mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 10:05:57 +01:00
Handling of two different mo and ao integrals map
This commit is contained in:
parent
bf2e02dc9d
commit
3e12b2f359
@ -5,7 +5,7 @@
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_radial_grid]
|
||||
implicit none
|
||||
n_points_radial_grid = 10000
|
||||
n_points_radial_grid = 100
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
@ -188,6 +188,7 @@ END_PROVIDER
|
||||
call give_all_mos_at_r(r,mos_array)
|
||||
do m = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
if(dabs(one_body_dm_mo_alpha(i,m,i_state)).lt.1.d-10)cycle
|
||||
contrib = mos_array(i) * mos_array(m)
|
||||
one_body_dm_mo_alpha_at_grid_points(l,k,j,i_state) += one_body_dm_mo_alpha(i,m,i_state) * contrib
|
||||
one_body_dm_mo_beta_at_grid_points(l,k,j,i_state) += one_body_dm_mo_beta(i,m,i_state) * contrib
|
||||
|
@ -1,37 +1,3 @@
|
||||
[do_direct_integrals]
|
||||
type: logical
|
||||
doc: Compute integrals on the fly
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: direct
|
||||
|
||||
[no_vvvv_integrals]
|
||||
type: logical
|
||||
doc: If True, computes all integrals except for the integrals having 4 virtual index
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvvv_integrals
|
||||
|
||||
[no_ivvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if no_vvvv_integrals is True, then do not computes the integrals having 3 virtual index and 1 belonging to the core inactive active orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_ivvv_integrals
|
||||
|
||||
[no_vvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if no_vvvv_integrals is True, then do not computes the integrals having 3 virtual orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvv_integrals
|
||||
|
||||
[disk_access_mo_integrals]
|
||||
type: Disk_access
|
||||
doc: Read/Write MO integrals from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
[disk_access_ao_integrals_erf]
|
||||
type: Disk_access
|
||||
doc: Read/Write AO integrals with the long range interaction from/to disk [ Write | Read | None ]
|
||||
@ -45,14 +11,6 @@ doc: Read/Write MO integrals with the long range interaction from/to disk [ Writ
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
[disk_access_ao_integrals]
|
||||
type: Disk_access
|
||||
doc: Read/Write AO integrals from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
|
||||
|
||||
[ao_integrals_threshold]
|
||||
type: Threshold
|
||||
doc: If |<pq|rs>| < ao_integrals_threshold then <pq|rs> is zero
|
||||
|
@ -1 +1 @@
|
||||
Pseudo Bitmask ZMQ
|
||||
Pseudo Bitmask ZMQ Integrals_Bielec
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -294,7 +294,7 @@ subroutine compute_ao_bielec_integrals_erf(j,k,l,sze,buffer_value)
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
if (ao_bielec_integral_schwartz(j,l) < thresh ) then
|
||||
if (ao_bielec_integral_erf_schwartz(j,l) < thresh ) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
|
@ -1,225 +0,0 @@
|
||||
subroutine ao_bielec_integrals_in_map_slave_tcp(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_bielec_integrals_in_map_slave(0,i)
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_in_map_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_bielec_integrals_in_map_slave(1,i)
|
||||
end
|
||||
|
||||
|
||||
subroutine push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
|
||||
use f77_zmq
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Push integrals in the push socket
|
||||
END_DOC
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(in) :: buffer_i(*)
|
||||
real(integral_kind), intent(in) :: buffer_value(*)
|
||||
integer, intent(in) :: task_id
|
||||
integer :: rc
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, n_integrals, 4, ZMQ_SNDMORE)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_send( zmq_socket_push, n_integrals, 4, ZMQ_SNDMORE)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, buffer_i, key_kind*n_integrals, ZMQ_SNDMORE)
|
||||
if (rc /= key_kind*n_integrals) then
|
||||
print *, irp_here, ': f77_zmq_send( zmq_socket_push, buffer_i, key_kind*n_integrals, ZMQ_SNDMORE)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, buffer_value, integral_kind*n_integrals, ZMQ_SNDMORE)
|
||||
if (rc /= integral_kind*n_integrals) then
|
||||
print *, irp_here, ': f77_zmq_send( zmq_socket_push, buffer_value, integral_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, task_id, 4, 0)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_send( zmq_socket_push, task_id, 4, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
integer :: idummy
|
||||
rc = f77_zmq_recv( zmq_socket_push, idummy, 4, 0)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_send( zmq_socket_push, idummy, 4, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_in_map_slave(thread,iproc)
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: thread, iproc
|
||||
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer :: worker_id, task_id
|
||||
character*(512) :: task
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
character*(64) :: state
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
allocate ( buffer_i(ao_num*ao_num), buffer_value(ao_num*ao_num) )
|
||||
|
||||
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
|
||||
|
||||
do
|
||||
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task)
|
||||
if (task_id == 0) exit
|
||||
read(task,*) j, l
|
||||
call compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id)
|
||||
call push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
|
||||
enddo
|
||||
|
||||
|
||||
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
|
||||
deallocate( buffer_i, buffer_value )
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_in_map_collector
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Collects results from the AO integral calculation
|
||||
END_DOC
|
||||
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer*8 :: control, accu
|
||||
integer :: task_id, more, sze
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
|
||||
sze = ao_num*ao_num
|
||||
allocate ( buffer_i(sze), buffer_value(sze) )
|
||||
|
||||
accu = 0_8
|
||||
more = 1
|
||||
do while (more == 1)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)
|
||||
if (rc == -1) then
|
||||
n_integrals = 0
|
||||
return
|
||||
endif
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
if (n_integrals >= 0) then
|
||||
|
||||
if (n_integrals > sze) then
|
||||
deallocate (buffer_value, buffer_i)
|
||||
sze = n_integrals
|
||||
allocate (buffer_value(sze), buffer_i(sze))
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)
|
||||
if (rc /= key_kind*n_integrals) then
|
||||
print *, rc, key_kind, n_integrals
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)
|
||||
if (rc /= integral_kind*n_integrals) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
|
||||
|
||||
! Activate if zmq_socket_pull is a REP
|
||||
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ' : f77_zmq_send (zmq_socket_pull,...'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
|
||||
call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_value)
|
||||
accu += n_integrals
|
||||
if (task_id /= 0) then
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate( buffer_i, buffer_value )
|
||||
|
||||
integer (map_size_kind) :: get_ao_map_size
|
||||
control = get_ao_map_size(ao_integrals_map)
|
||||
|
||||
if (control /= accu) then
|
||||
print *, ''
|
||||
print *, irp_here
|
||||
print *, 'Control : ', control
|
||||
print *, 'Accu : ', accu
|
||||
print *, 'Some integrals were lost during the parallel computation.'
|
||||
print *, 'Try to reduce the number of threads.'
