10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

New Davidson OK

This commit is contained in:
Anthony Scemama 2017-04-14 15:04:29 +02:00
parent 2e65943c0b
commit 3a824d5d0a
6 changed files with 155 additions and 52 deletions

View File

@ -25,7 +25,7 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag) double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag)
double precision, allocatable :: H_jj(:), S2_jj(:) double precision, allocatable :: H_jj(:), S2_jj(:)
double precision :: diag_h_mat_elem double precision :: diag_H_mat_elem, diag_S_mat_elem
integer :: i integer :: i
ASSERT (N_st > 0) ASSERT (N_st > 0)
ASSERT (sze > 0) ASSERT (sze > 0)
@ -37,10 +37,10 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj,S2_jj, dets_in,Nint) & !$OMP SHARED(sze,H_jj,S2_jj, dets_in,Nint) &
!$OMP PRIVATE(i) !$OMP PRIVATE(i)
!$OMP DO SCHEDULE(guided) !$OMP DO SCHEDULE(static)
do i=1,sze do i=1,sze
H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
call get_s2(dets_in(1,1,i),dets_in(1,1,i),Nint,S2_jj(i)) S2_jj(i) = diag_S_mat_elem(dets_in(1,1,i),Nint)
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
@ -209,7 +209,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag do k=1,N_st_diag
call normalize(u_in(1,k),sze) call normalize(u_in(1,k),sze)
enddo enddo
update_dets = 1 update_dets = 1
@ -235,7 +235,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
if (distributed_davidson) then if (distributed_davidson) then
call H_S2_u_0_nstates_zmq(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,N_st_diag,sze_8,update_dets) call H_S2_u_0_nstates_zmq(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,N_st_diag,sze_8,update_dets)
else else
call H_S2_u_0_nstates(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,N_st_diag,sze_8) call H_S2_u_0_nstates_openmp(W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze_8)
endif endif
update_dets = 0 update_dets = 0

View File

@ -66,7 +66,6 @@ END_PROVIDER
call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_eigenvectors_s2, & call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_eigenvectors_s2, &
size(CI_eigenvectors,1),CI_electronic_energy, & size(CI_eigenvectors,1),CI_electronic_energy, &
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,output_determinants) N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,output_determinants)
else if (diag_algorithm == "Lapack") then else if (diag_algorithm == "Lapack") then

