10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 04:43:50 +01:00

Rewrote s2

This commit is contained in:
Anthony Scemama 2016-09-16 23:45:03 +02:00
parent 89be407d7e
commit 342927be90
7 changed files with 197 additions and 305 deletions

View File

@ -207,16 +207,16 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
call lapack_diagd(eigvalues,eigvectors,dressed_H_matrix,Ndet_generators,Ndet_generators) ! Diagonalize the Dressed_H_matrix call lapack_diagd(eigvalues,eigvectors,dressed_H_matrix,Ndet_generators,Ndet_generators) ! Diagonalize the Dressed_H_matrix
double precision :: s2,E_ref(N_states) double precision :: s2(N_det_generators),E_ref(N_states)
integer :: i_state(N_states) integer :: i_state(N_states)
integer :: n_state_good integer :: n_state_good
n_state_good = 0 n_state_good = 0
if(s2_eig)then if(s2_eig)then
call u_0_S2_u_0_nstates(s2,eigvectors,Ndet_generators,psi_det_generators_input,N_int,N_det_generators,size(eigvectors,1))
do i = 1, Ndet_generators do i = 1, Ndet_generators
call get_s2_u0(psi_det_generators_input,eigvectors(1,i),Ndet_generators,Ndet_generators,s2) print*,'s2 = ',s2(i)
print*,'s2 = ',s2 print*,dabs(s2(i)-expected_s2)
print*,dabs(s2-expected_s2) if(dabs(s2(i)-expected_s2).le.0.3d0)then
if(dabs(s2-expected_s2).le.0.3d0)then
n_state_good +=1 n_state_good +=1
i_state(n_state_good) = i i_state(n_state_good) = i
E_ref(n_state_good) = eigvalues(i) E_ref(n_state_good) = eigvalues(i)
@ -274,7 +274,6 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
integer :: i_good_state(0:N_states) integer :: i_good_state(0:N_states)
i_good_state(0) = 0 i_good_state(0) = 0
do i = 1, Ndet_generators do i = 1, Ndet_generators
call get_s2_u0(psi_det_generators_input,eigvectors(1,i),Ndet_generators,Ndet_generators,s2)
! State following ! State following
do k = 1, N_states do k = 1, N_states
accu = 0.d0 accu = 0.d0

View File

@ -1,61 +0,0 @@
program micro_pt2
implicit none
BEGIN_DOC
! Helper program to compute the PT2 in distributed mode.
END_DOC
read_wf = .False.
SOFT_TOUCH read_wf
call provide_everything
call switch_qp_run_to_master
call run_wf
end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
end
subroutine run_wf
use f77_zmq
implicit none
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states_diag)
print *, 'Getting wave function'
zmq_context = f77_zmq_ctx_new ()
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
! TODO : do loop here
! TODO : wait_state
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,size(energy))
integer :: j,k
do j=1,N_states_diag
do k=1,N_det
CI_eigenvectors(k,j) = psi_coef(k,j)
enddo
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
enddo
if (.True.) then
do k=1,size(ci_electronic_energy)
ci_electronic_energy(k) = energy(k)
enddo
SOFT_TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
print *, energy(:)
endif
call write_double(6,ci_energy,'Energy')
zmq_state = 'h_apply_fci_pt2'
call provide_everything
integer :: rc, i
print *, 'Contribution to PT2 running'
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call H_apply_FCI_PT2_slave_tcp(i)
!$OMP END PARALLEL
end

View File

@ -58,12 +58,12 @@ subroutine update_energy(energy)
! Update energy when it is received from ZMQ ! Update energy when it is received from ZMQ
END_DOC END_DOC
integer :: j,k integer :: j,k
do j=1,N_states_diag do j=1,N_states_diag
do k=1,N_det do k=1,N_det
CI_eigenvectors(k,j) = psi_coef(k,j) CI_eigenvectors(k,j) = psi_coef(k,j)
enddo enddo
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
enddo enddo
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
if (.True.) then if (.True.) then
do k=1,size(ci_electronic_energy) do k=1,size(ci_electronic_energy)
ci_electronic_energy(k) = energy(k) ci_electronic_energy(k) = energy(k)

