eigenvalues(j)
enddo
deallocate (H_matrix_tmp, eigenvalues, eigenvectors)
! else
! call davidson_diag_hjj(dets_in,u_in,diag_H_elements,energies,dim_in,sze,N_st,Nint,output_determinants)
! endif
print*,'E = ',energies(1) + nuclear_repulsion
enddo
end
subroutine SC2_1h1p(dets_in,u_in,energies,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision :: extra_diag_H_elements(dim_in)
double precision, intent(in) :: convergence
integer :: i,j,iter
DIAG_H_ELEMENTS = 0.d0
do iter = 1, 1
! call dressing_1h1p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
call dressing_1h1p_by_2h2p(dets_in,u_in,extra_diag_H_elements,dim_in,sze,N_st,Nint,convergence)
! if(sze<=N_det_max_jacobi)then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze))
do j=1,sze
do i=1,sze
H_matrix_tmp(i,j) = H_matrix_all_dets(i,j)
enddo
enddo
H_matrix_tmp(1,1) += extra_diag_H_elements(1)
do i = 2,sze
H_matrix_tmp(1,i) += extra_diag_H_elements(i)
H_matrix_tmp(i,1) += extra_diag_H_elements(i)
enddo
!do i = 1,sze
! H_matrix_tmp(i,i) = diag_H_elements(i)
!enddo
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
do j=1,min(N_states_diag,sze)
do i=1,sze
u_in(i,j) = eigenvectors(i,j)
enddo
energies(j) = eigenvalues(j)
enddo
deallocate (H_matrix_tmp, eigenvalues, eigenvectors)
! else
! call davidson_diag_hjj(dets_in,u_in,diag_H_elements,energies,dim_in,sze,N_st,Nint,output_determinants)
! endif
print*,'E = ',energies(1) + nuclear_repulsion
enddo
end
subroutine density_matrix_1h1p(dets_in,u_in,density_matrix_alpha,density_matrix_beta,norm,dim_in,sze,N_st,Nint)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(inout) :: density_matrix_alpha(mo_tot_num_align,mo_tot_num)
double precision, intent(inout) :: density_matrix_beta(mo_tot_num_align,mo_tot_num)
double precision, intent(inout) :: norm
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
norm = 0.d0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
norm += u_in(i,1)* u_in(i,1)
if(degree == 0)then
index_hf = i
c_ref = 1.d0/psi_coef(i,1)
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
print*,'norm = ',norm
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: coef_ijrs,phase_other_single_ref
integer :: occ(N_int*bit_kind_size,2),n_occ(2)
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_single_double,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
call get_excitation(key_tmp,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
coef_ijrs = u_in(index_singles(i),1) * u_in(index_singles(j),1) * c_ref * c_ref &
* phase_single_double * phase_other_single_ref
call bitstring_to_list_ab(key_tmp, occ, n_occ, N_int)
do k=1,elec_alpha_num
l = occ(k,1)
density_matrix_alpha(l,l) += coef_ijrs*coef_ijrs
enddo
do k=1,elec_beta_num
l = occ(k,1)
density_matrix_beta(l,l) += coef_ijrs*coef_ijrs
enddo
norm += coef_ijrs* coef_ijrs
if(hole_particles_singles(j,3) == 1)then ! single alpha
density_matrix_alpha(h2,p2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
density_matrix_alpha(p2,h2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
else
density_matrix_beta(h2,p2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
density_matrix_beta(p2,h2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
endif
enddo
enddo
do i = 1, n_doubles
! start on the double excitation "|i>"
h1 = hole_particles_doubles(i,1)
p1 = hole_particles_doubles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_doubles(i))
key_tmp(k,2) = dets_in(k,2,index_doubles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: coef_ijrs_kv,phase_double_triple
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_double_triple,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
call get_excitation(key_tmp,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
coef_ijrs_kv = u_in(index_doubles(i),1) * u_in(index_singles(j),1) * c_ref * c_ref &
* phase_double_triple * phase_other_single_ref
call bitstring_to_list_ab(key_tmp, occ, n_occ, N_int)
do k=1,elec_alpha_num
l = occ(k,1)
density_matrix_alpha(l,l) += coef_ijrs_kv*coef_ijrs_kv
enddo
do k=1,elec_beta_num
l = occ(k,1)
density_matrix_beta(l,l) += coef_ijrs_kv*coef_ijrs_kv
enddo
norm += coef_ijrs_kv* coef_ijrs_kv
if(hole_particles_singles(j,3) == 1)then ! single alpha
density_matrix_alpha(h2,p2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
density_matrix_alpha(p2,h2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
else
density_matrix_beta(h2,p2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
density_matrix_beta(p2,h2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
endif
enddo
enddo
print*,'norm = ',norm
norm = 1.d0/norm
do i = 1, mo_tot_num
do j = 1, mo_tot_num
density_matrix_alpha(i,j) *= norm
density_matrix_beta(i,j) *= norm
enddo
enddo
coef_ijrs = 0.d0
do i = 1, mo_tot_num
coef_ijrs += density_matrix_beta(i,i) + density_matrix_beta(i,i)
enddo
print*,'accu = ',coef_ijrs
end

View File

@ -1,13 +1,25 @@
subroutine all_single
subroutine all_single(e_pt2)
implicit none
double precision, intent(in) :: e_pt2
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
if(.not.selected_fobo_ci)then
selection_criterion = 0.d0
soft_touch selection_criterion
else
selection_criterion = 0.1d0
selection_criterion_factor = 0.01d0
selection_criterion_min = selection_criterion
soft_touch selection_criterion
endif
print*, 'e_pt2 = ',e_pt2
pt2_max = 0.15d0 * e_pt2
soft_touch pt2_max
print*, 'pt2_max = ',pt2_max
threshold_davidson = 1.d-9
soft_touch threshold_davidson davidson_criterion
i = 0
@ -17,6 +29,8 @@ subroutine all_single
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
print*, 'ref_bitmask_energy =',ref_bitmask_energy
print*, 'CI_expectation_value =',psi_energy(1)
E_before = ref_bitmask_energy
print*,'Initial Step '
@ -29,7 +43,7 @@ subroutine all_single
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > dabs(pt2_max))
i += 1
print*,'-----------------------'
print*,'i = ',i
@ -39,6 +53,8 @@ subroutine all_single
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
print*,'pt2_max = ',pt2_max
print*, maxval(abs(pt2(1:N_st))) > dabs(pt2_max)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
@ -53,7 +69,6 @@ subroutine all_single
endif
E_before = CI_energy
!!!!!!!!!!!!!!!!!!!!!!!!!!! DOING ONLY ONE ITERATION OF SELECTION AS THE SELECTION CRITERION IS SET TO ZERO
exit
enddo
! threshold_davidson = 1.d-8
! soft_touch threshold_davidson davidson_criterion

View File

@ -15,7 +15,7 @@
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: get_mo_bielec_integral,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
@ -46,7 +46,7 @@
if(i_ok .ne.1)cycle
delta_e = (ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = hij*hij/delta_e
total_corr_e_2h2p += contrib
! Single orbital contribution
@ -81,8 +81,8 @@
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
@ -114,8 +114,8 @@
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
@ -161,7 +161,7 @@ END_PROVIDER
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: get_mo_bielec_integral,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
@ -191,7 +191,7 @@ END_PROVIDER
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h1p += contrib
corr_energy_2h1p_ab_bb_per_2_orb(i_hole,j_hole) += contrib
@ -211,8 +211,8 @@ END_PROVIDER
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
@ -241,8 +241,8 @@ END_PROVIDER
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
@ -276,7 +276,7 @@ END_PROVIDER
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: get_mo_bielec_integral,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
@ -302,7 +302,7 @@ END_PROVIDER
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
@ -324,8 +324,8 @@ END_PROVIDER
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
@ -356,8 +356,8 @@ END_PROVIDER
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
@ -388,7 +388,7 @@ END_PROVIDER
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: get_mo_bielec_integral,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
@ -412,7 +412,7 @@ END_PROVIDER
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
hij = get_mo_bielec_integral(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h1p_spin_flip += contrib

View File

@ -68,7 +68,9 @@ subroutine create_restart_and_1h(i_hole)
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
if(n_act_orb.gt.1)then
call remove_duplicates_in_psi_det(found_duplicates)
endif
end
subroutine create_restart_and_1p(i_particle)
@ -213,6 +215,8 @@ subroutine create_restart_1h_1p(i_hole,i_part)
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
if(n_act_orb.gt.1)then
call remove_duplicates_in_psi_det(found_duplicates)
endif
end

View File

@ -38,7 +38,7 @@ end
subroutine diag_inactive_virt_new_and_update_mos
implicit none
integer :: i,j,i_inact,j_inact,i_virt,j_virt,k,k_act
double precision :: tmp(mo_tot_num_align,mo_tot_num),accu,get_mo_bielec_integral_schwartz
double precision :: tmp(mo_tot_num_align,mo_tot_num),accu,get_mo_bielec_integral
character*(64) :: label
tmp = 0.d0
do i = 1, mo_tot_num
@ -52,8 +52,8 @@ subroutine diag_inactive_virt_new_and_update_mos
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_inact,k_act,j_inact,k_act,mo_integrals_map)
accu -= get_mo_bielec_integral_schwartz(i_inact,k_act,k_act,j_inact,mo_integrals_map)
accu += get_mo_bielec_integral(i_inact,k_act,j_inact,k_act,mo_integrals_map)
accu -= get_mo_bielec_integral(i_inact,k_act,k_act,j_inact,mo_integrals_map)
enddo
tmp(i_inact,j_inact) = Fock_matrix_mo(i_inact,j_inact) + accu
tmp(j_inact,i_inact) = Fock_matrix_mo(j_inact,i_inact) + accu
@ -67,7 +67,7 @@ subroutine diag_inactive_virt_new_and_update_mos
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_virt,k_act,j_virt,k_act,mo_integrals_map)
accu += get_mo_bielec_integral(i_virt,k_act,j_virt,k_act,mo_integrals_map)
enddo
tmp(i_virt,j_virt) = Fock_matrix_mo(i_virt,j_virt) - accu
tmp(j_virt,i_virt) = Fock_matrix_mo(j_virt,i_virt) - accu