View File

@ -613,20 +613,37 @@ end
subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8) subroutine H_S2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze_8)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
! !
! n : number of determinants ! Assumes that the determinants are in psi_det
!
! H_jj : array of <j|H|j>
!
! S2_jj : array of <j|S^2|j>
END_DOC END_DOC
integer, intent(in) :: N_st,sze_8 integer, intent(in) :: N_st,sze_8
double precision, intent(out) :: v_0(sze_8,N_st), s_0(sze_8,N_st) double precision, intent(inout) :: v_0(sze_8,N_st), s_0(sze_8,N_st), u_0(sze_8,N_st)
integer :: k
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
do k=1,N_st
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
END_DOC
integer, intent(in) :: N_st,sze_8
double precision, intent(out) :: v_0(sze_8,N_st), s_0(sze_8,N_st), u_0(sze_8,N_st)
PROVIDE ref_bitmask_energy PROVIDE ref_bitmask_energy
@ -643,7 +660,6 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
integer(bit_kind) :: tmp_det2(N_int,2) integer(bit_kind) :: tmp_det2(N_int,2)
integer(bit_kind) :: tmp_det3(N_int,2) integer(bit_kind) :: tmp_det3(N_int,2)
integer(bit_kind), allocatable :: buffer(:,:) integer(bit_kind), allocatable :: buffer(:,:)
double precision :: ck(N_st), cl(N_st), cm(N_st)
integer :: n_singles, n_doubles integer :: n_singles, n_doubles
integer, allocatable :: singles(:), doubles(:) integer, allocatable :: singles(:), doubles(:)
integer, allocatable :: singles_a(:,:), singles_b(:,:) integer, allocatable :: singles_a(:,:), singles_b(:,:)
@ -651,18 +667,33 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
logical, allocatable :: is_single_a(:) logical, allocatable :: is_single_a(:)
logical, allocatable :: is_single_b(:) logical, allocatable :: is_single_b(:)
integer :: maxab, n_singles_max integer :: maxab, n_singles_max
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
maxab = max(N_det_alpha_unique, N_det_beta_unique) maxab = max(N_det_alpha_unique, N_det_beta_unique)
allocate( buffer(N_int,maxab), & allocate( buffer(N_int,maxab), &
singles(maxab), doubles(maxab), & singles(maxab), doubles(maxab), &
is_single_a(N_det_alpha_unique), & is_single_a(N_det_alpha_unique), &
is_single_b(N_det_beta_unique), & is_single_b(N_det_beta_unique), &
idx(maxab), idx0(maxab)) idx(maxab), idx0(maxab), &
u_t(N_st,N_det), v_t(N_st,N_det), s_t(N_st,N_det) )
do i=1,maxab do i=1,maxab
idx0(i) = i idx0(i) = i
enddo enddo
! call dtranspose( &
! u_0, &
! size(u_0, 1), &
! u_t, &
! size(u_t, 1), &
! N_det, N_st)
!
do k=1,N_det
do l=1,N_st
u_t(l,k) = u_0(k,l)
enddo
enddo
! Prepare the array of all alpha single excitations ! Prepare the array of all alpha single excitations
! ------------------------------------------------- ! -------------------------------------------------
@ -683,8 +714,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
singles_a(1,i), singles_a(0,i)) singles_a(1,i), singles_a(0,i))
enddo enddo
v_0 = 0.d0 v_t = 0.d0
s_0 = 0.d0 s_t = 0.d0
do k_a=1,N_det do k_a=1,N_det
! Initial determinant is at k_a in alpha-major representation ! Initial determinant is at k_a in alpha-major representation
@ -699,21 +730,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
! Initial determinant is at k_b in beta-major representation ! Initial determinant is at k_b in beta-major representation
! ---------------------------------------------------------------------- ! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_reverse(k_a) k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
! Diagonal contribution
! ---------------------
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
hij = diag_H_mat_elem(tmp_det,N_int)
sij = diag_S_mat_elem(tmp_det,N_int)
do l=1,N_st
v_0(k_a,l) = v_0(k_a,l) + hij * psi_bilinear_matrix_values(k_a,l)
s_0(k_a,l) = s_0(k_a,l) + sij * psi_bilinear_matrix_values(k_a,l)
enddo
