mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-10 13:08:23 +01:00
second order works for 2p
This commit is contained in:
parent
c6b7acbc4e
commit
376e4940db
@ -198,7 +198,8 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == kspin .and. vorb.le.rorb)then
|
||||
cycle_same_spin_first_order = .True.
|
||||
endif
|
||||
if(ispin .ne. kspin .and. cycle_same_spin_first_order == .False. )then ! condition not to double count
|
||||
! if(ispin .ne. kspin .and. cycle_same_spin_first_order == .False. )then ! condition not to double count
|
||||
if(cycle_same_spin_first_order == .False. )then ! condition not to double count
|
||||
|
||||
! FIRST ORDER CONTRIBUTION
|
||||
|
||||
@ -234,7 +235,7 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == jspin .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order = .True.
|
||||
endif
|
||||
if(ispin .ne. jspin .or. cycle_same_spin_second_order == .False.)then
|
||||
if(cycle_same_spin_second_order == .False.)then
|
||||
do corb = 1, n_act_orb
|
||||
if(perturb_dets_phase(corb,jspin,ispin) .le. -10.d0)cycle
|
||||
do inint = 1, N_int
|
||||
@ -291,7 +292,7 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == 2 .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order = .True.
|
||||
endif
|
||||
if(ispin .ne. 2 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(perturb_dets_phase(borb,2,ispin) .le. -10.d0)cycle
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,borb,2,ispin)
|
||||
@ -325,7 +326,7 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == 1 .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order = .True.
|
||||
endif
|
||||
if(ispin .ne. 1 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(perturb_dets_phase(aorb,1,ispin) .le. -10.d0)cycle
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
|
||||
@ -364,7 +365,7 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == 2 .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order = .True.
|
||||
endif
|
||||
if(ispin .ne. 2 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(perturb_dets_phase(aorb,2,ispin) .le. -10.d0)cycle
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,aorb,2,ispin)
|
||||
@ -399,7 +400,7 @@ subroutine give_1h2p_new(matrix_1h2p)
|
||||
if(ispin == 1 .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order = .True.
|
||||
endif
|
||||
if(ispin .ne. 1 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(cycle_same_spin_second_order == .False.)then ! condition not to double count
|
||||
if(perturb_dets_phase(aorb,1,ispin) .le. -10.d0)cycle
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
|
||||
|
283
plugins/MRPT_Utils/second_order_new_2p.irp.f
Normal file
283
plugins/MRPT_Utils/second_order_new_2p.irp.f
Normal file
@ -0,0 +1,283 @@
|
||||
|
||||
subroutine give_2p_new(matrix_2p)
|
||||
use bitmasks
|
||||
implicit none
|
||||
double precision , intent(inout) :: matrix_2p(N_det,N_det,*)
|
||||
integer :: i,v,r,a,b,c
|
||||
integer :: iorb, vorb, rorb, aorb, borb,corb
|
||||
integer :: ispin,jspin
|
||||
integer :: idet,jdet
|
||||
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,n_act_orb,2,2)
|
||||
double precision :: perturb_dets_phase(n_act_orb,n_act_orb,2,2)
|
||||
double precision :: perturb_dets_hij(n_act_orb,n_act_orb,2,2)
|
||||
double precision :: perturb_dets_hpsi0(n_act_orb,n_act_orb,2,2,N_states)
|
||||
integer :: inint
|
||||
integer :: elec_num_tab_local(2),acu_elec
|
||||
integer(bit_kind) :: det_tmp(N_int,2)
|
||||
integer(bit_kind) :: det_tmp_j(N_int,2)
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: accu_elec
|
||||