View File

@ -58,24 +58,7 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
call i_h_j(det_buffer(1,1,i),det_buffer(1,1,i),Nint,haa)
f = 1.d0/(E_ref-haa)
! if(second_order_h)then
lambda_i = f
! else
! ! You write the new Hamiltonian matrix
! do k = 1, Ndet_generators
! H_matrix_tmp(k,Ndet_generators+1) = H_array(k)
! H_matrix_tmp(Ndet_generators+1,k) = H_array(k)
! enddo
! H_matrix_tmp(Ndet_generators+1,Ndet_generators+1) = haa
! ! Then diagonalize it
! call lapack_diag(eigenvalues,eigenvectors,H_matrix_tmp,Ndet_generators+1,Ndet_generators+1)
! ! Then you extract the effective denominator
! accu = 0.d0
! do k = 1, Ndet_generators
! accu += eigenvectors(k,1) * H_array(k)
! enddo
! lambda_i = eigenvectors(Ndet_generators+1,1)/accu
! endif
do k=1,idx(0)
contrib = H_array(idx(k)) * H_array(idx(k)) * lambda_i
delta_ij_generators_(idx(k), idx(k)) += contrib
@ -89,20 +72,21 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
end
subroutine is_a_good_candidate(threshold,is_ok,verbose)
subroutine is_a_good_candidate(threshold,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
use bitmasks
implicit none
double precision, intent(in) :: threshold
logical, intent(out) :: is_ok
double precision, intent(out):: e_pt2
logical, intent(out) :: is_ok,exit_loop,is_ok_perturbative
logical, intent(in) :: verbose
integer :: l,k,m
double precision,allocatable :: dressed_H_matrix(:,:)
double precision,allocatable :: psi_coef_diagonalized_tmp(:,:)
double precision, allocatable :: psi_coef_diagonalized_tmp(:,:)
integer(bit_kind), allocatable :: psi_det_generators_input(:,:,:)
double precision :: hij
allocate(psi_det_generators_input(N_int,2,N_det_generators),dressed_H_matrix(N_det_generators,N_det_generators))
allocate(psi_coef_diagonalized_tmp(N_det_generators,N_states))
allocate(psi_det_generators_input(N_int,2,N_det_generators),dressed_H_matrix(N_det_generators,N_det_generators),psi_coef_diagonalized_tmp(N_det_generators,N_states))
dressed_H_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_int
@ -111,9 +95,20 @@ subroutine is_a_good_candidate(threshold,is_ok,verbose)
enddo
enddo
!call H_apply_dressed_pert(dressed_H_matrix,N_det_generators,psi_det_generators_input)
call dress_H_matrix_from_psi_det_input(psi_det_generators_input,N_det_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose)
if(do_it_perturbative)then
if(is_ok)then
call dress_H_matrix_from_psi_det_input(psi_det_generators_input,N_det_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose,exit_loop,is_ok_perturbative)
!do m = 1, N_states
! do k = 1, N_det_generators
! do l = 1, N_int
! psi_selectors(l,1,k) = psi_det_generators_input(l,1,k)
! psi_selectors(l,2,k) = psi_det_generators_input(l,2,k)
! enddo
! psi_selectors_coef(k,m) = psi_coef_diagonalized_tmp(k,m)
! enddo
!enddo
!soft_touch psi_selectors psi_selectors_coef
!if(do_it_perturbative)then
print*, 'is_ok_perturbative',is_ok_perturbative
if(is_ok.or.is_ok_perturbative)then
N_det = N_det_generators
do m = 1, N_states
do k = 1, N_det_generators
@ -122,11 +117,19 @@ subroutine is_a_good_candidate(threshold,is_ok,verbose)
psi_det(l,2,k) = psi_det_generators_input(l,2,k)
enddo
psi_coef(k,m) = psi_coef_diagonalized_tmp(k,m)
print*, 'psi_coef(k,m)',psi_coef(k,m)
enddo
enddo
soft_touch psi_det psi_coef N_det
e_pt2 = 0.d0
do m =1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators_input(1,1,m),psi_det_generators_input(1,1,l),N_int,hij) ! Fill the zeroth order H matrix
e_pt2 += (dressed_H_matrix(m,l) - hij)* psi_coef_diagonalized_tmp(m,1)* psi_coef_diagonalized_tmp(l,1)
enddo
enddo
touch psi_coef psi_det N_det
endif
endif
!endif
deallocate(psi_det_generators_input,dressed_H_matrix,psi_coef_diagonalized_tmp)
@ -135,14 +138,14 @@ subroutine is_a_good_candidate(threshold,is_ok,verbose)
end
subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose)
subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose,exit_loop,is_ok_perturbative)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,Ndet_generators)
integer, intent(in) :: Ndet_generators
double precision, intent(in) :: threshold
logical, intent(in) :: verbose
logical, intent(out) :: is_ok
logical, intent(out) :: is_ok,exit_loop,is_ok_perturbative
double precision, intent(out) :: psi_coef_diagonalized_tmp(Ndet_generators,N_states)
double precision, intent(inout) :: dressed_H_matrix(Ndet_generators, Ndet_generators)
@ -151,6 +154,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
double precision :: eigvalues(Ndet_generators), eigvectors(Ndet_generators,Ndet_generators),hij
double precision :: psi_coef_ref(Ndet_generators,N_states),diag_h_mat_average,diag_h_mat_no_ref_average
logical :: is_a_ref_det(Ndet_generators)
exit_loop = .False.
is_a_ref_det = .False.
do i = 1, N_det_generators
@ -191,6 +195,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
if(number_of_holes(psi_det_generators_input(1,1,i)).eq.0 .and. number_of_particles(psi_det_generators_input(1,1,i)).eq.1)then
if(diag_h_mat_average - dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart) .gt.2.d0)then
is_ok = .False.
exit_loop = .True.
return
endif
endif
@ -278,9 +283,11 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
do k = 1, N_states
accu = 0.d0
do j =1, Ndet_generators
print*,'',eigvectors(j,i) , psi_coef_ref(j,k)
accu += eigvectors(j,i) * psi_coef_ref(j,k)
enddo
if(dabs(accu).ge.0.8d0)then
print*,'accu = ',accu
if(dabs(accu).ge.0.72d0)then
i_good_state(0) +=1
i_good_state(i_good_state(0)) = i
endif
@ -321,10 +328,124 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
exit
endif
enddo
if(.not.is_ok)then
is_ok_perturbative = .True.
do i = 1, Ndet_generators
if(is_a_ref_det(i))cycle
do k = 1, N_states
print*, psi_coef_diagonalized_tmp(i,k),threshold_perturbative
if(dabs(psi_coef_diagonalized_tmp(i,k)) .gt.threshold_perturbative)then
is_ok_perturbative = .False.
exit
endif
enddo
if(.not.is_ok_perturbative)then
exit
endif
enddo
endif
if(verbose)then
print*,'is_ok = ',is_ok
print*,'is_ok = ',is_ok
print*,'is_ok_perturbative = ',is_ok_perturbative
endif
end
subroutine fill_H_apply_buffer_no_selection_first_order_coef(n_selected,det_buffer,Nint,iproc)
use bitmasks
implicit none
BEGIN_DOC
! Fill the H_apply buffer with determiants for CISD
END_DOC
integer, intent(in) :: n_selected, Nint, iproc
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k
integer :: new_size
PROVIDE H_apply_buffer_allocated
call omp_set_lock(H_apply_buffer_lock(1,iproc))
new_size = H_apply_buffer(iproc)%N_det + n_selected
if (new_size > H_apply_buffer(iproc)%sze) then
call resize_h_apply_buffer(max(2*H_apply_buffer(iproc)%sze,new_size),iproc)
endif
do i=1,H_apply_buffer(iproc)%N_det
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
enddo
do i=1,n_selected
do j=1,N_int
H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i)
H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i)
enddo
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num)
enddo
double precision :: i_H_psi_array(N_states),h,diag_H_mat_elem_fock,delta_e
do i=1,N_selected
call i_H_psi(det_buffer(1,1,i),psi_selectors,psi_selectors_coef,N_int,N_det_selectors,psi_selectors_size,N_states,i_H_psi_array)
call i_H_j(det_buffer(1,1,i),det_buffer(1,1,i),N_int,h)
do j=1,N_states
delta_e = -1.d0 /(h - psi_energy(j))
H_apply_buffer(iproc)%coef(i+H_apply_buffer(iproc)%N_det,j) = i_H_psi_array(j) * delta_e
enddo
enddo
H_apply_buffer(iproc)%N_det = new_size
do i=1,H_apply_buffer(iproc)%N_det
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num)
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
enddo
call omp_unset_lock(H_apply_buffer_lock(1,iproc))
end
subroutine make_s2_eigenfunction_first_order
implicit none
integer :: i,j,k
integer :: smax, s
integer(bit_kind), allocatable :: d(:,:,:), det_buffer(:,:,:)
integer :: N_det_new
integer, parameter :: bufsze = 1000
logical, external :: is_in_wavefunction
allocate (d(N_int,2,1), det_buffer(N_int,2,bufsze) )
smax = 1
N_det_new = 0
do i=1,N_occ_pattern
call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int)
s += 1
if (s > smax) then
deallocate(d)
allocate ( d(N_int,2,s) )
smax = s
endif
call occ_pattern_to_dets(psi_occ_pattern(1,1,i),d,s,elec_alpha_num,N_int)
do j=1,s
if (.not. is_in_wavefunction(d(1,1,j), N_int) ) then
N_det_new += 1
do k=1,N_int
det_buffer(k,1,N_det_new) = d(k,1,j)
det_buffer(k,2,N_det_new) = d(k,2,j)
enddo
if (N_det_new == bufsze) then
call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,0)
N_det_new = 0
endif
endif
enddo
enddo
if (N_det_new > 0) then
call fill_H_apply_buffer_no_selection_first_order_coef(N_det_new,det_buffer,N_int,0)
call copy_H_apply_buffer_to_wf
SOFT_TOUCH N_det psi_coef psi_det
endif
deallocate(d,det_buffer)
call write_int(output_determinants,N_det_new, 'Added deteminants for S^2')
end

View File

@ -1,8 +1,13 @@
program foboscf
implicit none
call run_prepare
!if(disk_access_ao_integrals == "None" .or. disk_access_ao_integrals == "Read" )then
! disk_access_ao_integrals = "Write"
! touch disk_access_ao_integrals
!endif
!print*, 'disk_access_ao_integrals',disk_access_ao_integrals
no_oa_or_av_opt = .True.
touch no_oa_or_av_opt
call run_prepare
call routine_fobo_scf
call save_mos
@ -10,8 +15,8 @@ end
subroutine run_prepare
implicit none
no_oa_or_av_opt = .False.
touch no_oa_or_av_opt
! no_oa_or_av_opt = .False.
! touch no_oa_or_av_opt
call damping_SCF
call diag_inactive_virt_and_update_mos
end
@ -27,6 +32,7 @@ subroutine routine_fobo_scf
print*,'*******************************************************************************'
print*,'*******************************************************************************'
print*,'FOBO-SCF Iteration ',i
print*, 'ao_bielec_integrals_in_map = ',ao_bielec_integrals_in_map
print*,'*******************************************************************************'
print*,'*******************************************************************************'
if(speed_up_convergence_foboscf)then
@ -46,7 +52,7 @@ subroutine routine_fobo_scf
soft_touch threshold_lmct threshold_mlct
endif
endif
call FOBOCI_lmct_mlct_old_thr
call FOBOCI_lmct_mlct_old_thr(i)
call save_osoci_natural_mos
call damping_SCF
call diag_inactive_virt_and_update_mos