|
||||
stop
|
||||
endif
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
|
||||
end
|
||||
|
@ -1,66 +0,0 @@
|
||||
BEGIN_PROVIDER [ integer, n_pt_max_integrals_16 ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Aligned n_pt_max_integrals
|
||||
END_DOC
|
||||
integer, external :: align_double
|
||||
n_pt_max_integrals_16 = align_double(n_pt_max_integrals)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, gauleg_t2, (n_pt_max_integrals_16,n_pt_max_integrals/2) ]
|
||||
&BEGIN_PROVIDER [ double precision, gauleg_w, (n_pt_max_integrals_16,n_pt_max_integrals/2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! t_w(i,1,k) = w(i)
|
||||
! t_w(i,2,k) = t(i)
|
||||
END_DOC
|
||||
integer :: i,j,l
|
||||
l=0
|
||||
do i = 2,n_pt_max_integrals,2
|
||||
l = l+1
|
||||
call gauleg(0.d0,1.d0,gauleg_t2(1,l),gauleg_w(1,l),i)
|
||||
do j=1,i
|
||||
gauleg_t2(j,l) *= gauleg_t2(j,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine gauleg(x1,x2,x,w,n)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gauss-Legendre
|
||||
END_DOC
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: x1, x2
|
||||
double precision, intent (out) :: x(n),w(n)
|
||||
double precision, parameter :: eps=3.d-14
|
||||
|
||||
integer :: m,i,j
|
||||
double precision :: xm, xl, z, z1, p1, p2, p3, pp, dn
|
||||
m=(n+1)/2
|
||||
xm=0.5d0*(x2+x1)
|
||||
xl=0.5d0*(x2-x1)
|
||||
dn = dble(n)
|
||||
do i=1,m
|
||||
z=dcos(3.141592654d0*(dble(i)-.25d0)/(dble(n)+.5d0))
|
||||
z1 = z+1.d0
|
||||
do while (dabs(z-z1) > eps)
|
||||
p1=1.d0
|
||||
p2=0.d0
|
||||
do j=1,n
|
||||
p3=p2
|
||||
p2=p1
|
||||
p1=(dble(j+j-1)*z*p2-dble(j-1)*p3)/j
|
||||
enddo
|
||||
pp=dn*(z*p1-p2)/(z*z-1.d0)
|
||||
z1=z
|
||||
z=z1-p1/pp
|
||||
end do
|
||||
x(i)=xm-xl*z
|
||||
x(n+1-i)=xm+xl*z
|
||||
w(i)=(xl+xl)/((1.d0-z*z)*pp*pp)
|
||||
w(n+1-i)=w(i)
|
||||
enddo
|
||||
end
|
||||
|
@ -1,22 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, big_array_coulomb_integrals, (mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
&BEGIN_PROVIDER [double precision, big_array_exchange_integrals,(mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: get_mo_bielec_integral
|
||||
double precision :: integral
|
||||
|
||||
do k = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
l = j
|
||||
integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
big_array_coulomb_integrals(j,i,k) = integral
|
||||
l = j
|
||||
integral = get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
big_array_exchange_integrals(j,i,k) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
22
plugins/Integrals_erf/integrals_3_index_erf.irp.f
Normal file
22
plugins/Integrals_erf/integrals_3_index_erf.irp.f
Normal file
@ -0,0 +1,22 @@
|
||||
BEGIN_PROVIDER [double precision, big_array_coulomb_integrals_erf, (mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
&BEGIN_PROVIDER [double precision, big_array_exchange_integrals_erf,(mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
double precision :: integral
|
||||
|
||||
do k = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
l = j
|
||||
integral = get_mo_bielec_integral_erf(i,j,k,l,mo_integrals_erf_map)
|
||||
big_array_coulomb_integrals_erf(j,i,k) = integral
|
||||
l = j
|
||||
integral = get_mo_bielec_integral_erf(i,j,l,k,mo_integrals_erf_map)
|
||||
big_array_exchange_integrals_erf(j,i,k) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
@ -1,717 +0,0 @@
|
||||
use map_module
|
||||
|
||||
!! AO Map
|
||||
!! ======
|
||||
|
||||
BEGIN_PROVIDER [ type(map_type), ao_integrals_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! AO integrals
|
||||
END_DOC
|
||||
integer(key_kind) :: key_max
|
||||
integer(map_size_kind) :: sze
|
||||
call bielec_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
|
||||
sze = key_max
|
||||
call map_init(ao_integrals_map,sze)
|
||||
print*, 'AO map initialized : ', sze
|
||||
END_PROVIDER
|
||||
|
||||
subroutine bielec_integrals_index(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: i1
|
||||
integer(key_kind) :: p,q,r,s,i2
|
||||
p = min(i,k)
|
||||
r = max(i,k)
|
||||
p = p+ishft(r*r-r,-1)
|
||||
q = min(j,l)
|
||||
s = max(j,l)
|
||||
q = q+ishft(s*s-s,-1)
|
||||
i1 = min(p,q)
|
||||
i2 = max(p,q)
|
||||
i1 = i1+ishft(i2*i2-i2,-1)
|
||||
end
|
||||
|
||||
subroutine bielec_integrals_index_reverse(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
integer, intent(out) :: i(8),j(8),k(8),l(8)
|
||||
integer(key_kind), intent(in) :: i1
|
||||
integer(key_kind) :: i2,i3
|
||||
i = 0
|
||||
i2 = ceiling(0.5d0*(dsqrt(8.d0*dble(i1)+1.d0)-1.d0))
|
||||
l(1) = ceiling(0.5d0*(dsqrt(8.d0*dble(i2)+1.d0)-1.d0))
|
||||
i3 = i1 - ishft(i2*i2-i2,-1)
|
||||
k(1) = ceiling(0.5d0*(dsqrt(8.d0*dble(i3)+1.d0)-1.d0))
|
||||
j(1) = int(i2 - ishft(l(1)*l(1)-l(1),-1),4)
|
||||
i(1) = int(i3 - ishft(k(1)*k(1)-k(1),-1),4)
|
||||
|
||||
!ijkl
|
||||
i(2) = i(1) !ilkj
|
||||
j(2) = l(1)
|
||||
k(2) = k(1)
|
||||
l(2) = j(1)
|
||||
|
||||
i(3) = k(1) !kjil
|
||||
j(3) = j(1)
|
||||
k(3) = i(1)
|
||||
l(3) = l(1)
|
||||
|
||||
i(4) = k(1) !klij
|
||||
j(4) = l(1)
|
||||
k(4) = i(1)
|
||||
l(4) = j(1)
|
||||
|
||||
i(5) = j(1) !jilk
|
||||
j(5) = i(1)
|
||||
k(5) = l(1)
|
||||
l(5) = k(1)
|
||||
|
||||
i(6) = j(1) !jkli
|
||||
j(6) = k(1)
|
||||
k(6) = l(1)
|
||||
l(6) = i(1)
|
||||
|
||||
i(7) = l(1) !lijk
|
||||
j(7) = i(1)
|
||||
k(7) = j(1)
|
||||
l(7) = k(1)
|
||||
|
||||
i(8) = l(1) !lkji
|
||||
j(8) = k(1)
|
||||
k(8) = j(1)
|
||||
l(8) = i(1)
|
||||
|
||||
integer :: ii, jj
|
||||
do ii=2,8
|
||||
do jj=1,ii-1
|
||||
if ( (i(ii) == i(jj)).and. &
|
||||
(j(ii) == j(jj)).and. &
|
||||
(k(ii) == k(jj)).and. &
|
||||
(l(ii) == l(jj)) ) then
|
||||
i(ii) = 0
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do ii=1,8
|
||||
if (i(ii) /= 0) then
|
||||
call bielec_integrals_index(i(ii),j(ii),k(ii),l(ii),i2)
|
||||
if (i1 /= i2) then
|
||||
print *, i1, i2
|
||||
print *, i(ii), j(jj), k(jj), l(jj)
|
||||
stop 'bielec_integrals_index_reverse failed'
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Min and max values of the AOs for which the integrals are in the cache
|
||||
END_DOC
|
||||
ao_integrals_cache_min = max(1,ao_num - 63)
|
||||
ao_integrals_cache_max = ao_num
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of AO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_bielec_integrals_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do k=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do j=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
do i=ao_integrals_cache_min,ao_integrals_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(ao_integrals_map,idx,integral)
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_integrals_cache_min)
|
||||
ao_integrals_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function get_ao_bielec_integral(i,j,k,l,map) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
PROVIDE ao_bielec_integrals_in_map ao_integrals_cache ao_integrals_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
tmp = 0.d0
|
||||
else if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < ao_integrals_threshold) then
|
||||
tmp = 0.d0
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior(ii, k-ao_integrals_cache_min)
|
||||
ii = ior(ii, j-ao_integrals_cache_min)
|
||||
ii = ior(ii, i-ao_integrals_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
tmp = tmp
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_integrals_cache_min)
|
||||
tmp = ao_integrals_cache(ii)
|
||||
endif
|
||||
endif
|
||||
result = tmp
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_bielec_integrals(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
PROVIDE ao_bielec_integrals_in_map ao_integrals_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
double precision :: get_ao_bielec_integral
|
||||
do i=1,sze
|
||||