double precision :: get_mo_bielec_integral_schwartz
|
||||
double precision :: active_int(n_act_orb,n_act_orb,2)
|
||||
double precision :: hij,phase
|
||||
double precision :: accu_contrib(N_states)
|
||||
integer :: degree(N_det)
|
||||
integer :: idx(0:N_det)
|
||||
double precision :: delta_e(n_act_orb,n_act_orb,2,2,N_states)
|
||||
double precision :: delta_e_inv(n_act_orb,n_act_orb,2,2,N_states)
|
||||
double precision :: delta_e_inactive_virt(N_states)
|
||||
integer :: istate
|
||||
integer :: index_orb_act_mono(N_det,6)
|
||||
integer :: kspin
|
||||
double precision :: delta_e_ja(N_states)
|
||||
double precision :: hja
|
||||
double precision :: contrib_hij
|
||||
double precision :: fock_operator_local(n_act_orb,n_act_orb,2)
|
||||
double precision :: hij_test
|
||||
integer ::i_ok
|
||||
integer(bit_kind) :: det_tmp_bis(N_int,2)
|
||||
double precision :: hib , hab
|
||||
double precision :: delta_e_ab(N_states)
|
||||
double precision :: hib_test,hja_test,hab_test
|
||||
integer :: i_hole,i_part
|
||||
double precision :: hia,hjb
|
||||
integer :: other_spin(2)
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
accu_contrib = 0.d0
|
||||
!matrix_2p = 0.d0
|
||||
|
||||
elec_num_tab_local = 0
|
||||
do inint = 1, N_int
|
||||
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
||||
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
||||
enddo
|
||||
do v = 1, n_virt_orb ! First virtual
|
||||
vorb = list_virt(v)
|
||||
do r = 1, n_virt_orb ! Second virtual
|
||||
rorb = list_virt(r)
|
||||
! take all the integral you will need for r,v fixed
|
||||
do a = 1, n_act_orb
|
||||
aorb = list_act(a)
|
||||
do b = 1, n_act_orb
|
||||
borb = list_act(b)
|
||||
active_int(a,b,1) = get_mo_bielec_integral_schwartz(aorb,borb,rorb,vorb,mo_integrals_map) ! direct ( a--> r | b--> v )
|
||||
active_int(a,b,2) = get_mo_bielec_integral_schwartz(aorb,borb,vorb,rorb,mo_integrals_map) ! exchange ( b--> r | a--> v )
|
||||
perturb_dets_phase(a,b,1,1) = -1000.d0
|
||||
perturb_dets_phase(a,b,1,2) = -1000.d0
|
||||
perturb_dets_phase(a,b,2,2) = -1000.d0
|
||||
perturb_dets_phase(a,b,2,1) = -1000.d0
|
||||
perturb_dets_phase(b,a,1,1) = -1000.d0
|
||||
perturb_dets_phase(b,a,1,2) = -1000.d0
|
||||
perturb_dets_phase(b,a,2,2) = -1000.d0
|
||||
perturb_dets_phase(b,a,2,1) = -1000.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do istate = 1, N_states
|
||||
delta_e_inactive_virt(istate) = &
|
||||
- fock_virt_total_spin_trace(rorb,istate) &
|
||||
- fock_virt_total_spin_trace(vorb,istate)
|
||||
enddo
|
||||
do idet = 1, N_det
|
||||
! call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
||||
call get_excitation_degree_vector(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
||||
do ispin = 1, 2 ! spin of the couple a-a^dagger (aorb,rorb)
|
||||
do jspin = 1, 2 ! spin of the couple a-a^dagger (borb,vorb)
|
||||
do b = 1, n_act_orb ! First active
|
||||
borb = list_act(b)
|
||||
do a = 1, n_act_orb ! First active
|
||||
aorb = list_act(a)
|
||||
! if(ispin == 2.and. jspin ==1)then
|
||||
! perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
||||
! perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
||||
! cycle ! condition not to double count
|
||||
! endif
|
||||
|
||||
if(ispin == jspin .and. vorb.le.rorb)then
|
||||
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
||||
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
||||
cycle ! condition not to double count
|
||||
endif
|
||||
if(ispin == jspin .and. aorb.le.borb) then
|
||||
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
||||
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