View File

@ -1,7 +1,8 @@
subroutine FOBOCI_lmct_mlct_old_thr
subroutine FOBOCI_lmct_mlct_old_thr(iter)
use bitmasks
implicit none
integer, intent(in) :: iter
integer :: i,j,k,l
integer(bit_kind),allocatable :: unpaired_bitmask(:,:)
integer, allocatable :: occ(:,:)
@ -10,7 +11,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
logical :: test_sym
double precision :: thr,hij
double precision, allocatable :: dressing_matrix(:,:)
logical :: verbose,is_ok
logical :: verbose,is_ok,is_ok_perturbative
verbose = .True.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
@ -38,6 +39,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
integer(bit_kind) , allocatable :: psi_singles(:,:,:)
logical :: lmct
double precision, allocatable :: psi_singles_coef(:,:)
logical :: exit_loop
allocate( zero_bitmask(N_int,2) )
do i = 1, n_inact_orb
lmct = .True.
@ -45,87 +47,45 @@ subroutine FOBOCI_lmct_mlct_old_thr
i_hole_osoci = list_inact(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
call set_psi_det_to_generators
call check_symetry(i_hole_osoci,thr,test_sym)
if(.not.test_sym)cycle
call set_generators_to_generators_restart
call set_psi_det_to_generators
print*,'i_hole_osoci = ',i_hole_osoci
call create_restart_and_1h(i_hole_osoci)
call set_generators_to_psi_det
print*,'Passed set generators'
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
double precision :: e_pt2
call is_a_good_candidate(threshold_lmct,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
if(.not.do_it_perturbative)then
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
if(is_ok)then
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
enddo
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Naked matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! Do all the single excitations on top of the CAS and 1h determinants
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_hole_osoci,lmct)
! endif
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that starts from the active space in order
! ! to introduce the Coulomb hole in the active space
! ! These are the 1h2p excitations that have the i_hole_osoci hole in common
! ! and the 2p if there is more than one electron in the active space
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! ! and in the active space
! do k = 1, n_act_orb
! call set_bit_to_integer(list_act(k),zero_bitmask(1,1),N_int)
! call set_bit_to_integer(list_act(k),zero_bitmask(1,2),N_int)
! enddo
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call all_1h2p
! call diagonalize_CI_SC2
! call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that from the orbital i_hole_osoci
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call set_psi_det_to_generators
! call all_2h2p
! call diagonalize_CI_SC2
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Naked matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! Do all the single excitations on top of the CAS and 1h determinants
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single(e_pt2)
call make_s2_eigenfunction_first_order
threshold_davidson = 1.d-6
soft_touch threshold_davidson davidson_criterion
call diagonalize_ci
double precision :: hkl
call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
hkl = dressing_matrix(1,1)
@ -136,7 +96,10 @@ subroutine FOBOCI_lmct_mlct_old_thr
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
deallocate(dressing_matrix)
else
if(.not.do_it_perturbative)cycle
if(.not. is_ok_perturbative)cycle
endif
call set_intermediate_normalization_lmct_old(norm_tmp,i_hole_osoci)
@ -145,7 +108,6 @@ subroutine FOBOCI_lmct_mlct_old_thr
norm_total(k) += norm_tmp(k)
enddo
call update_density_matrix_osoci
deallocate(dressing_matrix)
enddo
if(.True.)then
@ -159,10 +121,10 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
call set_psi_det_to_generators
call check_symetry(i_particl_osoci,thr,test_sym)
if(.not.test_sym)cycle
call set_generators_to_generators_restart
call set_psi_det_to_generators
print*,'i_particl_osoci= ',i_particl_osoci
! Initialize the bitmask to the restart ones
call initialize_bitmask_to_restart_ones
@ -178,24 +140,33 @@ subroutine FOBOCI_lmct_mlct_old_thr
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
allocate(dressing_matrix(N_det_generators,N_det_generators))
if(.not.do_it_perturbative)then
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
if(is_ok)then
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
enddo
! call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_particl_osoci,lmct)
! endif
call all_single(e_pt2)
call make_s2_eigenfunction_first_order
threshold_davidson = 1.d-6
soft_touch threshold_davidson davidson_criterion
call diagonalize_ci
deallocate(dressing_matrix)
else
if(exit_loop)then
call set_generators_to_generators_restart
call set_psi_det_to_generators
exit
else
if(.not.do_it_perturbative)cycle
if(.not. is_ok_perturbative)cycle
endif
endif
call set_intermediate_normalization_mlct_old(norm_tmp,i_particl_osoci)
do k = 1, N_states
@ -203,7 +174,6 @@ subroutine FOBOCI_lmct_mlct_old_thr
norm_total(k) += norm_tmp(k)
enddo
call update_density_matrix_osoci
deallocate(dressing_matrix)
enddo
endif
@ -230,7 +200,7 @@ subroutine FOBOCI_mlct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
logical :: verbose,is_ok
logical :: verbose,is_ok,exit_loop
verbose = .False.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
@ -270,7 +240,7 @@ subroutine FOBOCI_mlct_old
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
is_ok =.True.
if(.not.is_ok)cycle
@ -304,7 +274,7 @@ subroutine FOBOCI_lmct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
logical :: verbose,is_ok
logical :: verbose,is_ok,exit_loop
verbose = .False.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
@ -342,7 +312,7 @@ subroutine FOBOCI_lmct_old
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! ! so all the mono excitation on the new generators
@ -365,3 +335,303 @@ subroutine FOBOCI_lmct_old
enddo
print*,'accu = ',accu
end
subroutine FOBOCI_lmct_mlct_old_thr_restart(iter)
use bitmasks
implicit none
integer, intent(in) :: iter
integer :: i,j,k,l
integer(bit_kind),allocatable :: unpaired_bitmask(:,:)
integer, allocatable :: occ(:,:)
integer :: n_occ_alpha, n_occ_beta
double precision :: norm_tmp(N_states),norm_total(N_states)
logical :: test_sym
double precision :: thr,hij
double precision, allocatable :: dressing_matrix(:,:)
logical :: verbose,is_ok,is_ok_perturbative
verbose = .True.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
do i = 1, N_int
unpaired_bitmask(i,1) = unpaired_alpha_electrons(i)
unpaired_bitmask(i,2) = unpaired_alpha_electrons(i)
enddo
norm_total = 0.d0
call initialize_density_matrix_osoci
call bitstring_to_list(inact_bitmask(1,1), occ(1,1), n_occ_beta, N_int)
print*,''
print*,''
print*,'mulliken spin population analysis'
accu =0.d0
do i = 1, nucl_num
accu += mulliken_spin_densities(i)
print*,i,nucl_charge(i),mulliken_spin_densities(i)
enddo
print*,''
print*,''
print*,'DOING FIRST LMCT !!'
print*,'Threshold_lmct = ',threshold_lmct
integer(bit_kind) , allocatable :: zero_bitmask(:,:)
integer(bit_kind) , allocatable :: psi_singles(:,:,:)
logical :: lmct
double precision, allocatable :: psi_singles_coef(:,:)
logical :: exit_loop
allocate( zero_bitmask(N_int,2) )
if(iter.ne.1)then
do i = 1, n_inact_orb
lmct = .True.
integer :: i_hole_osoci
i_hole_osoci = list_inact(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call check_symetry(i_hole_osoci,thr,test_sym)
if(.not.test_sym)cycle
call set_generators_to_generators_restart
call set_psi_det_to_generators
print*,'i_hole_osoci = ',i_hole_osoci
call create_restart_and_1h(i_hole_osoci)
call set_generators_to_psi_det
print*,'Passed set generators'
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
double precision :: e_pt2
call is_a_good_candidate(threshold_lmct,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
print*,'is_ok = ',is_ok
if(is_ok)then
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Naked matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! Do all the single excitations on top of the CAS and 1h determinants
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single(e_pt2)
call make_s2_eigenfunction_first_order
threshold_davidson = 1.d-6
soft_touch threshold_davidson davidson_criterion
call diagonalize_ci
double precision :: hkl
call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Dressed matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
deallocate(dressing_matrix)
else
if(.not.do_it_perturbative)cycle
if(.not. is_ok_perturbative)cycle
endif
call set_intermediate_normalization_lmct_old(norm_tmp,i_hole_osoci)
do k = 1, N_states
print*,'norm_tmp = ',norm_tmp(k)
norm_total(k) += norm_tmp(k)
enddo
call update_density_matrix_osoci
enddo
else
double precision :: array_dm(mo_tot_num)
call read_dm_from_lmct(array_dm)
call update_density_matrix_beta_osoci_read(array_dm)
endif
if(iter.ne.1)then
if(.True.)then
print*,''
print*,'DOING THEN THE MLCT !!'
print*,'Threshold_mlct = ',threshold_mlct
lmct = .False.
do i = 1, n_virt_orb
integer :: i_particl_osoci
i_particl_osoci = list_virt(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call check_symetry(i_particl_osoci,thr,test_sym)
if(.not.test_sym)cycle
call set_generators_to_generators_restart
call set_psi_det_to_generators
print*,'i_particl_osoci= ',i_particl_osoci
! Initialize the bitmask to the restart ones
call initialize_bitmask_to_restart_ones
! Impose that only the hole i_hole_osoci can be done
call modify_bitmasks_for_particl(i_particl_osoci)
call print_generators_bitmasks_holes
! Impose that only the active part can be reached
call set_bitmask_hole_as_input(unpaired_bitmask)
!!! call all_single_h_core
call create_restart_and_1p(i_particl_osoci)
!!! ! Update the generators
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
print*,'is_ok = ',is_ok
if(is_ok)then
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
call all_single(e_pt2)
call make_s2_eigenfunction_first_order
threshold_davidson = 1.d-6
soft_touch threshold_davidson davidson_criterion
call diagonalize_ci
deallocate(dressing_matrix)
else
if(exit_loop)then
call set_generators_to_generators_restart
call set_psi_det_to_generators
exit
else
if(.not.do_it_perturbative)cycle
if(.not. is_ok_perturbative)cycle
endif
endif
call set_intermediate_normalization_mlct_old(norm_tmp,i_particl_osoci)
do k = 1, N_states
print*,'norm_tmp = ',norm_tmp(k)
norm_total(k) += norm_tmp(k)
enddo
call update_density_matrix_osoci
enddo
endif
else
integer :: norb
call read_dm_from_mlct(array_dm,norb)
call update_density_matrix_alpha_osoci_read(array_dm)
do i = norb+1, n_virt_orb
i_particl_osoci = list_virt(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call check_symetry(i_particl_osoci,thr,test_sym)
if(.not.test_sym)cycle
call set_generators_to_generators_restart
call set_psi_det_to_generators
print*,'i_particl_osoci= ',i_particl_osoci
! Initialize the bitmask to the restart ones
call initialize_bitmask_to_restart_ones
! Impose that only the hole i_hole_osoci can be done
call modify_bitmasks_for_particl(i_particl_osoci)
call print_generators_bitmasks_holes
! Impose that only the active part can be reached
call set_bitmask_hole_as_input(unpaired_bitmask)
!!! call all_single_h_core
call create_restart_and_1p(i_particl_osoci)
!!! ! Update the generators
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,e_pt2,verbose,exit_loop,is_ok_perturbative)
print*,'is_ok = ',is_ok
if(is_ok)then
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
call all_single(e_pt2)
call make_s2_eigenfunction_first_order
threshold_davidson = 1.d-6
soft_touch threshold_davidson davidson_criterion
call diagonalize_ci
deallocate(dressing_matrix)
else
if(exit_loop)then
call set_generators_to_generators_restart
call set_psi_det_to_generators
exit
else
if(.not.do_it_perturbative)cycle
if(.not. is_ok_perturbative)cycle
endif
endif
call set_intermediate_normalization_mlct_old(norm_tmp,i_particl_osoci)
do k = 1, N_states
print*,'norm_tmp = ',norm_tmp(k)
norm_total(k) += norm_tmp(k)
enddo
call update_density_matrix_osoci
enddo
endif
print*,'norm_total = ',norm_total
norm_total = norm_generators_restart
norm_total = 1.d0/norm_total
! call rescale_density_matrix_osoci(norm_total)
double precision :: accu
accu = 0.d0
do i = 1, mo_tot_num
accu += one_body_dm_mo_alpha_osoci(i,i) + one_body_dm_mo_beta_osoci(i,i)
enddo
print*,'accu = ',accu
end
subroutine read_dm_from_lmct(array)
implicit none
integer :: i,iunit ,getUnitAndOpen
double precision :: stuff
double precision, intent(out) :: array(mo_tot_num)
character*(128) :: input
input=trim("fort.33")
iunit= getUnitAndOpen(input,'r')
print*, iunit
array = 0.d0
do i = 1, n_inact_orb
read(iunit,*) stuff
print*, list_inact(i),stuff
array(list_inact(i)) = stuff
enddo
end
subroutine read_dm_from_mlct(array,norb)
implicit none
integer :: i,iunit ,getUnitAndOpen
double precision :: stuff
double precision, intent(out) :: array(mo_tot_num)
character*(128) :: input
input=trim("fort.35")
iunit= getUnitAndOpen(input,'r')
integer,intent(out) :: norb
read(iunit,*)norb
print*, iunit
input=trim("fort.34")
iunit= getUnitAndOpen(input,'r')
array = 0.d0
print*, 'norb = ',norb
do i = 1, norb
read(iunit,*) stuff
print*, list_virt(i),stuff
array(list_virt(i)) = stuff
enddo
end

View File

@ -9,6 +9,7 @@ BEGIN_PROVIDER [ integer, N_det_generators_restart ]
integer :: i
integer, save :: ifirst = 0
double precision :: norm
print*, ' Providing N_det_generators_restart'
if(ifirst == 0)then
call ezfio_get_determinants_n_det(N_det_generators_restart)
ifirst = 1
@ -30,6 +31,7 @@ END_PROVIDER
integer :: i, k
integer, save :: ifirst = 0
double precision, allocatable :: psi_coef_read(:,:)
print*, ' Providing psi_det_generators_restart'
if(ifirst == 0)then
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
do k = 1, N_int

View File

@ -1,82 +0,0 @@
program test_sc2
implicit none
read_wf = .True.
touch read_wf
call routine
end
subroutine routine
implicit none
double precision, allocatable :: energies(:),diag_H_elements(:)
double precision, allocatable :: H_matrix(:,:)
allocate(energies(N_states),diag_H_elements(N_det))
call diagonalize_CI
call test_hcc
call test_mulliken
allocate(H_matrix(N_det,N_det))
stop 'SC2_1h1p_full is not in the git!'
! call SC2_1h1p_full(psi_det,psi_coef,energies, &
! H_matrix,size(psi_coef,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
deallocate(H_matrix)
integer :: i,j
double precision :: accu,coef_hf
! coef_hf = 1.d0/psi_coef(1,1)
! do i = 1, N_det
! psi_coef(i,1) *= coef_hf
! enddo
touch psi_coef
call pouet
end
subroutine pouet
implicit none
double precision :: accu,coef_hf
! provide one_body_dm_mo_alpha one_body_dm_mo_beta
! call density_matrix_1h1p(psi_det,psi_coef,one_body_dm_mo_alpha,one_body_dm_mo_beta,accu,size(psi_coef,1),N_det,N_states_diag,N_int)
! touch one_body_dm_mo_alpha one_body_dm_mo_beta
call test_hcc
call test_mulliken
! call save_wavefunction
end
subroutine test_hcc
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end
subroutine test_mulliken
double precision :: accu
integer :: i
integer :: j
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
!print*,'AO SPIN POPULATIONS'
accu = 0.d0
!do i = 1, ao_num
! accu += spin_gross_orbital_product(i)
! write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
!enddo
!print*,'sum = ',accu
!accu = 0.d0
!print*,'Angular momentum analysis'
!do i = 0, ao_l_max
! accu += spin_population_angular_momentum(i)
! print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
!print*,'sum = ',accu
!enddo
end

View File

@ -212,12 +212,50 @@ subroutine update_density_matrix_osoci
integer :: iorb,jorb
do i = 1, mo_tot_num
do j = 1, mo_tot_num
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha_average(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta_average(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
enddo
enddo
end
subroutine update_density_matrix_beta_osoci_read(array)
implicit none
BEGIN_DOC
! one_body_dm_mo_alpha_osoci += Delta rho alpha
! one_body_dm_mo_beta_osoci += Delta rho beta
END_DOC
integer :: i,j
integer :: iorb,jorb
double precision :: array(mo_tot_num)
do i = 1, mo_tot_num
j = list_act(1)
one_body_dm_mo_beta_osoci(i,j) += array(i)
one_body_dm_mo_beta_osoci(j,i) += array(i)
one_body_dm_mo_beta_osoci(i,i) += array(i) * array(i)
enddo
end
subroutine update_density_matrix_alpha_osoci_read(array)
implicit none
BEGIN_DOC
! one_body_dm_mo_alpha_osoci += Delta rho alpha
! one_body_dm_mo_beta_osoci += Delta rho beta
END_DOC
integer :: i,j
integer :: iorb,jorb
double precision :: array(mo_tot_num)
do i = 1, mo_tot_num
j = list_act(1)
one_body_dm_mo_alpha_osoci(i,j) += array(i)
one_body_dm_mo_alpha_osoci(j,i) += array(i)
one_body_dm_mo_alpha_osoci(i,i) += array(i) * array(i)
enddo
end
@ -387,14 +425,14 @@ subroutine save_osoci_natural_mos
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
if(dabs(tmp(iorb,jorb)).gt.0.0001d0)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
if(dabs(tmp(iorb,jorb)).gt.0.0001d0)then
print*,'VIRT '
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
@ -412,6 +450,10 @@ subroutine save_osoci_natural_mos
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
!if(disk_access_ao_integrals == "None" .or. disk_access_ao_integrals == "Write" )then
! disk_access_ao_integrals = "Read"
! touch disk_access_ao_integrals
!endif
!soft_touch mo_coef
deallocate(tmp,occ)
@ -588,14 +630,14 @@ end
integer :: i
double precision :: accu_tot,accu_sd
print*,'touched the one_body_dm_mo_beta'
one_body_dm_mo_alpha = one_body_dm_mo_alpha_osoci
one_body_dm_mo_beta = one_body_dm_mo_beta_osoci
one_body_dm_mo_alpha_average = one_body_dm_mo_alpha_osoci
one_body_dm_mo_beta_average = one_body_dm_mo_beta_osoci
touch one_body_dm_mo_alpha one_body_dm_mo_beta
accu_tot = 0.d0
accu_sd = 0.d0
do i = 1, mo_tot_num
accu_tot += one_body_dm_mo_alpha(i,i) + one_body_dm_mo_beta(i,i)
accu_sd += one_body_dm_mo_alpha(i,i) - one_body_dm_mo_beta(i,i)
accu_tot += one_body_dm_mo_alpha_average(i,i) + one_body_dm_mo_beta_average(i,i)
accu_sd += one_body_dm_mo_alpha_average(i,i) - one_body_dm_mo_beta_average(i,i)
enddo
print*,'accu_tot = ',accu_tot
print*,'accu_sdt = ',accu_sd