out_val(i) = get_ao_bielec_integral(i,j,k,l,ao_integrals_map)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine get_ao_bielec_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All non-zero i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
integer, intent(out) :: out_val_index(sze),non_zero_int
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh,tmp
|
||||
PROVIDE ao_bielec_integrals_in_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
non_zero_int = 0
|
||||
do i=1,sze
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_bielec_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh) then
|
||||
cycle
|
||||
endif
|
||||
call bielec_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_integrals_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(non_zero_int) = i
|
||||
out_val(non_zero_int) = tmp
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
function get_ao_map_size()
|
||||
implicit none
|
||||
integer (map_size_kind) :: get_ao_map_size
|
||||
BEGIN_DOC
|
||||
! Returns the number of elements in the AO map
|
||||
END_DOC
|
||||
get_ao_map_size = ao_integrals_map % n_elements
|
||||
end
|
||||
|
||||
subroutine clear_ao_map
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Frees the memory of the AO map
|
||||
END_DOC
|
||||
call map_deinit(ao_integrals_map)
|
||||
FREE ao_integrals_map
|
||||
end
|
||||
|
||||
|
||||
!! MO Map
|
||||
!! ======
|
||||
|
||||
BEGIN_PROVIDER [ type(map_type), mo_integrals_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO integrals
|
||||
END_DOC
|
||||
integer(key_kind) :: key_max
|
||||
integer(map_size_kind) :: sze
|
||||
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
|
||||
sze = key_max
|
||||
call map_init(mo_integrals_map,sze)
|
||||
print*, 'MO map initialized'
|
||||
END_PROVIDER
|
||||
|
||||
subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create new entry into AO map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
subroutine insert_into_mo_integrals_map(n_integrals, &
|
||||
buffer_i, buffer_values, thr)
|
||||
use map_module
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Create new entry into MO map, or accumulate in an existing entry
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
real(integral_kind), intent(in) :: thr
|
||||
call map_update(mo_integrals_map, buffer_i, buffer_values, n_integrals, thr)
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ integer, mo_integrals_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, mo_integrals_cache_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Min and max values of the MOs for which the integrals are in the cache
|
||||
END_DOC
|
||||
mo_integrals_cache_min = max(1,elec_alpha_num - 31)
|
||||
mo_integrals_cache_max = min(mo_tot_num,mo_integrals_cache_min+63)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_integrals_cache, (0:64*64*64*64) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of MO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
integer :: i,j,k,l
|
||||
integer :: ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
FREE ao_integrals_cache
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=mo_integrals_cache_min,mo_integrals_cache_max
|
||||
do k=mo_integrals_cache_min,mo_integrals_cache_max
|
||||
do j=mo_integrals_cache_min,mo_integrals_cache_max
|
||||
do i=mo_integrals_cache_min,mo_integrals_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(mo_integrals_map,idx,integral)
|
||||
ii = l-mo_integrals_cache_min
|
||||
ii = ior( ishft(ii,6), k-mo_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), j-mo_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), i-mo_integrals_cache_min)
|
||||
mo_integrals_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function get_mo_bielec_integral(i,j,k,l,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns one integral <ij|kl> in the MO basis
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
integer :: ii
|
||||
type(map_type), intent(inout) :: map
|
||||
real(integral_kind) :: tmp
|
||||
PROVIDE mo_bielec_integrals_in_map mo_integrals_cache
|
||||
ii = l-mo_integrals_cache_min
|
||||
ii = ior(ii, k-mo_integrals_cache_min)
|
||||
ii = ior(ii, j-mo_integrals_cache_min)
|
||||
ii = ior(ii, i-mo_integrals_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
get_mo_bielec_integral = dble(tmp)
|
||||
else
|
||||
ii = l-mo_integrals_cache_min
|
||||
ii = ior( ishft(ii,6), k-mo_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), j-mo_integrals_cache_min)
|
||||
ii = ior( ishft(ii,6), i-mo_integrals_cache_min)
|
||||
get_mo_bielec_integral = mo_integrals_cache(ii)
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
double precision function mo_bielec_integral(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns one integral <ij|kl> in the MO basis
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
double precision :: get_mo_bielec_integral
|
||||
PROVIDE mo_bielec_integrals_in_map mo_integrals_cache
|
||||
!DIR$ FORCEINLINE
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
mo_bielec_integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
return
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals(j,k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ij|kl> in the MO basis, all
|
||||
! i for j,k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_ij(k,l,sze,out_array,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ij|kl> in the MO basis, all
|
||||
! i(1)j(2) 1/r12 k(1)l(2)
|
||||
! i, j for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_array(sze,sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i,j,kk,ll,m
|
||||
integer(key_kind),allocatable :: hash(:)
|
||||
integer ,allocatable :: pairs(:,:), iorder(:)
|
||||
real(integral_kind), allocatable :: tmp_val(:)
|
||||
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
|
||||
tmp_val(sze*sze))
|
||||
|
||||
kk=0
|
||||
out_array = 0.d0
|
||||
do j=1,sze
|
||||
do i=1,sze
|
||||
kk += 1
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,hash(kk))
|
||||
pairs(1,kk) = i
|
||||
pairs(2,kk) = j
|
||||
iorder(kk) = kk
|
||||
enddo
|
||||
enddo
|
||||
|
||||
logical :: integral_is_in_map
|
||||
if (key_kind == 8) then
|
||||
call i8radix_sort(hash,iorder,kk,-1)
|
||||
else if (key_kind == 4) then
|
||||
call iradix_sort(hash,iorder,kk,-1)
|
||||
else if (key_kind == 2) then
|
||||
call i2radix_sort(hash,iorder,kk,-1)
|
||||
endif
|
||||
|
||||
call map_get_many(mo_integrals_map, hash, tmp_val, kk)
|
||||
|
||||
do ll=1,kk
|
||||
m = iorder(ll)
|
||||
i=pairs(1,m)
|
||||
j=pairs(2,m)
|
||||
out_array(i,j) = tmp_val(ll)
|
||||
enddo
|
||||
|
||||
deallocate(pairs,hash,iorder,tmp_val)
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_coulomb_ii(k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ki|li>
|
||||
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
|
||||
! for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
|
||||
integer :: kk
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(k,i,l,i,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_exch_ii(k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ki|il>
|
||||
! k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1)
|
||||
! for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
|
||||
integer :: kk
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(k,i,i,l,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
integer*8 function get_mo_map_size()
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Return the number of elements in the MO map
|
||||
END_DOC
|
||||
get_mo_map_size = mo_integrals_map % n_elements
|
||||
end
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine dump_$ao_integrals(filename)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save to disk the $ao integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer*8 :: i,j, n
|
||||
call ezfio_set_work_empty(.False.)