! Get all single and double alpha excitations ! Get all single and double alpha excitations
! =========================================== ! ===========================================
@ -721,7 +739,7 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
! Loop inside the beta column to gather all the connected alphas ! Loop inside the beta column to gather all the connected alphas
i=1 i=1
l_a = k_a+1 l_a = k_a
lcol = psi_bilinear_matrix_columns(l_a) lcol = psi_bilinear_matrix_columns(l_a)
do while (lcol == kcol) do while (lcol == kcol)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
@ -752,8 +770,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij)
do l=1,N_st do l=1,N_st
v_0(l_a, l) += hij * psi_bilinear_matrix_values(k_a,l) v_t(l,l_a) += hij * u_t(l,k_a)
v_0(k_a, l) += hij * psi_bilinear_matrix_values(l_a,l) v_t(l,k_a) += hij * u_t(l,l_a)
! single => sij = 0 ! single => sij = 0
enddo enddo
enddo enddo
@ -770,8 +788,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
enddo enddo
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, doubles(i)), N_int, hij) call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, doubles(i)), N_int, hij)
do l=1,N_st do l=1,N_st
v_0(l_a, l) += hij * psi_bilinear_matrix_values(k_a,l) v_t(l,l_a) += hij * u_t(l,k_a)
v_0(k_a, l) += hij * psi_bilinear_matrix_values(l_a,l) v_t(l,k_a) += hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
enddo enddo
@ -785,7 +803,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
! Loop inside the alpha row to gather all the connected betas ! Loop inside the alpha row to gather all the connected betas
i=1 i=1
l_b = k_b+1 l_b = k_b
lrow = psi_bilinear_matrix_transp_rows(l_b) lrow = psi_bilinear_matrix_transp_rows(l_b)
do while (lrow == krow) do while (lrow == krow)
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
@ -817,8 +836,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij)
do l=1,N_st do l=1,N_st
v_0(l_a, l) += hij * psi_bilinear_matrix_values(k_a,l) v_t(l,l_a) += hij * u_t(l,k_a)
v_0(k_a, l) += hij * psi_bilinear_matrix_values(l_a,l) v_t(l,k_a) += hij * u_t(l,l_a)
! single => sij = 0 ! single => sij = 0
enddo enddo
enddo enddo
@ -836,8 +855,8 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, doubles(i)), N_int, hij) call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, doubles(i)), N_int, hij)
do l=1,N_st do l=1,N_st
v_0(l_a, l) += hij * psi_bilinear_matrix_values(k_a,l) v_t(l,l_a) += hij * u_t(l,k_a)
v_0(k_a, l) += hij * psi_bilinear_matrix_values(l_a,l) v_t(l,k_a) += hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
enddo enddo
@ -892,12 +911,13 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
if (is_single_a(lrow)) then if (is_single_a(lrow)) then
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij,sij) call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
call get_s2(tmp_det,tmp_det2,N_int,sij)
do l=1,N_st do l=1,N_st
v_0(k_a, l) += hij * psi_bilinear_matrix_values(l_a,l) v_t(l,k_a) += hij * u_t(l,l_a)
v_0(l_a, l) += hij * psi_bilinear_matrix_values(k_a,l) v_t(l,l_a) += hij * u_t(l,k_a)
s_0(k_a, l) -= sij * psi_bilinear_matrix_values(l_a,l) s_t(l,k_a) += sij * u_t(l,l_a)
s_0(l_a, l) -= sij * psi_bilinear_matrix_values(k_a,l) s_t(l,l_a) += sij * u_t(l,k_a)
enddo enddo
endif endif
l_a += 1 l_a += 1
@ -905,6 +925,38 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
enddo enddo
enddo enddo
! Diagonal contribution
! ---------------------
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
hij = diag_H_mat_elem(tmp_det,N_int)
sij = diag_S_mat_elem(tmp_det,N_int)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
enddo
enddo
! call dtranspose( &
! v_t, &
! size(v_t, 1), &
! v_0, &
! size(v_0, 1), &
! N_st, N_det)
!
! call dtranspose( &
! s_t, &
! size(s_t, 1), &
! s_0, &
! size(s_0, 1), &
! N_st, N_det)
do k=1,N_det
do l=1,N_st
v_0(k,l) = v_t(l,k)
s_0(k,l) = s_t(l,k)
enddo
enddo enddo
end end