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files
@ -28,7 +29,6 @@ full_ci
full_ci_no_skip
irpf90.make
irpf90_entities
micro_pt2
tags
target_pt2
var_pt2_ratio

View File

@ -7,16 +7,17 @@ s.set_selection_pt2("epstein_nesbet_2x2")
#s.unset_openmp()
print s
#s = H_apply("FCI_PT2")
#s.set_perturbation("epstein_nesbet_2x2")
#s.unset_openmp()
#print s
s = H_apply_zmq("FCI_PT2")
s = H_apply("FCI_PT2")
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()
print s
s = H_apply("FCI_PT2_new")
s.set_perturbation("decontracted")
s.unset_openmp()
print s
s = H_apply("FCI_no_skip")
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()

View File

@ -16,6 +16,7 @@ Needed Modules
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
@ -77,6 +78,31 @@ h_apply_fci_monoexc
Assume N_int is already provided.
h_apply_fci_no_selection
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_selection_diexc
Undocumented
h_apply_fci_no_selection_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection_diexcp
Undocumented
h_apply_fci_no_selection_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
@ -144,118 +170,6 @@ h_apply_fci_pt2_slave_tcp
Computes a buffer over the network
h_apply_pt2_mono_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_pt2_mono_delta_rho_diexc
Undocumented
h_apply_pt2_mono_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_delta_rho_diexcp
Undocumented
h_apply_pt2_mono_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_di_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_pt2_mono_di_delta_rho_diexc
Undocumented
h_apply_pt2_mono_di_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_di_delta_rho_diexcp
Undocumented
h_apply_pt2_mono_di_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_select_mono_delta_rho_diexc
Undocumented
h_apply_select_mono_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_delta_rho_diexcp
Undocumented
h_apply_select_mono_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_di_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_select_mono_di_delta_rho_diexc
Undocumented
h_apply_select_mono_di_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_di_delta_rho_diexcp
Undocumented
h_apply_select_mono_di_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`micro_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L1>`_
Helper program to compute the PT2 in distributed mode.
`provide_everything <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L15>`_
Undocumented
`run_wf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L19>`_
Undocumented
`var_pt2_ratio_run <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/var_pt2_ratio.irp.f#L1>`_
Undocumented

View File

@ -92,8 +92,9 @@ program full_ci
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
threshold_generators = threshold_generators_pt2
threshold_selectors = threshold_selectors_pt2
SOFT_TOUCH threshold_generators threshold_selectors
call H_apply_FCI_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'

View File

@ -73,9 +73,11 @@ program full_ci
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_generators = threshold_generators_pt2
threshold_selectors = threshold_selectors_pt2
SOFT_TOUCH threshold_generators threshold_selectors
! print*,'The thres'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
call H_apply_FCI_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'

View File

@ -0,0 +1,11 @@
[energy]
type: double precision
doc: Calculated Selected FCI energy
interface: ezfio
[energy_pt2]
type: double precision
doc: Calculated FCI energy + PT2
interface: ezfio

View File

@ -1 +1 @@
Perturbation Selectors_full Generators_full ZMQ Full_CI
Perturbation Selectors_full Generators_full ZMQ

View File

@ -0,0 +1,461 @@
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `ZMQ <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ>`_
* `Full_CI <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`add_task_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L677>`_
Get a task from the task server
`add_to_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L19>`_
Undocumented
`assert <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L25>`_
Undocumented
`connect_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L594>`_
Connect to the task server and obtain the worker ID
`create_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L2>`_
Undocumented
`disconnect_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L637>`_
Disconnect from the task server
`end_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L559>`_
End a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`end_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L419>`_
Terminate socket on which the results are sent.
`end_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L437>`_
Terminate socket on which the results are sent.
`end_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L456>`_
Terminate socket on which the results are sent.
`end_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L401>`_
Terminate socket on which the results are sent.
`end_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L790>`_
Terminate the socket from the application to qp_run
`fci_zmq <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L1>`_
Undocumented
`fill_buffer_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L156>`_
Undocumented
`fill_buffer_single <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L60>`_
Undocumented
`full_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/full_ci_no_skip.irp.f#L1>`_
Undocumented
`get_d0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L582>`_
Undocumented
`get_d1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L413>`_
Undocumented
`get_d2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L295>`_
Undocumented
`get_m0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L279>`_
Undocumented
`get_m1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L217>`_
Undocumented
`get_m2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L158>`_
Undocumented
`get_mask_phase <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L36>`_
Undocumented
`get_phase_bi <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L87>`_
Undocumented
`get_task_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L737>`_
Get a task from the task server
h_apply_fci
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_diexc
Undocumented
h_apply_fci_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_diexcp
Undocumented
h_apply_fci_mono
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_mono_diexc
Undocumented
h_apply_fci_mono_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_mono_diexcp
Undocumented
h_apply_fci_mono_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_selection_diexc
Undocumented
h_apply_fci_no_selection_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection_diexcp
Undocumented
h_apply_fci_no_selection_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_skip_diexc
Undocumented
h_apply_fci_no_skip_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip_diexcp
Undocumented
h_apply_fci_no_skip_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_pt2_collector
Collects results from the selection in an array of generators
h_apply_fci_pt2_diexc
Undocumented
h_apply_fci_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2_diexcp
Undocumented
h_apply_fci_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2_slave
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_pt2_slave_inproc
Computes a buffer using threads
h_apply_fci_pt2_slave_tcp
Computes a buffer over the network
`integral8 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L4>`_
Undocumented
`new_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L490>`_
Start a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`new_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L164>`_
Socket on which the collector and the main communicate
`new_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L224>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L300>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L360>`_
Socket to read the state published by the Task server
`new_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L126>`_
Socket on which the qp_run process replies
`past_d1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L642>`_
Undocumented
`past_d2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L658>`_
Undocumented
`provide_everything <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L14>`_
Undocumented
`psi_phasemask <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L14>`_
Undocumented
`pull_selection_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L122>`_
Undocumented
`push_selection_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L87>`_
Undocumented
`qp_run_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L19>`_
Address of the qp_run socket
Example : tcp://130.120.229.139:12345
`reset_zmq_addresses <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L67>`_
Socket which pulls the results (2)
`run_selection_slave <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L2>`_
Undocumented
`run_wf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L19>`_
Undocumented
`select_connected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L58>`_
Undocumented
`select_doubles <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L2>`_
Undocumented
`select_singles <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L3>`_
Select determinants connected to i_det by H
`selection_collector <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L167>`_
Undocumented
`selection_slave <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L1>`_
Helper program to compute the PT2 in distributed mode.
`selection_slave_inproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L160>`_
Undocumented
`selection_slave_tcp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L86>`_
Undocumented
`sort_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L39>`_
Undocumented
`splash_p <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L107>`_
Undocumented
`splash_pq <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L221>`_
Undocumented
`spot_hasbeen <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L305>`_
Undocumented
`spot_isinwf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L684>`_
Undocumented
`switch_qp_run_to_master <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L84>`_
Address of the master qp_run socket
Example : tcp://130.120.229.139:12345
`task_done_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L708>`_
Get a task from the task server
`update_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L63>`_
Update energy when it is received from ZMQ
`var_pt2_ratio_run <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/var_pt2_ratio.irp.f#L1>`_
Undocumented
`wait_for_next_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L855>`_
Undocumented
`wait_for_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L879>`_
Wait for the ZMQ state to be ready
`wait_for_states <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L907>`_
Wait for the ZMQ state to be ready
`zmq_context <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L8>`_
Context for the ZeroMQ library
`zmq_delete_task <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L813>`_
When a task is done, it has to be removed from the list of tasks on the qp_run
queue. This guarantees that the results have been received in the pull.
`zmq_port <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L113>`_
Return the value of the ZMQ port from the corresponding integer
`zmq_port_start <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L20>`_
Address of the qp_run socket
Example : tcp://130.120.229.139:12345
`zmq_selection <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L109>`_
Undocumented
`zmq_set_running <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L530>`_
Set the job to Running in QP-run
`zmq_socket_pair_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L45>`_
Socket which pulls the results (2)
`zmq_socket_pull_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L47>`_
Socket which pulls the results (2)
`zmq_socket_pull_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L44>`_
Socket which pulls the results (2)
`zmq_socket_push_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L48>`_
Socket which pulls the results (2)
`zmq_socket_push_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L46>`_
Socket which pulls the results (2)
`zmq_socket_sub_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L49>`_
Socket which pulls the results (2)
`zmq_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L482>`_
Threads executing work through the ZeroMQ interface

View File

@ -0,0 +1,11 @@
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
implicit none
BEGIN_DOC
! E0 in the denominator of the PT2
END_DOC
pt2_E0_denominator(1:N_states) = CI_electronic_energy(1:N_states)
! pt2_E0_denominator(1:N_states) = HF_energy - nuclear_repulsion
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
call write_double(6,pt2_E0_denominator(1)+nuclear_repulsion, 'PT2 Energy denominator')
END_PROVIDER

View File

@ -5,11 +5,15 @@ program fci_zmq
double precision, allocatable :: pt2(:)
integer :: degree
integer :: n_det_before, to_select
double precision :: threshold_davidson_in
allocate (pt2(N_states))
pt2 = 1.d0
diag_algorithm = "Lapack"
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
if (N_det > N_det_max) then
call diagonalize_CI
@ -33,29 +37,11 @@ program fci_zmq
double precision :: E_CI_before(N_states)
integer :: n_det_before
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
n_det_before = 0
do while ( (N_det < N_det_max) .and. (maxval(abs(pt2(1:N_states))) > pt2_max) )
n_det_before = N_det
call ZMQ_selection(max(1024-N_det, N_det), pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
@ -79,13 +65,42 @@ program fci_zmq
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_energy(CI_energy)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = 2*N_det
to_select = max(64-to_select, to_select)
to_select = min(to_select, N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det == N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
endif
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
endif
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
!threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
!threshold_generators = max(threshold_generators,threshold_generators_pt2)
!TOUCH threshold_selectors threshold_generators
threshold_selectors = 1.d0
threshold_generators = 1d0 ! 0.9999d0
threshold_generators = 1d0
E_CI_before(1:N_states) = CI_energy(1:N_states)
!call ZMQ_selection(0, pt2)! pour non-stochastic
call ZMQ_pt2(pt2)
@ -99,9 +114,11 @@ program fci_zmq
print *, 'E+PT2 = ', E_CI_before+pt2
print *, '-----'
enddo
call ezfio_set_full_ci_energy_pt2(E_CI_before+pt2)
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
endif
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

@ -4,7 +4,7 @@ subroutine run_selection_slave(thread,iproc,energy)
use selection_types
implicit none
double precision, intent(in) :: energy(N_states_diag)
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i

File diff suppressed because it is too large Load Diff

View File

@ -13,7 +13,7 @@ end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context mo_mono_elec_integral
! PROVIDE ci_electronic_energy mo_tot_num N_int
! PROVIDE pt2_e0_denominator mo_tot_num N_int
end
subroutine run_wf
@ -22,7 +22,7 @@ subroutine run_wf
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states_diag)
double precision :: energy(N_states)
character*(64) :: states(2)
integer :: rc, i
@ -48,7 +48,7 @@ subroutine run_wf
! ---------
print *, 'Selection'
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states_diag)
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states)
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
@ -76,7 +76,7 @@ end
subroutine update_energy(energy)
implicit none
double precision, intent(in) :: energy(N_states_diag)
double precision, intent(in) :: energy(N_states)
BEGIN_DOC
! Update energy when it is received from ZMQ
END_DOC
@ -88,7 +88,7 @@ subroutine update_energy(energy)
enddo
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
if (.True.) then
do k=1,size(ci_electronic_energy)
do k=1,N_states
ci_electronic_energy(k) = energy(k)
enddo
TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
@ -99,7 +99,7 @@ end
subroutine selection_slave_tcp(i,energy)
implicit none
double precision, intent(in) :: energy(N_states_diag)
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: i
call run_selection_slave(0,i,energy)

View File

@ -13,7 +13,7 @@ end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
! PROVIDE ci_electronic_energy mo_tot_num N_int
PROVIDE pt2_e0_denominator mo_tot_num N_int
end
subroutine run_wf
@ -22,7 +22,7 @@ subroutine run_wf
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states_diag)
double precision :: energy(N_states)
character*(64) :: states(1)
integer :: rc, i
@ -47,7 +47,7 @@ subroutine run_wf
! ---------
print *, 'Selection'
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states_diag)
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states)
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
@ -62,7 +62,7 @@ end
subroutine update_energy(energy)
implicit none
double precision, intent(in) :: energy(N_states_diag)
double precision, intent(in) :: energy(N_states)
BEGIN_DOC
! Update energy when it is received from ZMQ
END_DOC
@ -74,7 +74,7 @@ subroutine update_energy(energy)
enddo
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
if (.True.) then
do k=1,size(ci_electronic_energy)
do k=1,N_states
ci_electronic_energy(k) = energy(k)
enddo
TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
@ -85,7 +85,7 @@ end
subroutine selection_slave_tcp(i,energy)
implicit none
double precision, intent(in) :: energy(N_states_diag)
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: i
call run_selection_slave(0,i,energy)