||||
cycle ! condition not to double count
|
||||
endif
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = psi_det(inint,1,idet)
|
||||
det_tmp(inint,2) = psi_det(inint,2,idet)
|
||||
enddo
|
||||
! Do the excitation (aorb,ispin) --> (rorb,ispin)
|
||||
call clear_bit_to_integer(aorb,det_tmp(1,ispin),N_int) ! hole in "aorb" of spin Ispin
|
||||
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
||||
|
||||
! Do the excitation (borb,jspin) --> (vorb,jspin)
|
||||
call clear_bit_to_integer(borb,det_tmp(1,jspin),N_int) ! hole in "borb" of spin Jspin
|
||||
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
|
||||
|
||||
! Check if the excitation is possible or not on psi_det(idet)
|
||||
accu_elec= 0
|
||||
do inint = 1, N_int
|
||||
accu_elec+= popcnt(det_tmp(inint,1)) + popcnt(det_tmp(inint,2))
|
||||
enddo
|
||||
if(accu_elec .ne. elec_num_tab_local(2)+elec_num_tab_local(1))then
|
||||
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
||||
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
do inint = 1, N_int
|
||||
perturb_dets(inint,1,a,b,ispin,jspin) = det_tmp(inint,1)
|
||||
perturb_dets(inint,2,a,b,ispin,jspin) = det_tmp(inint,2)
|
||||
enddo
|
||||
|
||||
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
||||
perturb_dets_phase(a,b,ispin,jspin) = phase
|
||||
|
||||
do istate = 1, N_states
|
||||
delta_e(a,b,ispin,jspin,istate) = two_anhil(a,b,ispin,jspin,istate) + delta_e_inactive_virt(istate)
|
||||
delta_e_inv(a,b,ispin,jspin,istate) = 1.d0 / delta_e(a,b,ispin,jspin,istate)
|
||||
enddo
|
||||
if(ispin == jspin)then
|
||||
perturb_dets_hij(a,b,ispin,jspin) = phase * (active_int(a,b,2) - active_int(a,b,1) )
|
||||
else
|
||||
perturb_dets_hij(a,b,ispin,jspin) = phase * active_int(a,b,1)
|
||||
endif
|
||||
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij)
|
||||
if(hij.ne.perturb_dets_hij(a,b,ispin,jspin))then
|
||||
print*, active_int(a,b,1) , active_int(b,a,1)
|
||||
double precision :: hmono,hdouble
|
||||
call i_H_j_verbose(psi_det(1,1,idet),det_tmp,N_int,hij,hmono,hdouble)
|
||||
print*, 'pb !! hij.ne.perturb_dets_hij(a,b,ispin,jspin)'
|
||||
print*, ispin,jspin
|
||||
print*, aorb,rorb,borb,vorb
|
||||
print*, hij,perturb_dets_hij(a,b,ispin,jspin)
|
||||
call debug_det(psi_det(1,1,idet),N_int)
|
||||
call debug_det(det_tmp,N_int)
|
||||
stop
|
||||
endif
|
||||
enddo ! b
|
||||
enddo ! a
|
||||
enddo ! jspin
|
||||
enddo ! ispin
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | K_{ab} | Idet>
|
||||
do jdet = 1, idx(0)
|
||||
if(degree(jdet)==1)then
|
||||
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
i_hole = list_act_reverse(exc(1,1,1)) !!! a_a
|
||||
i_part = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
|
||||
kspin = 1 !!! kspin
|
||||
index_orb_act_mono(idx(jdet),1) = i_hole
|
||||
index_orb_act_mono(idx(jdet),2) = i_part
|
||||
index_orb_act_mono(idx(jdet),3) = kspin
|
||||
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
|
||||
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
|
||||
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
|
||||
else
|
||||
! Mono beta
|
||||
i_hole = list_act_reverse(exc(1,1,2)) !!! a_a
|
||||
i_part = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
|
||||
kspin = 2 !!! kspin
|
||||
index_orb_act_mono(idx(jdet),1) = i_hole
|
||||
index_orb_act_mono(idx(jdet),2) = i_part
|
||||
index_orb_act_mono(idx(jdet),3) = kspin
|
||||
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
|
||||
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
|
||||
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
|
||||