View File

@ -2556,7 +2556,7 @@ subroutine i_H_j_double_spin(key_i,key_j,Nint,hij)
exc(1,2), mo_integrals_map) ) exc(1,2), mo_integrals_map) )
end end
subroutine i_H_j_double_alpha_beta(key_i,key_j,Nint,hij,phase) subroutine i_H_j_double_alpha_beta(key_i,key_j,Nint,hij)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -389,6 +389,7 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_rows , (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_rows , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns, (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns, (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order , (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order_reverse , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns_loc, (N_det_beta_unique+1) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns_loc, (N_det_beta_unique+1) ]
use bitmasks use bitmasks
implicit none implicit none
@ -429,7 +430,6 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
do l=1,N_states do l=1,N_states
call dset_order(psi_bilinear_matrix_values(1,l),psi_bilinear_matrix_order,N_det) call dset_order(psi_bilinear_matrix_values(1,l),psi_bilinear_matrix_order,N_det)
enddo enddo
psi_bilinear_matrix_columns_loc(1:N_det_beta_unique) = -1
psi_bilinear_matrix_columns_loc(1) = 1 psi_bilinear_matrix_columns_loc(1) = 1
do k=2,N_det do k=2,N_det
if (psi_bilinear_matrix_columns(k) == psi_bilinear_matrix_columns(k-1)) then if (psi_bilinear_matrix_columns(k) == psi_bilinear_matrix_columns(k-1)) then
@ -440,6 +440,9 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
endif endif
enddo enddo
psi_bilinear_matrix_columns_loc(N_det_beta_unique+1) = N_det+1 psi_bilinear_matrix_columns_loc(N_det_beta_unique+1) = N_det+1
do k=1,N_det
psi_bilinear_matrix_order_reverse(psi_bilinear_matrix_order(k)) = k
enddo
deallocate(to_sort) deallocate(to_sort)
END_PROVIDER END_PROVIDER
@ -448,7 +451,7 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_transp_values, (N_det,N_
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_rows , (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_rows , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_columns, (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_columns, (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_order , (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_order , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order_reverse , (N_det) ] &BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order_transp_reverse , (N_det) ]
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -487,7 +490,7 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_transp_values, (N_det,N_
call dset_order(psi_bilinear_matrix_transp_values(1,l),psi_bilinear_matrix_transp_order,N_det) call dset_order(psi_bilinear_matrix_transp_values(1,l),psi_bilinear_matrix_transp_order,N_det)
enddo enddo
do k=1,N_det do k=1,N_det
psi_bilinear_matrix_order_reverse(psi_bilinear_matrix_transp_order(k)) = k psi_bilinear_matrix_order_transp_reverse(psi_bilinear_matrix_transp_order(k)) = k
enddo enddo
deallocate(to_sort) deallocate(to_sort)
END_PROVIDER END_PROVIDER
@ -1387,3 +1390,18 @@ subroutine get_all_spin_doubles_3(buffer, idx, spindet, size_buffer, doubles, n_
end end
subroutine copy_psi_bilinear_to_psi(psi, isize)
implicit none
BEGIN_DOC
! Overwrites psi_det and psi_coef with the wf in bilinear order
END_DOC
integer, intent(in) :: isize
integer(bit_kind), intent(out) :: psi(N_int,2,isize)
integer :: i,j,k,l
do k=1,isize
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
psi(1:N_int,1,k) = psi_det_alpha_unique(1:N_int,i)
psi(1:N_int,2,k) = psi_det_beta_unique(1:N_int,j)
enddo
end

View File

@ -158,6 +158,34 @@ BEGIN_TEMPLATE
end subroutine heap_$Xsort_big end subroutine heap_$Xsort_big
subroutine sorted_$Xnumber(x,isize,n)
implicit none
BEGIN_DOC
! Returns the number of sorted elements
END_DOC
integer, intent(in) :: isize
$type, intent(inout) :: x(isize)
integer, intent(out) :: n
integer :: i
if (isize < 2) then
n = 1
return
endif
if (x(1) > x(2)) then
n=1
else
n=0
endif
do i=2,isize
if (x(i-1) > x(i)) then
n=n+1
endif
enddo
end
subroutine $Xsort(x,iorder,isize) subroutine $Xsort(x,iorder,isize)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -168,10 +196,16 @@ BEGIN_TEMPLATE
integer,intent(in) :: isize integer,intent(in) :: isize
$type,intent(inout) :: x(isize) $type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize) integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 32) then if (isize < 32) then
call insertion_$Xsort(x,iorder,isize) call insertion_$Xsort(x,iorder,isize)
else else
call heap_$Xsort(x,iorder,isize) ! call sorted_$Xnumber(x,isize,n)
! if ( (16*n) / isize > 0) then
! call insertion_$Xsort(x,iorder,isize)
! else
call heap_$Xsort(x,iorder,isize)
! endif
endif endif
end subroutine $Xsort end subroutine $Xsort