View File

@ -0,0 +1,105 @@
program fci_zmq
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: Nmin, Nmax
integer :: n_det_before, to_select
double precision :: threshold_davidson_in, ratio, E_ref
double precision, allocatable :: psi_coef_ref(:,:)
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
! Stopping criterion is the PT2max
double precision :: E_CI_before(N_states)
do while (dabs(pt2(1)) > pt2_max)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = N_det
to_select = max(64-to_select, to_select)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
threshold_davidson = threshold_davidson_in
TOUCH threshold_selectors threshold_generators threshold_davidson
call diagonalize_CI
call ZMQ_selection(0, pt2)
E_ref = CI_energy(1) + pt2(1)
print *, 'Est FCI = ', E_ref
Nmax = N_det
Nmin = 2
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
psi_coef_ref = psi_coef_sorted
psi_det_ref = psi_det_sorted
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
TOUCH psi_coef psi_det
do while (Nmax-Nmin > 1)
psi_coef = psi_coef_ref
psi_det = psi_det_ref
TOUCH psi_det psi_coef
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
if (ratio < var_pt2_ratio) then
Nmin = N_det
else
Nmax = N_det
endif
N_det = Nmin + (Nmax-Nmin)/2
print *, '-----'
print *, 'Det min, Det max: ', Nmin, Nmax
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
print *, 'N_det = ', N_det
print *, 'E = ', CI_energy(1)
enddo
call ZMQ_selection(0, pt2)
print *, '------'
print *, 'HF_energy = ', HF_energy
print *, 'Est FCI = ', E_ref
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
E_CI_before(1:N_states) = CI_energy(1:N_states)
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

@ -0,0 +1,95 @@
program fci_zmq
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: Nmin, Nmax
integer :: n_det_before, to_select
double precision :: threshold_davidson_in, ratio, E_ref, pt2_ratio
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
double precision :: E_CI_before(N_states)
do while (dabs(pt2(1)) > pt2_max)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = N_det
to_select = max(64-to_select, to_select)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
threshold_davidson = threshold_davidson_in
TOUCH threshold_selectors threshold_generators threshold_davidson
call diagonalize_CI
call ZMQ_selection(0, pt2)
E_ref = CI_energy(1) + pt2(1)
pt2_ratio = (E_ref + pt2_max - HF_energy) / (E_ref - HF_energy)
print *, 'Est FCI = ', E_ref
Nmax = N_det
Nmin = N_det/8
do while (Nmax-Nmin > 1)
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
TOUCH psi_coef psi_det
if (ratio < pt2_ratio) then
Nmin = N_det
to_select = (Nmax-Nmin)/2
call ZMQ_selection(to_select, pt2)
else
Nmax = N_det
N_det = Nmin + (Nmax-Nmin)/2
endif
print *, '-----'
print *, 'Det min, Det max: ', Nmin, Nmax
print *, 'Ratio : ', ratio, ' ~ ', pt2_ratio
print *, 'HF_energy = ', HF_energy
print *, 'Est FCI = ', E_ref
print *, 'N_det = ', N_det
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
enddo
call ZMQ_selection(0, pt2)
print *, '------'
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
E_CI_before(1:N_states) = CI_energy(1:N_states)
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

View File

@ -0,0 +1,117 @@
subroutine ZMQ_selection(N_in, pt2)
use f77_zmq
use selection_types
implicit none
character*(512) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, intent(in) :: N_in
type(selection_buffer) :: b
integer :: i, N
integer, external :: omp_get_thread_num
double precision, intent(out) :: pt2(N_states)
if (.True.) then
PROVIDE pt2_e0_denominator
N = max(N_in,1)
provide nproc
call new_parallel_job(zmq_to_qp_run_socket,"selection")
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
call zmq_set_running(zmq_to_qp_run_socket)
call create_selection_buffer(N, N*2, b)
endif
integer :: i_generator, i_generator_start, i_generator_max, step
! step = int(max(1.,10*elec_num/mo_tot_num)
step = int(5000000.d0 / dble(N_int * N_states * elec_num * elec_num * mo_tot_num * mo_tot_num ))
step = max(1,step)
do i= 1, N_det_generators,step
i_generator_start = i
i_generator_max = min(i+step-1,N_det_generators)
write(task,*) i_generator_start, i_generator_max, 1, N
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
end do
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call selection_collector(b, pt2)
else
call selection_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
if (N_in > 0) then
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN
call copy_H_apply_buffer_to_wf()
if (s2_eig) then
call make_s2_eigenfunction
endif
endif
end subroutine
subroutine selection_slave_inproc(i)
implicit none
integer, intent(in) :: i
call run_selection_slave(1,i,pt2_e0_denominator)
end
subroutine selection_collector(b, pt2)
use f77_zmq
use selection_types
use bitmasks
implicit none
type(selection_buffer), intent(inout) :: b
double precision, intent(out) :: pt2(N_states)
double precision :: pt2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer :: msg_size, rc, more
integer :: acc, i, j, robin, N, ntask
double precision, allocatable :: val(:)
integer(bit_kind), allocatable :: det(:,:,:)
integer, allocatable :: task_id(:)
integer :: done
real :: time, time0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
done = 0
more = 1
pt2(:) = 0d0
call CPU_TIME(time0)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
pt2 += pt2_mwen
do i=1, N
call add_to_selection_buffer(b, det(1,1,i), val(i))
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
end do
done += ntask
call CPU_TIME(time)
! print *, "DONE" , done, time - time0
end do
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
call sort_selection_buffer(b)
end subroutine

View File

@ -33,7 +33,7 @@ Documentation
.. by the `update_README.py` script.
`degree_max_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L43>`_
`degree_max_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L45>`_
Max degree of excitation (respect to HF) of the generators
@ -52,10 +52,10 @@ Documentation
Hartree-Fock determinant
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L66>`_
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L68>`_
Memo to skip useless selectors
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L58>`_
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L60>`_
Size of the select_max array

View File

@ -67,11 +67,11 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L268>`_
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L269>`_
Fock matrix on the MO basis
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L326>`_
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L327>`_
Fock matrix in AO basis set
@ -79,7 +79,7 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L288>`_
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L289>`_
Fock matrix on the MO basis
@ -115,7 +115,7 @@ Documentation
.br
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L388>`_
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L389>`_
Undocumented
@ -135,7 +135,7 @@ Documentation
S^-1 Beta density matrix in the AO basis x S^-1
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L307>`_
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L308>`_
Hartree-Fock energy

View File

@ -1,4 +1,10 @@
program mp2
no_vvvv_integrals = .True.
SOFT_TOUCH no_vvvv_integrals
call run
end
subroutine run
implicit none
double precision, allocatable :: pt2(:), norm_pert(:)
double precision :: H_pert_diag, E_old

View File

@ -1,4 +1,10 @@
program mp2_wf
no_vvvv_integrals = .True.
SOFT_TOUCH no_vvvv_integrals
call run
end
subroutine run
implicit none
BEGIN_DOC
! Save the MP2 wave function

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files

View File

@ -36,11 +36,19 @@ Documentation
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L283>`_
`apply_hole_local <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1282>`_
Undocumented
`apply_particle_local <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1319>`_
Undocumented
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L320>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L382>`_
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L371>`_
Undocumented
@ -63,23 +71,23 @@ Documentation
Binomial coefficients
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L105>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L120>`_
Eigenvectors/values of the dressed CI matrix
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L106>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L121>`_
Eigenvectors/values of the dressed CI matrix
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L104>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L119>`_
Eigenvectors/values of the dressed CI matrix
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L171>`_
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L247>`_
N_states lowest eigenvalues of the dressed CI matrix
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L59>`_
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L57>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
@ -95,12 +103,39 @@ Documentation
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L4>`_
`davidson_diag_hjj_sjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L610>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
S2_jj : specific diagonal S^2 matrix elements
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized. Assumed > sze
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L1>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
@ -119,19 +154,38 @@ Documentation
Initial guess vectors are not necessarily orthonormal
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L138>`_
`davidson_diag_mrcc_hs2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L552>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L136>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L155>`_
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L153>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L176>`_
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L197>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L210>`_
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L231>`_
n!!
@ -139,19 +193,23 @@ Documentation
Undocumented
`delta_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L68>`_
Dressing matrix in N_det basis
`dec_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L532>`_
Undocumented
`delta_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L67>`_
Dressing matrix in N_det basis
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L186>`_
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L265>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`dij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1092>`_
Undocumented
`dij_unique <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L617>`_
Undocumented
`dset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L27>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
@ -170,10 +228,26 @@ Documentation
contains the new order of the elements.
`dtranspose <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/transpose.irp.f#L41>`_
Transpose input matrix A into output matrix B
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L105>`_
Undocumented
`exc_inf <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L479>`_
Undocumented
`exccmp <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1265>`_
Undocumented
`exceq <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1253>`_
Undocumented
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L408>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
@ -183,19 +257,19 @@ Documentation
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L125>`_
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L123>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L264>`_
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L301>`_
Find A.C = B
`find_triples_and_quadruples <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L315>`_
`find_triples_and_quadruples <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L286>`_
Undocumented
`find_triples_and_quadruples_micro <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L375>`_
`find_triples_and_quadruples_micro <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L346>`_
Undocumented
@ -221,7 +295,15 @@ Documentation
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L210>`_
`get_dij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1129>`_
Undocumented
`get_dij_index <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1113>`_
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L247>`_
Find C = A^-1
@ -306,11 +388,63 @@ h_apply_mrcc_pt2_monoexc
Assume N_int is already provided.
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L79>`_
h_apply_mrcepa_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_mrcepa_pt2_collector
Collects results from the selection in an array of generators
h_apply_mrcepa_pt2_diexc
Undocumented
h_apply_mrcepa_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_mrcepa_pt2_diexcp
Undocumented
h_apply_mrcepa_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_mrcepa_pt2_slave
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_mrcepa_pt2_slave_inproc
Computes a buffer using threads
h_apply_mrcepa_pt2_slave_tcp
Computes a buffer over the network
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L94>`_
Dressed H with Delta_ij
`h_u_0_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L367>`_
`h_s2_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L997>`_
Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
.br
S2_jj : array of <j|S^2|j>
`h_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L409>`_
Computes v_0 = H|u_0>
.br
n : number of determinants
@ -392,7 +526,15 @@ h_apply_mrcc_pt2_monoexc
Hermite polynomial
`hij_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L53>`_
`hh_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1181>`_
Undocumented
`hh_shortcut <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1182>`_
Undocumented
`hij_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L66>`_
< ref | H | Non-ref > matrix
@ -523,7 +665,7 @@ h_apply_mrcc_pt2_monoexc
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L257>`_
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L278>`_
1/i
@ -541,6 +683,10 @@ h_apply_mrcc_pt2_monoexc
iradix should be -1 in input.
`is_generable <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L284>`_
Undocumented
`iset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L52>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
@ -559,15 +705,19 @@ h_apply_mrcc_pt2_monoexc
contains the new order of the elements.
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1>`_
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L8>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lambda_mrcc_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L2>`_
`lambda_mrcc_kept <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L10>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L362>`_
`lambda_mrcc_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L9>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L399>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -578,7 +728,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L425>`_
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L462>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -589,7 +739,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L295>`_
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L332>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -600,7 +750,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L491>`_
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L528>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -611,19 +761,27 @@ h_apply_mrcc_pt2_monoexc
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L93>`_
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L91>`_
n!
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L406>`_
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L395>`_
Transform to lower case
`map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/map_functions.irp.f#L70>`_
Undocumented
`map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/map_functions.irp.f#L1>`_
Undocumented
`mrcc_dress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L17>`_
Undocumented
`mrcc_iterations <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L7>`_
`mrmode <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L3>`_
Undocumented
@ -632,12 +790,24 @@ h_apply_mrcc_pt2_monoexc
D(t) =! D(t) +( B(t)*C(t))
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L358>`_
`n_ex_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L575>`_
Undocumented
`n_hh_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L573>`_
Undocumented
`n_pp_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L574>`_
Undocumented
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L348>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L283>`_
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L304>`_
Number of current OpenMP threads
@ -659,7 +829,7 @@ h_apply_mrcc_pt2_monoexc
.br
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L128>`_
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L162>`_
Compute C_new=C_old.S^-1/2 orthogonalization.
.br
overlap : overlap matrix
@ -677,6 +847,19 @@ h_apply_mrcc_pt2_monoexc
.br
`ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L128>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L35>`_
Undocumented
@ -707,6 +890,10 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`pp_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1183>`_
Undocumented
`progress_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L29>`_
Current status for displaying progress bars. Global variable.
@ -727,6 +914,14 @@ h_apply_mrcc_pt2_monoexc
Current status for displaying progress bars. Global variable.
`psi_non_ref_sorted <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L609>`_
Undocumented
`psi_non_ref_sorted_idx <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L610>`_
Undocumented
`psi_ref_lock <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L4>`_
Locks on ref determinants to fill delta_ij
@ -735,6 +930,10 @@ h_apply_mrcc_pt2_monoexc
Recenter two polynomials
`rho_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L618>`_
Undocumented
`rint <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L436>`_
.. math::
.br
@ -762,10 +961,6 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`run_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L1>`_
Undocumented
`run_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L45>`_
Display a progress bar with documentation of what is happening
@ -774,7 +969,15 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L59>`_
`searchdet <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L337>`_
Undocumented
`searchexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L388>`_
Undocumented
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L2>`_
Undocumented
@ -790,7 +993,7 @@ h_apply_mrcc_pt2_monoexc
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L548>`_
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L585>`_
Undocumented
@ -800,6 +1003,14 @@ h_apply_mrcc_pt2_monoexc
contains the new order of the elements.
`sort_det <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L417>`_
Undocumented
`sort_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L453>`_
Undocumented
`start_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L1>`_
Starts the progress bar
@ -817,18 +1028,37 @@ h_apply_mrcc_pt2_monoexc
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L326>`_
`tamise_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L495>`_
Uncodumented : TODO
`transpose <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/transpose.irp.f#L2>`_
Transpose input matrix A into output matrix B
`u_0_h_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L374>`_
Computes e_0 = <u_0|H|u_0>/<u_0|u_0>
.br
n : number of determinants
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L334>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L299>`_
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L320>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L268>`_
`unsortedsearchdet <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L368>`_
Undocumented
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L289>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L243>`_
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L264>`_
Write the last git commit in file iunit.