|
||||
open(unit=66,file=filename,FORM='unformatted')
|
||||
write(66) integral_kind, key_kind
|
||||
write(66) $ao_integrals_map%sorted, $ao_integrals_map%map_size, &
|
||||
$ao_integrals_map%n_elements
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
write(66) $ao_integrals_map%map(i)%sorted, $ao_integrals_map%map(i)%map_size,&
|
||||
$ao_integrals_map%map(i)%n_elements
|
||||
enddo
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
write(66) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
close(66)
|
||||
|
||||
end
|
||||
|
||||
IRP_IF COARRAY
|
||||
subroutine communicate_$ao_integrals()
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Communicate the $ao integrals with co-array
|
||||
END_DOC
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer*8 :: i,j, k, nmax
|
||||
integer*8, save :: n[*]
|
||||
integer :: copy_n
|
||||
|
||||
real(integral_kind), allocatable :: buffer_val(:)[:]
|
||||
integer(cache_key_kind), allocatable :: buffer_key(:)[:]
|
||||
real(integral_kind), allocatable :: copy_val(:)
|
||||
integer(key_kind), allocatable :: copy_key(:)
|
||||
|
||||
n = 0_8
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
n = max(n,$ao_integrals_map%map(i)%n_elements)
|
||||
enddo
|
||||
sync all
|
||||
nmax = 0_8
|
||||
do j=1,num_images()
|
||||
nmax = max(nmax,n[j])
|
||||
enddo
|
||||
allocate( buffer_key(nmax)[*], buffer_val(nmax)[*])
|
||||
allocate( copy_key(nmax), copy_val(nmax))
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
do j=1,n
|
||||
buffer_key(j) = key(j)
|
||||
buffer_val(j) = val(j)
|
||||
enddo
|
||||
sync all
|
||||
do j=1,num_images()
|
||||
if (j /= this_image()) then
|
||||
copy_n = n[j]
|
||||
do k=1,copy_n
|
||||
copy_val(k) = buffer_val(k)[j]
|
||||
copy_key(k) = buffer_key(k)[j]
|
||||
copy_key(k) = copy_key(k)+ishft(i,-map_shift)
|
||||
enddo
|
||||
call map_append($ao_integrals_map, copy_key, copy_val, copy_n )
|
||||
endif
|
||||
enddo
|
||||
sync all
|
||||
enddo
|
||||
deallocate( buffer_key, buffer_val, copy_val, copy_key)
|
||||
|
||||
end
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
integer function load_$ao_integrals(filename)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Read from disk the $ao integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer*8 :: i
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer :: iknd, kknd
|
||||
integer*8 :: n, j
|
||||
load_$ao_integrals = 1
|
||||
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
|
||||
read(66,err=98,end=98) iknd, kknd
|
||||
if (iknd /= integral_kind) then
|
||||
print *, 'Wrong integrals kind in file :', iknd
|
||||
stop 1
|
||||
endif
|
||||
if (kknd /= key_kind) then
|
||||
print *, 'Wrong key kind in file :', kknd
|
||||
stop 1
|
||||
endif
|
||||
read(66,err=98,end=98) $ao_integrals_map%sorted, $ao_integrals_map%map_size,&
|
||||
$ao_integrals_map%n_elements
|
||||
do i=0_8, $ao_integrals_map%map_size
|
||||
read(66,err=99,end=99) $ao_integrals_map%map(i)%sorted, &
|
||||
$ao_integrals_map%map(i)%map_size, $ao_integrals_map%map(i)%n_elements
|
||||
call cache_map_reallocate($ao_integrals_map%map(i),$ao_integrals_map%map(i)%map_size)
|
||||
enddo
|
||||
do i=0_8, $ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
call map_sort($ao_integrals_map)
|
||||
load_$ao_integrals = 0
|
||||
return
|
||||
99 continue
|
||||
call map_deinit($ao_integrals_map)
|
||||
98 continue
|
||||
stop 'Problem reading $ao_integrals_map file in work/'
|
||||
|
||||
end
|
||||
|
||||
SUBST [ ao_integrals_map, ao_integrals, ao_num ]
|
||||
ao_integrals_map ; ao_integrals ; ao_num ;;
|
||||
mo_integrals_map ; mo_integrals ; mo_tot_num ;;
|
||||
END_TEMPLATE
|
@ -156,7 +156,7 @@ subroutine get_ao_bielec_integrals_erf_non_zero(j,k,l,sze,out_val,out_val_index,
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_bielec_integral_erf
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh) then
|
||||
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thresh) then
|
||||
cycle
|
||||
endif
|
||||
call bielec_integrals_index(i,j,k,l,hash)
|
||||
@ -395,7 +395,7 @@ BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ]
|
||||
integer :: ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
FREE ao_integrals_cache
|
||||
FREE ao_integrals_erf_cache
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
@ -478,7 +478,7 @@ subroutine get_mo_bielec_integrals_erf(j,k,l,sze,out_val,map)
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
@ -564,7 +564,7 @@ subroutine get_mo_bielec_integrals_erf_coulomb_ii(k,l,sze,out_val,map)
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
|
||||
integer :: kk
|
||||
do i=1,sze
|
File diff suppressed because it is too large
Load Diff
@ -587,8 +587,8 @@ END_PROVIDER
|
||||
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
mo_bielec_integral_erf_jj(i,j) = get_mo_bielec_integral_erf(i,j,i,j,mo_integrals_map)
|
||||
mo_bielec_integral_erf_jj_exchange(i,j) = get_mo_bielec_integral_erf(i,j,j,i,mo_integrals_map)
|
||||
mo_bielec_integral_erf_jj(i,j) = get_mo_bielec_integral_erf(i,j,i,j,mo_integrals_erf_map)
|
||||
mo_bielec_integral_erf_jj_exchange(i,j) = get_mo_bielec_integral_erf(i,j,j,i,mo_integrals_erf_map)
|
||||
mo_bielec_integral_erf_jj_anti(i,j) = mo_bielec_integral_erf_jj(i,j) - mo_bielec_integral_erf_jj_exchange(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
@ -1,116 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [ logical, ao_bielec_integrals_in_map ]
|
||||
implicit none
|
||||
use f77_zmq
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Map of Atomic integrals
|
||||
! i(r1) j(r2) 1/r12 k(r1) l(r2)
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: ao_bielec_integral,cpu_1,cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0
|
||||
include 'Utils/constants.include.F'
|
||||
|
||||
! For integrals file
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
integer,parameter :: size_buffer = 1024*64
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
|
||||
integer :: n_integrals, rc
|
||||
integer :: kk, m, j1, i1, lmax
|
||||
character*(64) :: fmt
|
||||
|
||||
integral = ao_bielec_integral(1,1,1,1)
|
||||
|
||||
real :: map_mb
|
||||
PROVIDE read_ao_integrals disk_access_ao_integrals
|
||||
if (read_ao_integrals) then
|
||||
print*,'Reading the AO integrals'
|
||||
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
print*, 'AO integrals provided'
|
||||
ao_bielec_integrals_in_map = .True.