endif
|
||||
else if(degree(jdet)==2)then
|
||||
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
|
||||
index_orb_act_mono(idx(jdet),3) = 1
|
||||
! Mono beta
|
||||
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
|
||||
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} BETA
|
||||
index_orb_act_mono(idx(jdet),6) = 2
|
||||
else if (exc(0,1,1) == 2) then
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
|
||||
index_orb_act_mono(idx(jdet),3) = 1
|
||||
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(2,1,1)) !!! a_c ALPHA
|
||||
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,1)) !!! a^{\dagger}_{d} ALPHA
|
||||
index_orb_act_mono(idx(jdet),6) = 1
|
||||
else if (exc(0,1,2) == 2) then
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(2,1,2)) !!! a^{\dagger}_{b} BETA
|
||||
index_orb_act_mono(idx(jdet),3) = 2
|
||||
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,2,2)) !!! a_c BETA
|
||||
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,2)) !!! a^{\dagger}_{d} BETA
|
||||
index_orb_act_mono(idx(jdet),6) = 2
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
! do jdet = 1, idx(0)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CASE OF THE MONO EXCITATIONS
|
||||
! if(degree(jdet) == 1)then
|
||||
! ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
||||
! ! are connected by the presence of the perturbers determinants |det_tmp>
|
||||
! aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
|
||||
! borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
|
||||
! kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
||||
! ! the determinants Idet and Jdet interact throw the following operator
|
||||
! ! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
|
||||
|
||||
! accu_contrib = 0.d0
|
||||
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
||||
! a^{\dagger}_r a_{a} (ispin)
|
||||
!!!! SECOND ORDER CONTRIBTIONS
|
||||
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet >
|
||||
do jspin = 1, 2
|
||||
if(ispin == 2 .and. jspin ==1)cycle
|
||||
do b = 1, n_act_orb
|
||||
do a = 1, n_act_orb
|
||||
logical :: cycle_same_spin_second_order(2)
|
||||
cycle_same_spin_second_order(1) = .False.
|
||||
cycle_same_spin_second_order(2) = .False.
|
||||
if(perturb_dets_phase(a,b,ispin,jspin).le.-10d0)cycle
|
||||
if(ispin == jspin .and. vorb.le.rorb)then
|
||||
cycle_same_spin_second_order(1) = .True.
|
||||
endif
|
||||
if(ispin == jspin .and. aorb.le.borb)then
|
||||
cycle_same_spin_second_order(2) = .True.
|
||||
endif
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,a,b,ispin,jspin)
|
||||
det_tmp(inint,2) = perturb_dets(inint,2,a,b,ispin,jspin)
|
||||
enddo
|
||||
do jdet = 1, idx(0)
|
||||
! if(idx(jdet).gt.idet)cycle
|
||||
do istate = 1, N_states
|
||||
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij)
|
||||
matrix_2p(idx(jdet),idet,istate) += hij * perturb_dets_hij(a,b,ispin,jspin) * delta_e_inv(a,b,ispin,jspin,istate)
|
||||
enddo
|
||||
enddo ! jdet
|
||||
enddo ! b
|
||||
enddo ! a
|
||||
enddo ! jspin
|
||||
enddo ! ispin
|
||||
|
||||
! else if (degree(jdet) == 0)then
|
||||
!
|
||||
! endif
|
||||
! enddo !! jdet
|
||||
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
@ -747,6 +747,8 @@ subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble)
|
||||
exc(1,1,2), &
|
||||
exc(1,2,1), &
|
||||
exc(1,2,2) ,mo_integrals_map)
|
||||
print*, 'hij verbose ',hij * phase
|
||||
print*, 'phase verbose',phase
|
||||
else if (exc(0,1,1) == 2) then
|
||||
! Double alpha
|
||||
print*,'phase hij = ',phase
|
||||
|
Loading…
Reference in New Issue
Block a user