View File

@ -0,0 +1,238 @@
BEGIN_PROVIDER [ integer, n_exc_active ]
&BEGIN_PROVIDER [ integer, active_pp_idx, (hh_nex) ]
&BEGIN_PROVIDER [ integer, active_hh_idx, (hh_nex) ]
&BEGIN_PROVIDER [ logical, is_active_exc, (hh_nex) ]
implicit none
BEGIN_DOC
! is_active_exc : True if the excitation involves at least one active MO
!
! n_exc_active : Number of active excitations : Number of excitations without the inactive ones.
!
! active_hh_idx :
!
! active_pp_idx :
END_DOC
integer :: hh, pp, II
integer :: ind
logical :: ok
integer(bit_kind) :: myDet(N_int, 2), myMask(N_int, 2)
integer, allocatable :: pathTo(:)
integer, external :: searchDet
allocate(pathTo(N_det_non_ref))
pathTo(:) = 0
is_active_exc(:) = .false.
n_exc_active = 0
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
do II = 1, N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind == -1) cycle
ind = psi_non_ref_sorted_idx(ind)
if(pathTo(ind) == 0) then
pathTo(ind) = pp
else
is_active_exc(pp) = .true.
is_active_exc(pathTo(ind)) = .true.
end if
end do
end do
end do
!is_active_exc=.true.
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
if(is_active_exc(pp)) then
n_exc_active = n_exc_active + 1
active_hh_idx(n_exc_active) = hh
active_pp_idx(n_exc_active) = pp
end if
end do
end do
deallocate(pathTo)
print *, n_exc_active, "active excitations /", hh_nex
END_PROVIDER
BEGIN_PROVIDER [ integer, n_exc_active_sze ]
implicit none
BEGIN_DOC
! Dimension of arrays to avoid zero-sized arrays
END_DOC
n_exc_active_sze = max(n_exc_active,1)
END_PROVIDER
BEGIN_PROVIDER [ integer, active_excitation_to_determinants_idx, (0:N_det_ref+1, n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, active_excitation_to_determinants_val, (N_states,N_det_ref+1, n_exc_active_sze) ]
implicit none
BEGIN_DOC
! Sparse matrix A containing the matrix to transform the active excitations to
! determinants : A | \Psi_0 > = | \Psi_SD >
END_DOC
integer :: s, ppp, pp, hh, II, ind, wk, i
integer, allocatable :: lref(:)
integer(bit_kind) :: myDet(N_int,2), myMask(N_int,2)
double precision :: phase
logical :: ok
integer, external :: searchDet
!$OMP PARALLEL default(none) shared(psi_non_ref, hh_exists, pp_exists, N_int,&
!$OMP active_excitation_to_determinants_val, active_excitation_to_determinants_idx)&
!$OMP shared(hh_shortcut, psi_ref_coef, N_det_non_ref, psi_non_ref_sorted, &
!$OMP psi_non_ref_sorted_idx, psi_ref, N_det_ref, N_states)&
!$OMP shared(is_active_exc, active_hh_idx, active_pp_idx, n_exc_active)&
!$OMP private(lref, pp, II, ok, myMask, myDet, ind, phase, wk, ppp, hh, s)
allocate(lref(N_det_non_ref))
!$OMP DO schedule(dynamic)
do ppp=1,n_exc_active
active_excitation_to_determinants_val(:,:,ppp) = 0d0
active_excitation_to_determinants_idx(:,ppp) = 0
pp = active_pp_idx(ppp)
hh = active_hh_idx(ppp)
lref = 0
do II = 1, N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind /= -1) then
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
if (phase > 0.d0) then
lref(psi_non_ref_sorted_idx(ind)) = II
else
lref(psi_non_ref_sorted_idx(ind)) = -II
endif
end if
end do
wk = 0
do i=1, N_det_non_ref
if(lref(i) > 0) then
wk += 1
do s=1,N_states
active_excitation_to_determinants_val(s,wk, ppp) = psi_ref_coef(lref(i), s)
enddo
active_excitation_to_determinants_idx(wk, ppp) = i
else if(lref(i) < 0) then
wk += 1
do s=1,N_states
active_excitation_to_determinants_val(s,wk, ppp) = -psi_ref_coef(-lref(i), s)
enddo
active_excitation_to_determinants_idx(wk, ppp) = i
end if
end do
active_excitation_to_determinants_idx(0,ppp) = wk
end do
!$OMP END DO
deallocate(lref)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ integer, mrcc_AtA_ind, (N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, mrcc_AtA_val, (N_states, N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_col_shortcut, (n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_N_col, (n_exc_active_sze) ]
implicit none
BEGIN_DOC
! A is active_excitation_to_determinants in At.A
END_DOC
integer :: AtA_size, i,k
integer :: at_roww, at_row, wk, a_coll, a_col, r1, r2, s
double precision, allocatable :: t(:), A_val_mwen(:,:), As2_val_mwen(:,:)
integer, allocatable :: A_ind_mwen(:)
double precision :: sij
PROVIDE psi_non_ref
mrcc_AtA_ind(:) = 0
mrcc_AtA_val(:,:) = 0.d0
mrcc_col_shortcut(:) = 0
mrcc_N_col(:) = 0
AtA_size = 0
!$OMP PARALLEL default(none) shared(k, active_excitation_to_determinants_idx,&
!$OMP active_excitation_to_determinants_val, hh_nex) &
!$OMP private(at_row, a_col, t, i, r1, r2, wk, A_ind_mwen, A_val_mwen,&
!$OMP As2_val_mwen, a_coll, at_roww,sij) &
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtA_size, mrcc_AtA_val, mrcc_AtA_ind, &
!$OMP n_exc_active, active_pp_idx,psi_non_ref)
allocate(A_val_mwen(N_states,hh_nex), As2_val_mwen(N_states,hh_nex), A_ind_mwen(hh_nex), t(N_states) )
!$OMP DO schedule(dynamic, 100)
do at_roww = 1, n_exc_active ! hh_nex
at_row = active_pp_idx(at_roww)
wk = 0
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
t(:) = 0d0
r1 = 1
r2 = 1
do while ((active_excitation_to_determinants_idx(r1, at_roww) /= 0).and.(active_excitation_to_determinants_idx(r2, a_coll) /= 0))
if(active_excitation_to_determinants_idx(r1, at_roww) > active_excitation_to_determinants_idx(r2, a_coll)) then
r2 = r2+1
else if(active_excitation_to_determinants_idx(r1, at_roww) < active_excitation_to_determinants_idx(r2, a_coll)) then
r1 = r1+1
else
do s=1,N_states
t(s) = t(s) - active_excitation_to_determinants_val(s,r1, at_roww) * active_excitation_to_determinants_val(s,r2, a_coll)
enddo
r1 = r1+1
r2 = r2+1
end if
end do
if (a_col == at_row) then
t(:) = t(:) + 1.d0
endif
if (sum(dabs(t(:))) > 0.d0) then
wk = wk+1
A_ind_mwen(wk) = a_col
A_val_mwen(:,wk) = t(:)
endif
end do
if(wk /= 0) then
!$OMP CRITICAL
mrcc_col_shortcut(at_roww) = AtA_size+1
mrcc_N_col(at_roww) = wk
if (AtA_size+wk > size(mrcc_AtA_ind,1)) then
print *, AtA_size+wk , size(mrcc_AtA_ind,1)
stop 'too small'
endif
do i=1,wk
mrcc_AtA_ind(AtA_size+i) = A_ind_mwen(i)
do s=1,N_states
mrcc_AtA_val(s,AtA_size+i) = A_val_mwen(s,i)
enddo
enddo
AtA_size += wk
!$OMP END CRITICAL
end if
end do
!$OMP END DO NOWAIT
deallocate (A_ind_mwen, A_val_mwen, As2_val_mwen, t)
!$OMP END PARALLEL
print *, "At.A SIZE", ata_size
END_PROVIDER