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'Providing the AO integrals'
|
||||
call wall_time(wall_0)
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
call new_parallel_job(zmq_to_qp_run_socket,'ao_integrals')
|
||||
|
||||
character(len=:), allocatable :: task
|
||||
allocate(character(len=ao_num*12) :: task)
|
||||
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
|
||||
do l=1,ao_num
|
||||
write(task,fmt) (i,l, i=1,l)
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
|
||||
enddo
|
||||
deallocate(task)
|
||||
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
|
||||
PROVIDE nproc
|
||||
!$OMP PARALLEL DEFAULT(private) num_threads(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call ao_bielec_integrals_in_map_collector(i)
|
||||
else
|
||||
call ao_bielec_integrals_in_map_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'ao_integrals')
|
||||
|
||||
|
||||
print*, 'Sorting the map'
|
||||
call map_sort(ao_integrals_map)
|
||||
call cpu_time(cpu_2)
|
||||
call wall_time(wall_2)
|
||||
integer(map_size_kind) :: get_ao_map_size, ao_map_size
|
||||
ao_map_size = get_ao_map_size()
|
||||
|
||||
print*, 'AO integrals provided:'
|
||||
print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB'
|
||||
print*, ' Number of AO integrals :', ao_map_size
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
|
||||
ao_bielec_integrals_in_map = .True.
|
||||
|
||||
if (write_ao_integrals) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_integrals_erf_disk_access_ao_integrals("Read")
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_bielec_integral_schwartz,(ao_num,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Needed to compute Schwartz inequalities
|
||||
END_DOC
|
||||
|
||||
integer :: i,k
|
||||
double precision :: ao_bielec_integral,cpu_1,cpu_2, wall_1, wall_2
|
||||
|
||||
ao_bielec_integral_schwartz(1,1) = ao_bielec_integral(1,1,1,1)
|
||||
!$OMP PARALLEL DO PRIVATE(i,k) &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP SHARED (ao_num,ao_bielec_integral_schwartz) &
|
||||
!$OMP SCHEDULE(dynamic)
|
||||
do i=1,ao_num
|
||||
do k=1,i
|
||||
ao_bielec_integral_schwartz(i,k) = dsqrt(ao_bielec_integral(i,k,i,k))
|
||||
ao_bielec_integral_schwartz(k,i) = ao_bielec_integral_schwartz(i,k)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -2,7 +2,7 @@ program qp_ao_ints
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Increments a running calculation to compute AO integrals
|
||||
! Increments a running calculation to compute AO integral_erfs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
@ -11,18 +11,18 @@ program qp_ao_ints
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
|
||||
! Set the state of the ZMQ
|
||||
zmq_state = 'ao_integrals'
|
||||
zmq_state = 'ao_integral_erfs'
|
||||
|
||||
! Provide everything needed
|
||||
double precision :: integral, ao_bielec_integral
|
||||
integral = ao_bielec_integral(1,1,1,1)
|
||||
double precision :: integral_erf, ao_bielec_integral_erf
|
||||
integral_erf = ao_bielec_integral_erf(1,1,1,1)
|
||||
|
||||
character*(64) :: state
|
||||
call wait_for_state(zmq_state,state)
|
||||
do while (state /= 'Stopped')
|
||||
!$OMP PARALLEL DEFAULT(PRIVATE) PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call ao_bielec_integrals_in_map_slave_tcp(i)
|
||||
call ao_bielec_integrals_erf_in_map_slave_tcp(i)
|
||||
!$OMP END PARALLEL
|
||||
call wait_for_state(zmq_state,state)
|
||||
enddo
|
@ -1,51 +1,3 @@
|
||||
BEGIN_PROVIDER [ logical, read_ao_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, read_mo_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, write_ao_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, write_mo_integrals ]
|
||||
|
||||
BEGIN_DOC
|
||||
! One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
if (disk_access_ao_integrals.EQ.'Read') then
|
||||
read_ao_integrals = .True.
|
||||
write_ao_integrals = .False.
|
||||
|
||||
else if (disk_access_ao_integrals.EQ.'Write') then
|
||||
read_ao_integrals = .False.
|
||||
write_ao_integrals = .True.
|
||||
|
||||
else if (disk_access_ao_integrals.EQ.'None') then
|
||||
read_ao_integrals = .False.
|
||||
write_ao_integrals = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals/disk_access_ao_integrals has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
||||
if (disk_access_mo_integrals.EQ.'Read') then
|
||||
read_mo_integrals = .True.
|
||||
write_mo_integrals = .False.
|
||||
|
||||
else if (disk_access_mo_integrals.EQ.'Write') then
|
||||
read_mo_integrals = .False.
|
||||
write_mo_integrals = .True.
|
||||
|
||||
else if (disk_access_mo_integrals.EQ.'None') then
|
||||
read_mo_integrals = .False.
|
||||
write_mo_integrals = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals/disk_access_mo_integrals has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ logical, read_ao_integrals_erf ]
|
||||
&BEGIN_PROVIDER [ logical, read_mo_integrals_erf ]
|
||||
&BEGIN_PROVIDER [ logical, write_ao_integrals_erf ]
|
||||
|
@ -1,33 +0,0 @@
|
||||
program pouet
|
||||
implicit none
|
||||
|
||||
call routine
|
||||
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer, allocatable :: list_ijkl(:,:)
|
||||
integer :: i,j
|
||||
integer :: n_i,n_j,n_k,n_l
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = inact_bitmask(i,1)
|
||||
mask_ijkl(i,2) = inact_bitmask(i,1)
|
||||
mask_ijkl(i,3) = inact_bitmask(i,1)
|
||||
mask_ijkl(i,4) = inact_bitmask(i,1)
|
||||
enddo
|
||||
allocate(list_ijkl(mo_tot_num,4))
|
||||
call bitstring_to_list( mask_ijkl(1,1), list_ijkl(1,1), n_i, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
|
||||
print*,'n_i,n_j = ',n_i,n_j
|
||||
print*,'n_k,n_l = ',n_k,n_l
|
||||
do i =1, n_i
|
||||
print*,list_ijkl(i,1), list_ijkl(i,2)
|
||||
enddo
|
||||
deallocate(list_ijkl)
|
||||
|
||||
|
||||
end
|
1
plugins/Integrals_restart_DFT/NEEDED_CHILDREN_MODULES
Normal file
1
plugins/Integrals_restart_DFT/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
Integrals_Monoelec Integrals_erf Determinants DFT_Utils
|
12
plugins/Integrals_restart_DFT/README.rst
Normal file
12
plugins/Integrals_restart_DFT/README.rst
Normal file
@ -0,0 +1,12 @@
|
||||
==============
|
||||
core_integrals
|
||||
==============
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
79
plugins/Integrals_restart_DFT/short_range_coulomb.irp.f
Normal file
79
plugins/Integrals_restart_DFT/short_range_coulomb.irp.f
Normal file
@ -0,0 +1,79 @@
|
||||
BEGIN_PROVIDER [double precision, density_matrix_read, (mo_tot_num, mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
logical :: exists
|
||||
call ezfio_has_determinants_density_matrix_mo_disk(exists)
|
||||
if(exists)then
|
||||
print*, 'reading the density matrix from input'
|
||||
call ezfio_get_determinants_density_matrix_mo_disk(exists)
|
||||
print*, 'reading done'
|
||||
else
|
||||
print*, 'no density matrix found in EZFIO file ...'
|
||||
print*, 'stopping ..'
|
||||
stop
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, effective_short_range_operator, (mo_tot_num,mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l,m,n
|
||||
double precision :: get_mo_bielec_integral,get_mo_bielec_integral_erf
|
||||
double precision :: integral, integral_erf
|
||||
effective_short_range_operator = 0.d0
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
if(dabs(one_body_dm_mo(i,j)).le.1.d-10)cycle
|
||||
do k = 1, mo_tot_num
|
||||
do l = 1, mo_tot_num
|
||||
integral = get_mo_bielec_integral(i,k,j,l,mo_integrals_map)
|
||||
! integral_erf = get_mo_bielec_integral_erf(i,k,j,l,mo_integrals_erf_map)
|
||||
effective_short_range_operator(l,k) += one_body_dm_mo(i,j) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, effective_one_e_potential, (mo_tot_num_align, mo_tot_num,N_states)]
|
||||
implicit none
|
||||
integer :: i,j,i_state
|
||||
effective_one_e_potential = 0.d0
|
||||
do i_state = 1, N_states
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
effective_one_e_potential(i,j,i_state) = effective_short_range_operator(i,j) + mo_nucl_elec_integral(i,j) + mo_kinetic_integral(i,j) &
|
||||
+ 0.5d0 * (lda_ex_potential_alpha_ao(i,j,i_state) + lda_ex_potential_beta_ao(i,j,i_state))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine save_one_e_effective_potential
|
||||
implicit none
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
allocate(tmp(size(effective_one_e_potential,1),size(effective_one_e_potential,2)))
|
||||
integer :: i,j
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
tmp(i,j) = effective_one_e_potential(i,j,1)
|
||||
enddo
|
||||
enddo
|
||||
call write_one_e_integrals('mo_one_integral', tmp, &
|
||||
size(tmp,1), size(tmp,2))
|
||||
call ezfio_set_integrals_monoelec_disk_access_only_mo_one_integrals("Read")
|
||||
deallocate(tmp)
|
||||
|
||||
end
|
||||
|
||||
subroutine save_erf_bi_elec_integrals
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_erf_map)
|
||||
call ezfio_set_integrals_bielec_disk_access_mo_integrals("Read")
|
||||
end
|
@ -0,0 +1,18 @@
|
||||
program write_integrals
|
||||
implicit none
|
||||
read_wf = .true.
|
||||
touch read_wf
|
||||
disk_access_only_mo_one_integrals = "None"
|
||||
touch disk_access_only_mo_one_integrals
|
||||
disk_access_mo_integrals = "None"
|
||||
touch disk_access_mo_integrals
|
||||
call routine
|
||||
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
call save_one_e_effective_potential
|
||||
call save_erf_bi_elec_integrals
|
||||
|
||||
end
|
1
plugins/Slater_rules_DFT/NEEDED_CHILDREN_MODULES
Normal file
1
plugins/Slater_rules_DFT/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
Determinants Integrals_restart_DFT Davidson
|
12
plugins/Slater_rules_DFT/README.rst
Normal file
12
plugins/Slater_rules_DFT/README.rst
Normal file
@ -0,0 +1,12 @@
|
||||
================
|
||||
Slater_rules_DFT
|
||||
================
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
38
plugins/Slater_rules_DFT/Slater_rules_DFT.main.irp.f
Normal file
38
plugins/Slater_rules_DFT/Slater_rules_DFT.main.irp.f
Normal file
@ -0,0 +1,38 @@
|
||||
program Slater_rules_DFT
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO
|
||||
END_DOC
|
||||
print *, ' _/ '
|
||||
print *, ' -:\_?, _Jm####La '
|
||||
print *, 'J"(:" > _]#AZ#Z#UUZ##, '
|
||||
print *, '_,::./ %(|i%12XmX1*1XL _?, '
|
||||
print *, ' \..\ _\(vmWQwodY+ia%lnL _",/ ( '
|
||||
print *, ' .:< ]J=mQD?WXn<uQWmmvd, -.-:=!'
|
||||
print *, ' "{Z jC]QW|=3Zv)Bi3BmXv3 = _7'
|
||||
print *, ' ]h[Z6)WQ;)jZs]C;|$BZv+, : ./ '
|
||||
print *, ' -#sJX%$Wmm#ev]hinW#Xi:` c ; '
|
||||
print *, ' #X#X23###1}vI$WWmX1>|,)nr" '
|
||||
print *, ' 4XZ#Xov1v}=)vnXAX1nnv;1n" '
|
||||
print *, ' ]XX#ZXoovvvivnnnlvvo2*i7 '
|
||||
print *, ' "23Z#1S2oo2XXSnnnoSo2>v" '
|
||||
print *, ' miX#L -~`""!!1}oSoe|i7 '
|
||||
print *, ' 4cn#m, v221=|v[ '
|
||||
print *, ' ]hI3Zma,;..__wXSe=+vo '
|
||||
print *, ' ]Zov*XSUXXZXZXSe||vo2 '
|
||||
print *, ' ]Z#><iiii|i||||==vn2( '
|
||||
print *, ' ]Z#i<ii||+|=||=:{no2[ '
|
||||
print *, ' ]ZUsiiiiivi|=||=vo22[ '
|
||||
print *, ' ]XZvlliiIi|i=|+|vooo '
|
||||
print *, ' =v1llli||||=|||||lii( '
|
||||
print *, ' ]iillii||||||||=>=|< '
|
||||
print *, ' -ziiiii||||||+||==+> '
|
||||
print *, ' -%|+++||=|=+|=|==/ '
|
||||
print *, ' -a>====+|====-:- '
|
||||
print *, ' "~,- -- /- '
|
||||
print *, ' -. )> '
|
||||
print *, ' .~ +- '
|
||||
print *, ' . .... : . '
|
||||
print *, ' -------~ '
|
||||
print *, ''
|
||||
end
|
7
plugins/Slater_rules_DFT/energy.irp.f
Normal file
7
plugins/Slater_rules_DFT/energy.irp.f
Normal file
@ -0,0 +1,7 @@
|
||||
! BEGIN_PROVIDER [double precision, energy_total]
|
||||
!&BEGIN_PROVIDER [double precision, energy_one_electron]
|
||||
!&BEGIN_PROVIDER [double precision, energy_hartree]
|
||||
!&BEGIN_PROVIDER [double precision, energy]
|
||||
! implicit none
|
||||
!