View File

@ -94,7 +94,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
double precision, allocatable :: overlap(:,:)
double precision :: u_dot_v, u_dot_u
integer, allocatable :: kl_pairs(:,:)
integer :: k_pairs, kl
integer :: iter2
@ -144,7 +143,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
sze_8 = align_double(sze)
allocate( &
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st_diag,davidson_sze_max), &
U(sze_8,N_st_diag,davidson_sze_max), &
R(sze_8,N_st_diag), &
@ -209,19 +207,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
! -------------------------------------------
! do l=1,N_st_diag
! do k=1,N_st_diag
! do iter2=1,iter-1
! h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
! h(k,iter,l,iter2) = h(k,iter2,l,iter)
! enddo
! enddo
! do k=1,l
! h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
! h(l,iter,k,iter) = h(k,iter,l,iter)
! enddo
! enddo
call dgemm('T','N', N_st_diag*iter, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,1,iter), size(W,1), &
0.d0, h(1,1,1,iter), size(h,1)*size(h,2))
@ -330,20 +315,10 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
! -----------
do k=1,N_st_diag
energies(k) = lambda(k)
do i=1,sze
u_in(i,k) = 0.d0
enddo
enddo
! do k=1,N_st_diag
! do i=1,sze
! do iter2=1,iter
! do l=1,N_st_diag
! u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
! enddo
! enddo
! enddo
! enddo
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, 1.d0, &
U, size(U,1), y, N_st_diag*davidson_sze_max, &
@ -351,6 +326,9 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '===== '
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ================'
@ -360,7 +338,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
call write_time(iunit)
deallocate ( &
kl_pairs, &
W, residual_norm, &
U, overlap, &
R, c, &
@ -573,7 +550,7 @@ subroutine davidson_diag_mrcc_hs2(dets_in,u_in,dim_in,energies,sze,N_st,N_st_dia
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint, iunit, istate
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: energies(N_st_diag)
double precision, allocatable :: H_jj(:), S2_jj(:)
double precision :: diag_h_mat_elem
@ -646,14 +623,12 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
integer :: i,j,k,l,m
logical :: converged
double precision, allocatable :: overlap(:,:)
double precision :: u_dot_v, u_dot_u
integer, allocatable :: kl_pairs(:,:)
integer :: k_pairs, kl
integer :: iter2
double precision, allocatable :: W(:,:), U(:,:), R(:,:), S(:,:)
double precision, allocatable :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem
@ -661,12 +636,14 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
integer :: shift, shift2
integer :: shift, shift2, itermax
include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, R, S, y, h, lambda
if (N_st_diag > sze) then
stop 'error in Davidson : N_st_diag > sze'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1
endif
PROVIDE nuclear_repulsion
@ -691,7 +668,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual'
write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo
write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== '
@ -703,30 +680,30 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
integer, external :: align_double
sze_8 = align_double(sze)
double precision :: delta
if (s2_eig) then
delta = 1.d0
else
delta = 0.d0
endif
itermax = min(davidson_sze_max, sze/N_st_diag)
allocate( &
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st_diag*davidson_sze_max), &
U(sze_8,N_st_diag*davidson_sze_max), &
R(sze_8,N_st_diag), &
S(sze_8,N_st_diag*davidson_sze_max), &
h(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
y(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_tmp(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
W(sze_8,N_st_diag*itermax), &
U(sze_8,N_st_diag*itermax), &
S(sze_8,N_st_diag*itermax), &
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
overlap(N_st_diag,N_st_diag), &
c(N_st_diag*davidson_sze_max), &
s2(N_st_diag*davidson_sze_max), &
lambda(N_st_diag*davidson_sze_max))
c(N_st_diag*itermax), &
s2(N_st_diag*itermax), &
overlap(N_st_diag*itermax,N_st_diag*itermax), &
lambda(N_st_diag*itermax))
h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0
W = 0.d0
S = 0.d0
y = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
@ -738,25 +715,19 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
converged = .False.
do k=1,N_st
call normalize(u_in(1,k),sze)
enddo
double precision :: r1, r2
do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze
double precision :: r1, r2
call random_number(r1)
call random_number(r2)
u_in(i,k) = dsqrt(-2.d0*dlog(r1))*dcos(dtwo_pi*r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
! Gram-Schmidt
! ------------
call dgemv('T',sze,k-1,1.d0,u_in,size(u_in,1), &
u_in(1,k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,u_in,size(u_in,1), &
c,1,1.d0,u_in(1,k),1)
call normalize(u_in(1,k),sze)
enddo
do k=1,N_st_diag
call normalize(u_in(1,k),sze)
enddo
@ -773,10 +744,10 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
call ortho_qr(U,size(U,1),sze,shift2)
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------------
call H_S2_u_0_mrcc_nstates(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,&
istate,N_st_diag,sze_8)
@ -786,31 +757,57 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! -------------------------------------------
! do l=1,N_st_diag
! do k=1,N_st_diag
! do iter2=1,iter-1
! h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
! h(k,iter,l,iter2) = h(k,iter2,l,iter)
! enddo
! enddo
! do k=1,l
! h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
! h(l,iter,k,iter) = h(k,iter,l,iter)
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), S, size(S,1), &
0.d0, s_, size(s_,1))
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
call dgemm('T','N', shift2, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,shift+1), size(W,1), &
0.d0, h(1,shift+1), size(h,1))
call dgemm('T','N', shift2, N_st_diag, sze, &
1.d0, U, size(U,1), S(1,shift+1), size(S,1), &
0.d0, s_(1,shift+1), size(s_,1))
! Diagonalize h
! -------------
call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector
! -------------------------------
@ -827,46 +824,81 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
enddo
if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.3d0)
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
do k=1,size(state_ok)
state_ok(k) = .True.
enddo
endif
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
endif
enddo
if (state_following) then
! Compute overlap with U_in
! -------------------------
integer :: order(N_st_diag)
double precision :: cmax
overlap = -1.d0
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,shift2
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
overlap(k,2) = s2(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
s2(k) = overlap(l,2)
endif
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
! do k=1,N_st_diag
! do i=1,sze
! U(i,shift2+k) = 0.d0
! W(i,shift2+k) = 0.d0
! S(i,shift2+k) = 0.d0
! enddo
! do l=1,N_st_diag*iter
! do i=1,sze
! U(i,shift2+k) = U(i,shift2+k) + U(i,l)*y(l,k)
! W(i,shift2+k) = W(i,shift2+k) + W(i,l)*y(l,k)
! S(i,shift2+k) = S(i,shift2+k) + S(i,l)*y(l,k)
! enddo
! enddo
! enddo
!
!
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
@ -876,102 +908,65 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! Compute residual vector
! -----------------------
! do k=1,N_st_diag
! print *, s2(k)
! s2(k) = u_dot_v(U(1,shift2+k), S(1,shift2+k), sze) + S_z2_Sz
! print *, s2(k)
! print *, ''
! pause
! enddo
do k=1,N_st_diag
do i=1,sze
R(i,k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz)
enddo
! if (state_ok(k)) then
do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
! else
! ! Randomize components with bad <S2>
! do i=1,sze-2,2
! call random_number(r1)
! call random_number(r2)
! r1 = dsqrt(-2.d0*dlog(r1))
! r2 = dtwo_pi*r2
! U(i,shift2+k) = r1*dcos(r2)
! U(i+1,shift2+k) = r1*dsin(r2)
! enddo
! do i=sze-2+1,sze
! call random_number(r1)
! call random_number(r2)
! r1 = dsqrt(-2.d0*dlog(r1))
! r2 = dtwo_pi*r2
! U(i,shift2+k) = r1*dcos(r2)
! enddo
! endif
if (k <= N_st) then
residual_norm(k) = u_dot_u(R(1,k),sze)
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = s2(k)
to_print(3,k) = residual_norm(k)
if (residual_norm(k) > 1.e9) then
stop 'Davidson failed'
endif
endif
enddo
write(iunit,'(X,I3,X,100(X,F16.10,X,F11.6,X,E11.3))') iter, to_print(:,1:N_st)
write(iunit,'(X,I3,X,100(X,F16.10,X,F11.6,X,E11.3))') iter, to_print(1:3,1:N_st)
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
do k=1,N_st
if (residual_norm(k) > 1.e8) then
print *, ''
stop 'Davidson failed'
endif
enddo
if (converged) then
exit
endif
! Davidson step
! -------------
do k=1,N_st_diag
do i=1,sze
U(i,shift2+k) = - R(i,k)/max(H_jj(i) - lambda(k),1.d-2)
enddo
enddo
! Gram-Schmidt
! ------------
do k=1,N_st_diag
! do l=1,N_st_diag*iter
! c(1) = u_dot_v(U(1,shift2+k),U(1,l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,l)
! enddo
! enddo
!
call dgemv('T',sze,N_st_diag*iter,1.d0,U,size(U,1), &
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,N_st_diag*iter,-1.d0,U,size(U,1), &
c,1,1.d0,U(1,shift2+k),1)
!
! do l=1,k-1
! c(1) = u_dot_v(U(1,shift2+k),U(1,shift2+l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,shift2+l)
! enddo
! enddo
!
call dgemv('T',sze,k-1,1.d0,U(1,shift2+1),size(U,1), &
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,U(1,shift2+1),size(U,1), &
c,1,1.d0,U(1,shift2+k),1)
call normalize( U(1,shift2+k), sze )
enddo
enddo
if (.not.converged) then
iter = davidson_sze_max-1
endif
! Re-contract to u_in
! -----------
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
! do k=1,N_st_diag
! do i=1,sze
! do l=1,iter*N_st_diag
! u_in(i,k) += U(i,l)*y(l,k)
! enddo
! enddo
! enddo
! enddo
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '===== '
@ -983,10 +978,9 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
call write_time(iunit)
deallocate ( &
kl_pairs, &
W, residual_norm, &
U, overlap, &
R, c, S, &
c, S, &
h, &
y, s_, s_tmp, &
lambda &
@ -1048,15 +1042,16 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint)
call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint)
PROVIDE delta_ij_s2
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,hij,s2,j,k,jj,vt,st,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)&
!$OMP SHARED(n,keys_tmp,ut,Nint,v_0,s_0,sorted,shortcut,sort_idx,version,N_st,N_st_8, &
!$OMP N_det_ref, idx_ref, N_det_non_ref, idx_non_ref, delta_ij,istate_in)
!$OMP N_det_ref, idx_ref, N_det_non_ref, idx_non_ref, delta_ij, delta_ij_s2,istate_in)
allocate(vt(N_st_8,n),st(N_st_8,n))
Vt = 0.d0
St = 0.d0
!$OMP DO SCHEDULE(dynamic)
!$OMP DO SCHEDULE(guided)
do sh=1,shortcut(0,1)
do sh2=sh,shortcut(0,1)
exa = 0
@ -1098,8 +1093,8 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP DO SCHEDULE(dynamic)
!$OMP END DO
!$OMP DO SCHEDULE(guided)
do sh=1,shortcut(0,2)
do i=shortcut(sh,2),shortcut(sh+1,2)-1
org_i = sort_idx(i,2)
@ -1122,7 +1117,7 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
end do
end do
enddo
!$OMP END DO NOWAIT
!$OMP END DO
! --------------------------
! Begin Specific to dressing
@ -1136,6 +1131,8 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
do istate=1,N_st
vt (istate,i) = vt (istate,i) + delta_ij(istate_in,jj,ii)*ut(istate,j)
vt (istate,j) = vt (istate,j) + delta_ij(istate_in,jj,ii)*ut(istate,i)
st (istate,i) = st (istate,i) + delta_ij_s2(istate_in,jj,ii)*ut(istate,j)
st (istate,j) = st (istate,j) + delta_ij_s2(istate_in,jj,ii)*ut(istate,i)
enddo
enddo
enddo

View File

@ -271,7 +271,7 @@ subroutine mrcc_dress(delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref,i_ge
!delta_ii_(i_state,i_I) = 0.d0
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0 * dIa_hla(i_state,k_sd)
enddo
endif
enddo