|
||||
!END_PROVIDER
|
445
plugins/Slater_rules_DFT/slater_rules_erf.irp.f
Normal file
445
plugins/Slater_rules_DFT/slater_rules_erf.irp.f
Normal file
@ -0,0 +1,445 @@
|
||||
|
||||
subroutine i_H_j_erf(key_i,key_j,Nint,hij)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns <i|H|j> where i and j are determinants
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hij
|
||||
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: degree
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
integer :: m,n,p,q
|
||||
integer :: i,j,k
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
double precision :: diag_H_mat_elem_erf, phase,phase_2
|
||||
integer :: n_occ_ab(2)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_map big_array_exchange_integrals_erf
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
|
||||
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
|
||||
|
||||
hij = 0.d0
|
||||
!DIR$ FORCEINLINE
|
||||
call get_excitation_degree(key_i,key_j,degree,Nint)
|
||||
integer :: spin
|
||||
select case (degree)
|
||||
case (2)
|
||||
call get_double_excitation(key_i,key_j,exc,phase,Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha, mono beta
|
||||
if(exc(1,1,1) == exc(1,2,2) )then
|
||||
hij = phase * big_array_exchange_integrals(exc(1,1,1),exc(1,1,2),exc(1,2,1))
|
||||
else if (exc(1,2,1) ==exc(1,1,2))then
|
||||
hij = phase * big_array_exchange_integrals(exc(1,2,1),exc(1,1,1),exc(1,2,2))
|
||||
else
|
||||
hij = phase*get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(1,1,2), &
|
||||
exc(1,2,1), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map)
|
||||
endif
|
||||
else if (exc(0,1,1) == 2) then
|
||||
! Double alpha
|
||||
hij = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(1,2,1), &
|
||||
exc(2,2,1) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(2,2,1), &
|
||||
exc(1,2,1) ,mo_integrals_erf_map) )
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
hij = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(1,2,2), &
|
||||
exc(2,2,2) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(2,2,2), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map) )
|
||||
endif
|
||||
case (1)
|
||||
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
m = exc(1,1,1)
|
||||
p = exc(1,2,1)
|
||||
spin = 1
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij += -big_array_exchange_integrals_erf(occ(i,1),m,p) + big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij += big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
m = exc(1,1,2)
|
||||
p = exc(1,2,2)
|
||||
spin = 2
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij += -big_array_exchange_integrals_erf(occ(i,2),m,p) + big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij += big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
endif
|
||||
hij = hij + mo_nucl_elec_integral(m,p) + mo_kinetic_integral(m,p)
|
||||
hij = hij * phase
|
||||
case (0)
|
||||
hij = diag_H_mat_elem_erf(key_i,Nint)
|
||||
end select
|
||||
end
|
||||
|
||||
double precision function diag_H_mat_elem_erf(key_i,Nint)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2)
|
||||
integer, intent(in) :: Nint
|
||||
integer :: i,j
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
diag_H_mat_elem_erf = 0.d0
|
||||
! alpha - alpha
|
||||
do i = 1, n_occ_ab(1)
|
||||
diag_H_mat_elem_erf += mo_nucl_elec_integral(occ(i,1),mo_nucl_elec_integral(i,1))
|
||||
do j = i+1, n_occ_ab(1)
|
||||
diag_H_mat_elem_erf += mo_bielec_integral_erf_jj_anti(occ(i,1),occ(j,1))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta - beta
|
||||
do i = 1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf += mo_nucl_elec_integral(occ(i,2),mo_nucl_elec_integral(i,2))
|
||||
do j = i+1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf += mo_bielec_integral_erf_jj_anti(occ(i,2),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha - beta
|
||||
do i = 1, n_occ_ab(1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf += mo_bielec_integral_erf_jj(occ(i,1),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine i_H_j_erf_and_short_coulomb(key_i,key_j,Nint,hij)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns <i|H|j> where i and j are determinants
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hij
|
||||
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: degree
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
integer :: m,n,p,q
|
||||
integer :: i,j,k
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
double precision :: diag_H_mat_elem_erf, phase,phase_2
|
||||
integer :: n_occ_ab(2)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_map big_array_exchange_integrals_erf
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
|
||||
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
|
||||
|
||||
hij = 0.d0
|
||||
!DIR$ FORCEINLINE
|
||||
call get_excitation_degree(key_i,key_j,degree,Nint)
|
||||
integer :: spin
|
||||
select case (degree)
|
||||
case (2)
|
||||
call get_double_excitation(key_i,key_j,exc,phase,Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha, mono beta
|
||||
if(exc(1,1,1) == exc(1,2,2) )then
|
||||
hij = phase * big_array_exchange_integrals(exc(1,1,1),exc(1,1,2),exc(1,2,1))
|
||||
else if (exc(1,2,1) ==exc(1,1,2))then
|
||||
hij = phase * big_array_exchange_integrals(exc(1,2,1),exc(1,1,1),exc(1,2,2))
|
||||
else
|
||||
hij = phase*get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(1,1,2), &
|
||||
exc(1,2,1), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map)
|
||||
endif
|
||||
else if (exc(0,1,1) == 2) then
|
||||
! Double alpha
|
||||
hij = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(1,2,1), &
|
||||
exc(2,2,1) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(2,2,1), &
|
||||
exc(1,2,1) ,mo_integrals_erf_map) )
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
hij = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(1,2,2), &
|
||||
exc(2,2,2) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(2,2,2), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map) )
|
||||
endif
|
||||
case (1)
|
||||
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
m = exc(1,1,1)
|
||||
p = exc(1,2,1)
|
||||
spin = 1
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij += -big_array_exchange_integrals_erf(occ(i,1),m,p) + big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij += big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
m = exc(1,1,2)
|
||||
p = exc(1,2,2)
|
||||
spin = 2
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij += -big_array_exchange_integrals_erf(occ(i,2),m,p) + big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij += big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
endif
|
||||
hij = hij + mo_nucl_elec_integral(m,p) + mo_kinetic_integral(m,p) + effective_short_range_operator(m,p)
|
||||
hij = hij * phase
|
||||
case (0)
|
||||
hij = diag_H_mat_elem_erf(key_i,Nint)
|
||||
end select
|
||||
end
|
||||
|
||||
double precision function diag_H_mat_elem_erf_and_short_coulomb(key_i,Nint)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2)
|
||||
integer, intent(in) :: Nint
|
||||
integer :: i,j
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
diag_H_mat_elem_erf_and_short_coulomb = 0.d0
|
||||
! alpha - alpha
|
||||
do i = 1, n_occ_ab(1)
|
||||
diag_H_mat_elem_erf_and_short_coulomb += mo_nucl_elec_integral(occ(i,1),mo_nucl_elec_integral(i,1)) + mo_kinetic_integral(occ(i,1),mo_nucl_elec_integral(i,1)) &
|
||||
+ effective_short_range_operator(occ(i,1),occ(i,1))
|
||||
do j = i+1, n_occ_ab(1)
|
||||
diag_H_mat_elem_erf_and_short_coulomb += mo_bielec_integral_erf_jj_anti(occ(i,1),occ(j,1))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta - beta
|
||||
do i = 1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf_and_short_coulomb += mo_nucl_elec_integral(occ(i,2),mo_nucl_elec_integral(i,2)) + mo_kinetic_integral(occ(i,2),mo_nucl_elec_integral(i,2)) &
|
||||
+ effective_short_range_operator(occ(i,2),occ(i,2))
|
||||
do j = i+1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf_and_short_coulomb += mo_bielec_integral_erf_jj_anti(occ(i,2),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha - beta
|
||||
do i = 1, n_occ_ab(1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
diag_H_mat_elem_erf_and_short_coulomb += mo_bielec_integral_erf_jj(occ(i,1),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine i_H_j_erf_component(key_i,key_j,Nint,hij_core,hij_hartree,hij_erf,hij_total)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns <i|H|j> where i and j are determinants
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hij_core
|
||||
double precision, intent(out) :: hij_hartree
|
||||
double precision, intent(out) :: hij_erf
|
||||
double precision, intent(out) :: hij_total
|
||||
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: degree
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
integer :: m,n,p,q
|
||||
integer :: i,j,k
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
double precision :: diag_H_mat_elem_erf, phase,phase_2
|
||||
integer :: n_occ_ab(2)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_map big_array_exchange_integrals_erf
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
|
||||
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
|
||||
|
||||
hij_core = 0.d0
|
||||
hij_hartree = 0.d0
|
||||
hij_erf = 0.d0
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call get_excitation_degree(key_i,key_j,degree,Nint)
|
||||
integer :: spin
|
||||
select case (degree)
|
||||
case (2)
|
||||
call get_double_excitation(key_i,key_j,exc,phase,Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha, mono beta
|
||||
if(exc(1,1,1) == exc(1,2,2) )then
|
||||
hij_erf = phase * big_array_exchange_integrals(exc(1,1,1),exc(1,1,2),exc(1,2,1))
|
||||
else if (exc(1,2,1) ==exc(1,1,2))then
|
||||
hij_erf = phase * big_array_exchange_integrals(exc(1,2,1),exc(1,1,1),exc(1,2,2))
|
||||
else
|
||||
hij_erf = phase*get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(1,1,2), &
|
||||
exc(1,2,1), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map)
|
||||
endif
|
||||
else if (exc(0,1,1) == 2) then
|
||||
! Double alpha
|
||||
hij_erf = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(1,2,1), &
|
||||
exc(2,2,1) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,1), &
|
||||
exc(2,1,1), &
|
||||
exc(2,2,1), &
|
||||
exc(1,2,1) ,mo_integrals_erf_map) )
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
hij_erf = phase*(get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(1,2,2), &
|
||||
exc(2,2,2) ,mo_integrals_erf_map) - &
|
||||
get_mo_bielec_integral_erf( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(2,2,2), &
|
||||
exc(1,2,2) ,mo_integrals_erf_map) )
|
||||
endif
|
||||
case (1)
|
||||
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
m = exc(1,1,1)
|
||||
p = exc(1,2,1)
|
||||
spin = 1
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij_erf += -big_array_exchange_integrals_erf(occ(i,1),m,p) + big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij_erf += big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
m = exc(1,1,2)
|
||||
p = exc(1,2,2)
|
||||
spin = 2
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij_erf += -big_array_exchange_integrals_erf(occ(i,2),m,p) + big_array_coulomb_integrals_erf(occ(i,2),m,p)
|
||||
enddo
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij_erf += big_array_coulomb_integrals_erf(occ(i,1),m,p)
|
||||
enddo
|
||||
endif
|
||||
hij_core = mo_nucl_elec_integral(m,p) + mo_kinetic_integral(m,p)
|
||||
hij_hartree = effective_short_range_operator(m,p)
|
||||
hij_total = (hij_erf + hij_core + hij_hartree) * phase
|
||||
case (0)
|
||||
call diag_H_mat_elem_erf_component(key_i,hij_core,hij_hartree,hij_erf,hij_total,Nint)
|
||||
end select
|
||||
end
|
||||
|
||||
subroutine diag_H_mat_elem_erf_component(key_i,hij_core,hij_hartree,hij_erf,hij_total,Nint)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2)
|
||||
integer, intent(in) :: Nint
|
||||
double precision, intent(out) :: hij_core
|
||||
double precision, intent(out) :: hij_hartree
|
||||
double precision, intent(out) :: hij_erf
|
||||
double precision, intent(out) :: hij_total
|
||||
integer :: i,j
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
|
||||
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
|
||||
hij_core = 0.d0
|
||||
hij_hartree = 0.d0
|
||||
hij_erf = 0.d0
|
||||
! alpha - alpha
|
||||
do i = 1, n_occ_ab(1)
|
||||
hij_core += mo_nucl_elec_integral(occ(i,1),mo_nucl_elec_integral(i,1)) + mo_kinetic_integral(occ(i,1),mo_nucl_elec_integral(i,1))
|
||||
hij_hartree += effective_short_range_operator(occ(i,1),occ(i,1))
|
||||
do j = i+1, n_occ_ab(1)
|
||||
hij_erf += mo_bielec_integral_erf_jj_anti(occ(i,1),occ(j,1))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta - beta
|
||||
do i = 1, n_occ_ab(2)
|
||||
hij_core += mo_nucl_elec_integral(occ(i,2),mo_nucl_elec_integral(i,2)) + mo_kinetic_integral(occ(i,2),mo_nucl_elec_integral(i,2))
|
||||
hij_hartree += effective_short_range_operator(occ(i,2),occ(i,2))
|
||||
do j = i+1, n_occ_ab(2)
|
||||
hij_erf += mo_bielec_integral_erf_jj_anti(occ(i,2),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha - beta
|
||||
do i = 1, n_occ_ab(1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
hij_erf += mo_bielec_integral_erf_jj(occ(i,1),occ(j,2))
|
||||
enddo
|
||||
enddo
|
||||
hij_total = hij_erf + hij_hartree + hij_core
|
||||
|
||||
end
|
||||
|
||||
|
@ -4,6 +4,14 @@ doc: Read/Write MO one-electron integrals from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
|
||||
[disk_access_only_mo_one_integrals]
|
||||
type: Disk_access
|
||||
doc: Read/Write MO for only the total one-electron integrals which can be anything [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
|
||||
[disk_access_ao_one_integrals]
|
||||
type: Disk_access
|
||||
doc: Read/Write AO one-electron integrals from/to disk [ Write | Read | None ]
|
||||
|
@ -6,7 +6,8 @@ BEGIN_PROVIDER [ double precision, mo_mono_elec_integral,(mo_tot_num_align,mo_to
|
||||
! sum of the kinetic and nuclear electronic potential
|
||||
END_DOC
|
||||
print*,'Providing the mono electronic integrals'
|
||||
if (read_mo_one_integrals) then
|
||||
if (read_only_mo_one_integrals) then
|
||||
print*, 'Reading the mono electronic integrals from disk'
|
||||
call read_one_e_integrals('mo_one_integral', mo_mono_elec_integral, &
|
||||
size(mo_mono_elec_integral,1), size(mo_mono_elec_integral,2))
|
||||
print *, 'MO N-e integrals read from disk'
|
||||
@ -14,7 +15,7 @@ BEGIN_PROVIDER [ double precision, mo_mono_elec_integral,(mo_tot_num_align,mo_to
|
||||
do j = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
mo_mono_elec_integral(i,j) = mo_nucl_elec_integral(i,j) + &
|
||||
mo_kinetic_integral(i,j) + mo_pseudo_integral(i,j)
|
||||
mo_kinetic_integral(i,j) + mo_pseudo_integral(i,j)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
@ -1,5 +1,6 @@
|
||||
BEGIN_PROVIDER [ logical, read_ao_one_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, read_mo_one_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, read_only_mo_one_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, write_ao_one_integrals ]
|
||||
&BEGIN_PROVIDER [ logical, write_mo_one_integrals ]
|
||||
|
||||
@ -21,10 +22,14 @@
|
||||
write_ao_one_integrals = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals/disk_access_ao_integrals has a wrong type'
|
||||
print *, 'monoelec_integrals/disk_access_ao_integrals has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
||||
if (disk_access_only_mo_one_integrals.EQ.'Read')then
|
||||
read_only_mo_one_integrals = .True.
|
||||
endif
|
||||
|
||||
if (disk_access_mo_one_integrals.EQ.'Read') then
|
||||
read_mo_one_integrals = .True.
|
||||
@ -39,7 +44,7 @@
|
||||
write_mo_one_integrals = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals/disk_access_mo_integrals has a wrong type'
|
||||
print *, 'monoelec_integrals/disk_access_mo_integrals has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
Loading…
Reference in New Issue
Block a user