View File

@ -1,4 +0,0 @@
program pouet
end

View File

@ -33,6 +33,7 @@ END_PROVIDER
if (ihpsi_current(k) == 0.d0) then
ihpsi_current(k) = 1.d-32
endif
! lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
lambda_mrcc(k,i) = min(-1.d-32,psi_non_ref_coef(i,k)/ihpsi_current(k) )
lambda_pert = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
if (lambda_pert / lambda_mrcc(k,i) < 0.5d0) then
@ -77,19 +78,6 @@ BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ]
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii, (N_states,N_det_ref) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
delta_ij = 0.d0
delta_ii = 0.d0
call H_apply_mrcc(delta_ij,delta_ii,N_states,N_det_non_ref,N_det_ref)
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
implicit none
@ -139,7 +127,6 @@ END_PROVIDER
integer :: mrcc_state
mrcc_state = N_states
do j=1,min(N_states,N_det)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
@ -148,17 +135,34 @@ END_PROVIDER
if (diag_algorithm == "Davidson") then
! call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
! size(CI_eigenvectors_dressed,1),N_det,N_states,N_states_diag,N_int,output_determinants,mrcc_state)
call davidson_diag_mrcc_HS2(psi_det,CI_eigenvectors_dressed,&
size(CI_eigenvectors_dressed,1), &
CI_electronic_energy_dressed,N_det,N_states,N_states_diag,N_int, &
output_determinants,mrcc_state)
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
N_states_diag,size(CI_eigenvectors_dressed,1))
allocate (eigenvectors(size(CI_eigenvectors_dressed,1),size(CI_eigenvectors_dressed,2)), &
eigenvalues(size(CI_electronic_energy_dressed,1)))
do j=1,min(N_states,N_det)
do i=1,N_det
eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do mrcc_state=1,N_states
do j=mrcc_state,min(N_states,N_det)
do i=1,N_det
eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
call davidson_diag_mrcc_HS2(psi_det,eigenvectors,&
size(eigenvectors,1), &
eigenvalues,N_det,N_states,N_states_diag,N_int, &
output_determinants,mrcc_state)
CI_eigenvectors_dressed(1:N_det,mrcc_state) = eigenvectors(1:N_det,mrcc_state)
CI_electronic_energy_dressed(mrcc_state) = eigenvalues(mrcc_state)
enddo
do k=N_states+1,N_states_diag
CI_eigenvectors_dressed(1:N_det,k) = eigenvectors(1:N_det,k)
CI_electronic_energy_dressed(k) = eigenvalues(k)
enddo
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
N_states_diag,size(CI_eigenvectors_dressed,1))
deallocate (eigenvectors,eigenvalues)
else if (diag_algorithm == "Lapack") then
@ -614,207 +618,52 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ double precision, dIj_unique, (hh_shortcut(hh_shortcut(0)+1)-1, N_states) ]
BEGIN_PROVIDER [ double precision, dIj_unique, (hh_nex, N_states) ]
&BEGIN_PROVIDER [ double precision, rho_mrcc, (N_det_non_ref, N_states) ]
implicit none
logical :: ok
integer :: i, j, k, s, II, pp, ppp, hh, ind, wk, nex, a_col, at_row
integer :: i, j, k, s, II, pp, ppp, hh, ind, wk, a_col, at_row
integer, external :: searchDet, unsortedSearchDet
integer(bit_kind) :: myDet(N_int, 2), myMask(N_int, 2)
integer :: N, INFO, AtA_size, r1, r2
double precision , allocatable :: AtB(:), AtA_val(:), A_val(:,:), x(:), x_new(:), A_val_mwen(:)
double precision :: t, norm, cx, res
integer, allocatable :: A_ind(:,:), lref(:), AtA_ind(:), A_ind_mwen(:), col_shortcut(:), N_col(:)
integer :: N, INFO, r1, r2
double precision , allocatable :: AtB(:), x(:), x_new(:), A_val_mwen(:,:), t(:)
double precision :: norm, cx, res
integer, allocatable :: lref(:), A_ind_mwen(:)
double precision :: phase
integer, allocatable :: pathTo(:), active_hh_idx(:), active_pp_idx(:)
logical, allocatable :: active(:)
double precision, allocatable :: rho_mrcc_init(:,:)
integer :: nactive
double precision, allocatable :: rho_mrcc_init(:)
integer :: a_coll, at_roww
nex = hh_shortcut(hh_shortcut(0)+1)-1
print *, "TI", nex, N_det_non_ref
allocate(pathTo(N_det_non_ref), active(nex))
allocate(active_pp_idx(nex), active_hh_idx(nex))
allocate(rho_mrcc_init(N_det_non_ref, N_states))
pathTo = 0
active = .false.
nactive = 0
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
do II = 1, N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind == -1) cycle
ind = psi_non_ref_sorted_idx(ind)
if(pathTo(ind) == 0) then
pathTo(ind) = pp
else
active(pp) = .true.
active(pathTo(ind)) = .true.
end if
end do
end do
end do
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
if(active(pp)) then
nactive = nactive + 1
active_hh_idx(nactive) = hh
active_pp_idx(nactive) = pp
end if
end do
end do
print *, nactive, "inact/", size(active)
allocate(A_ind(0:N_det_ref+1, nactive), A_val(N_det_ref+1, nactive))
allocate(AtA_ind(N_det_ref * nactive), AtA_val(N_det_ref * nactive))
allocate(x(nex), AtB(nex))
allocate(N_col(nactive), col_shortcut(nactive))
allocate(x_new(nex))
print *, "TI", hh_nex, N_det_non_ref
do s = 1, N_states
A_val = 0d0
A_ind = 0
AtA_ind = 0
AtB = 0d0
AtA_val = 0d0
x = 0d0
N_col = 0
col_shortcut = 0
!$OMP PARALLEL default(none) shared(psi_non_ref, hh_exists, pp_exists, N_int, A_val, A_ind)&
!$OMP shared(s, hh_shortcut, psi_ref_coef, N_det_non_ref, psi_non_ref_sorted, psi_non_ref_sorted_idx, psi_ref, N_det_ref)&
!$OMP shared(active, active_hh_idx, active_pp_idx, nactive)&
!$OMP private(lref, pp, II, ok, myMask, myDet, ind, phase, wk, ppp, hh)
allocate(lref(N_det_non_ref))
!$OMP DO schedule(static,10)
do ppp=1,nactive
pp = active_pp_idx(ppp)
hh = active_hh_idx(ppp)
lref = 0
do II = 1, N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind /= -1) then
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
if (phase > 0.d0) then
lref(psi_non_ref_sorted_idx(ind)) = II
else
lref(psi_non_ref_sorted_idx(ind)) = -II
endif
end if
end do
wk = 0
do i=1, N_det_non_ref
if(lref(i) > 0) then
wk += 1
A_val(wk, ppp) = psi_ref_coef(lref(i), s)
A_ind(wk, ppp) = i
else if(lref(i) < 0) then
wk += 1
A_val(wk, ppp) = -psi_ref_coef(-lref(i), s)
A_ind(wk, ppp) = i
end if
end do
A_ind(0,ppp) = wk
end do
!$OMP END DO
deallocate(lref)
!$OMP END PARALLEL
allocate(rho_mrcc_init(N_det_non_ref))
allocate(x_new(hh_nex))
allocate(x(hh_nex), AtB(hh_nex))
do s=1,N_states
print *, 'Done building A_val, A_ind'
AtB(:) = 0.d0
!$OMP PARALLEL default(none) shared(k, psi_non_ref_coef, active_excitation_to_determinants_idx,&
!$OMP active_excitation_to_determinants_val, N_det_ref, hh_nex, N_det_non_ref) &
!$OMP private(at_row, a_col, i, j, r1, r2, wk, A_ind_mwen, A_val_mwen, a_coll, at_roww)&
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtB, mrcc_AtA_val, mrcc_AtA_ind, s, n_exc_active, active_pp_idx)
AtA_size = 0
col_shortcut = 0
N_col = 0
integer :: a_coll, at_roww
!$OMP PARALLEL default(none) shared(k, psi_non_ref_coef, A_ind, A_val, x, N_det_ref, nex, N_det_non_ref)&
!$OMP private(at_row, a_col, t, i, j, r1, r2, wk, A_ind_mwen, A_val_mwen, a_coll, at_roww)&
!$OMP shared(col_shortcut, N_col, AtB, AtA_size, AtA_val, AtA_ind, s, nactive, active_pp_idx)
allocate(A_val_mwen(nex), A_ind_mwen(nex))
!$OMP DO schedule(dynamic, 100)
do at_roww = 1, nactive ! nex
do at_roww = 1, n_exc_active ! hh_nex
at_row = active_pp_idx(at_roww)
wk = 0
if(mod(at_roww, 100) == 0) print *, "AtA", at_row, "/", nex
do i=1,A_ind(0,at_roww)
j = active_pp_idx(i)
AtB(at_row) = AtB(at_row) + psi_non_ref_coef(A_ind(i, at_roww), s) * A_val(i, at_roww)
do i=1,active_excitation_to_determinants_idx(0,at_roww)
AtB(at_row) = AtB(at_row) + psi_non_ref_coef(active_excitation_to_determinants_idx(i, at_roww), s) * active_excitation_to_determinants_val(s,i, at_roww)
end do
do a_coll = 1, nactive
a_col = active_pp_idx(a_coll)
t = 0d0
r1 = 1
r2 = 1
do while ((A_ind(r1, at_roww) /= 0).and.(A_ind(r2, a_coll) /= 0))
if(A_ind(r1, at_roww) > A_ind(r2, a_coll)) then
r2 = r2+1
else if(A_ind(r1, at_roww) < A_ind(r2, a_coll)) then
r1 = r1+1
else
t = t - A_val(r1, at_roww) * A_val(r2, a_coll)
r1 = r1+1
r2 = r2+1
end if
end do
if(a_col == at_row) then
t = t + 1.d0
end if
if(t /= 0.d0) then
wk += 1
A_ind_mwen(wk) = a_col
A_val_mwen(wk) = t
end if
end do
if(wk /= 0) then
!$OMP CRITICAL
col_shortcut(at_roww) = AtA_size+1
N_col(at_roww) = wk
if (AtA_size+wk > size(AtA_ind,1)) then
print *, AtA_size+wk , size(AtA_ind,1)
stop 'too small'
endif
do i=1,wk
AtA_ind(AtA_size+i) = A_ind_mwen(i)
AtA_val(AtA_size+i) = A_val_mwen(i)
enddo
AtA_size += wk
!$OMP END CRITICAL
end if
end do
!$OMP END DO NOWAIT
deallocate (A_ind_mwen, A_val_mwen)
!$OMP END DO
!$OMP END PARALLEL
print *, "ATA SIZE", ata_size
x = 0d0
X(:) = 0d0
do a_coll = 1, nactive
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
X(a_col) = AtB(a_col)
end do
@ -822,122 +671,122 @@ END_PROVIDER
rho_mrcc_init = 0d0
allocate(lref(N_det_ref))
!$OMP PARALLEL DO default(shared) schedule(static, 1) &
!$OMP private(lref, hh, pp, II, myMask, myDet, ok, ind, phase)
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
if(active(pp)) cycle
lref = 0
do II=1,N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind == -1) cycle
ind = psi_non_ref_sorted_idx(ind)
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
X(pp) += psi_ref_coef(II,s)**2
AtB(pp) += psi_non_ref_coef(ind, s) * psi_ref_coef(II, s) * phase
lref(II) = ind
if(phase < 0d0) lref(II) = -ind
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
if(is_active_exc(pp)) cycle
lref = 0
AtB(pp) = 0.d0
do II=1,N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind == -1) cycle
ind = psi_non_ref_sorted_idx(ind)
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
AtB(pp) += psi_non_ref_coef(ind, s) * psi_ref_coef(II, s) * phase
lref(II) = ind
if(phase < 0.d0) lref(II) = -ind
end do
X(pp) = AtB(pp)
do II=1,N_det_ref
if(lref(II) > 0) then
rho_mrcc_init(lref(II)) = psi_ref_coef(II,s) * X(pp)
else if(lref(II) < 0) then
rho_mrcc_init(-lref(II)) = -psi_ref_coef(II,s) * X(pp)
end if
end do
end do
X(pp) = AtB(pp) / X(pp)
do II=1,N_det_ref
if(lref(II) > 0) then
rho_mrcc_init(lref(II),s) = psi_ref_coef(II,s) * X(pp)
else if(lref(II) < 0) then
rho_mrcc_init(-lref(II),s) = -psi_ref_coef(II,s) * X(pp)
end if
end do
end do
end do
!$OMP END PARALLEL DO
deallocate(lref)
do i=1,N_det_non_ref
rho_mrcc(i,s) = rho_mrcc_init(i)
enddo
x_new = x
double precision :: factor, resold
double precision :: factor, resold
factor = 1.d0
resold = huge(1.d0)
do k=0,100000
!$OMP PARALLEL default(shared) private(cx, i, j, a_col, a_coll)
do k=0,10*hh_nex
res = 0.d0
!$OMP PARALLEL default(shared) private(cx, i, a_col, a_coll) reduction(+:res)
!$OMP DO
do i=1,N_det_non_ref
rho_mrcc(i,s) = rho_mrcc_init(i,s) ! 0d0
enddo
!$OMP END DO
!$OMP DO
do a_coll = 1, nactive !: nex
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
cx = 0d0
do i=col_shortcut(a_coll), col_shortcut(a_coll) + N_col(a_coll) - 1
cx = cx + x(AtA_ind(i)) * AtA_val(i)
cx = 0.d0
do i=mrcc_col_shortcut(a_coll), mrcc_col_shortcut(a_coll) + mrcc_N_col(a_coll) - 1
cx = cx + x(mrcc_AtA_ind(i)) * mrcc_AtA_val(s,i)
end do
x_new(a_col) = AtB(a_col) + cx * factor
res = res + (X_new(a_col) - X(a_col))*(X_new(a_col) - X(a_col))
X(a_col) = X_new(a_col)
end do
!$OMP END DO
!$OMP END PARALLEL
res = 0.d0
if (res < resold) then
do a_coll=1,nactive ! nex
a_col = active_pp_idx(a_coll)
do j=1,N_det_non_ref
i = A_ind(j,a_coll)
if (i==0) exit
rho_mrcc(i,s) = rho_mrcc(i,s) + A_val(j,a_coll) * X_new(a_col)
enddo
res = res + (X_new(a_col) - X(a_col))*(X_new(a_col) - X(a_col))
X(a_col) = X_new(a_col)
end do
factor = 1.d0
else
factor = -factor * 0.5d0
if (res > resold) then
factor = factor * 0.5d0
endif
resold = res
if(mod(k, 5) == 0) then
if(iand(k, 4095) == 0) then
print *, "res ", k, res
end if
if(res < 1d-12) exit
if(res < 1d-10) exit
end do
norm = 0.d0
do i=1,N_det_non_ref
norm = norm + rho_mrcc(i,s)*rho_mrcc(i,s)
enddo
! Norm now contains the norm of A.X
dIj_unique(1:size(X), s) = X(1:size(X))
do i=1,N_det_ref
norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s)
enddo
! Norm now contains the norm of Psi + A.X
print *, k, "res : ", res, "norm : ", sqrt(norm)
!dIj_unique(:size(X), s) = X(:)
enddo
do s=1,N_states
do a_coll=1,n_exc_active
a_col = active_pp_idx(a_coll)
do j=1,N_det_non_ref
i = active_excitation_to_determinants_idx(j,a_coll)
if (i==0) exit
rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * dIj_unique(a_col,s)
enddo
end do
norm = 0.d0
do i=1,N_det_non_ref
norm = norm + rho_mrcc(i,s)*rho_mrcc(i,s)
enddo
! Norm now contains the norm of A.X
do i=1,N_det_ref
norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s)
enddo
! Norm now contains the norm of Psi + A.X
print *, "norm : ", sqrt(norm)
enddo
do s=1,N_states
norm = 0.d0
double precision :: f
double precision :: f
do i=1,N_det_non_ref
if (rho_mrcc(i,s) == 0.d0) then
rho_mrcc(i,s) = 1.d-32
endif
! f is such that f.\tilde{c_i} = c_i
f = psi_non_ref_coef(i,s) / rho_mrcc(i,s)
if (lambda_type == 2) then
f = 1.d0
else
! f is such that f.\tilde{c_i} = c_i
f = psi_non_ref_coef(i,s) / rho_mrcc(i,s)
! Avoid numerical instabilities
f = min(f,2.d0)
f = max(f,-2.d0)
! Avoid numerical instabilities
f = min(f,2.d0)
f = max(f,-2.d0)
endif
norm = norm + f*f *rho_mrcc(i,s)*rho_mrcc(i,s)
rho_mrcc(i,s) = f
@ -958,6 +807,9 @@ END_PROVIDER
norm = norm*f
print *, 'norm of |T Psi_0> = ', dsqrt(norm)
if (dsqrt(norm) > 1.d0) then
stop 'Error : Norm of the SD larger than the norm of the reference.'
endif
do i=1,N_det_ref
norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s)
@ -969,8 +821,8 @@ END_PROVIDER
! rho_mrcc now contains the product of the scaling factors and the
! normalization constant
dIj_unique(:size(X), s) = X(:)
end do
END_PROVIDER
@ -980,17 +832,14 @@ BEGIN_PROVIDER [ double precision, dij, (N_det_ref, N_det_non_ref, N_states) ]
integer :: s,i,j
double precision, external :: get_dij_index
print *, "computing amplitudes..."
!$OMP PARALLEL DEFAULT(shared) PRIVATE(s,i,j)
do s=1, N_states
!$OMP DO
do i=1, N_det_non_ref
do j=1, N_det_ref
!DIR$ FORCEINLINE
dij(j, i, s) = get_dij_index(j, i, s, N_int)
end do
end do
!$OMP END DO
end do
!$OMP END PARALLEL
print *, "done computing amplitudes"
END_PROVIDER
@ -1006,9 +855,13 @@ double precision function get_dij_index(II, i, s, Nint)
call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase
get_dij_index = get_dij_index * rho_mrcc(i,s)
else
else if(lambda_type == 1) then
call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,i), Nint, HIi)
get_dij_index = HIi * lambda_mrcc(s, i)
else if(lambda_type == 2) then
call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase
get_dij_index = get_dij_index * rho_mrcc(i,s)
end if
end function
@ -1066,9 +919,21 @@ end function
BEGIN_PROVIDER [ integer*2, hh_exists, (4, N_hh_exists) ]
&BEGIN_PROVIDER [ integer, hh_shortcut, (0:N_hh_exists + 1) ]
&BEGIN_PROVIDER [ integer*2, pp_exists, (4, N_pp_exists) ]
&BEGIN_PROVIDER [ integer, hh_shortcut, (0:N_hh_exists + 1) ]
&BEGIN_PROVIDER [ integer, hh_nex ]
implicit none
BEGIN_DOC
!
! hh_exists :
!
! pp_exists :
!
! hh_shortcut :
!
! hh_nex : Total number of excitation operators
!
END_DOC
integer*2,allocatable :: num(:,:)
integer :: exc(0:2, 2, 2), degree, n, on, s, l, i
integer*2 :: h1, h2, p1, p2
@ -1134,6 +999,7 @@ end function
end if
end do
end do
hh_nex = hh_shortcut(hh_shortcut(0)+1)-1
END_PROVIDER

Some files were not shown because too many files have changed in this diff Show More