View File

@ -148,9 +148,8 @@ END_PROVIDER
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,& call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,mrcc_state) size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,mrcc_state)
do j=1,N_states_diag call u_0_S2_u_0_nstates(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
call get_s2_u0(psi_det,CI_eigenvectors_dressed(1,j),N_det,size(CI_eigenvectors_dressed,1),CI_eigenvectors_s2_dressed(j)) N_states_diag,size(CI_eigenvectors_dressed,1))
enddo
else if (diag_algorithm == "Lapack") then else if (diag_algorithm == "Lapack") then
@ -160,42 +159,84 @@ END_PROVIDER
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det) H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0 CI_electronic_energy_dressed(:) = 0.d0
do i=1,N_det
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
enddo
i_state = 0
if (s2_eig) then if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0_nstates(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) ! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2-expected_s2).le.0.5d0)then if(dabs(s2-expected_s2).le.0.5d0)then
i_state += 1 i_state += 1
do i=1,N_det index_good_state_array(i_state) = j
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) good_state_array(j) = .True.
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
endif endif
if (i_state.ge.N_states_diag) then if (i_state==N_states) then
exit exit
endif endif
enddo enddo
else if (i_state /= 0) then
do j=1,N_states_diag ! Fill the first "i_state" states that have a correct S^2 value
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) do j = 1, i_state
i_state += 1 do i=1,N_det
do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
enddo enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j) i_other_state = 0
CI_eigenvectors_s2_dressed(i_state) = s2 do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
do i=1,N_det
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors_dressed'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0_nstates(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
do i=1,N_det
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(j) = eigenvalues(j)
enddo enddo
endif endif
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif
if(s2_eig.and.n_states_diag > 1.and. n_det >= n_states_diag)then if( s2_eig.and.(n_states_diag > 1).and.(n_det >= n_states_diag) )then
! Diagonalizing S^2 within the "n_states_diag" states found ! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag)) allocate(s2_eigvalues(N_states_diag), e_array(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues) call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues)
do j = 1, N_states_diag do j = 1, N_states_diag
@ -203,6 +244,7 @@ END_PROVIDER
psi_coef(i,j) = CI_eigenvectors_dressed(i,j) psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
enddo enddo
enddo enddo
call u_0_H_u_0_nstates(e_array,psi_coef,n_det,psi_det,N_int,N_states_diag,psi_det_size)
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input ! closer to the "expected_s2" set as input
@ -218,15 +260,13 @@ END_PROVIDER
endif endif
enddo enddo
! Sorting the i_state good states by energy ! Sorting the i_state good states by energy
allocate(e_array(i_state),iorder(i_state)) allocate(iorder(i_state))
do j = 1, i_state do j = 1, i_state
do i = 1, N_det do i = 1, N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(j)) CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(j))
enddo enddo
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) CI_electronic_energy_dressed(j) = e_array(j)
CI_electronic_energy_dressed(j) = e_0
e_array(j) = e_0
iorder(j) = j iorder(j) = j
enddo enddo
call dsort(e_array,iorder,i_state) call dsort(e_array,iorder,i_state)
@ -236,14 +276,7 @@ END_PROVIDER
do i = 1, N_det do i = 1, N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(iorder(j))) CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
enddo enddo
! call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state)
! print*,'e = ',CI_electronic_energy_dressed(j)
! print*,'<e> = ',e_0
! call get_s2_u0(psi_det,CI_eigenvectors_dressed(1,j),N_det,size(CI_eigenvectors_dressed,1),s2)
! print*,'s^2 = ',CI_eigenvectors_s2_dressed(j)
! print*,'<s^2>= ',s2
enddo enddo
deallocate(e_array,iorder)
! Then setting the other states without any specific energy order ! Then setting the other states without any specific energy order
i_other_state = 0 i_other_state = 0
@ -254,12 +287,11 @@ END_PROVIDER
CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef(i,j) CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef(i,j)
enddo enddo
CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j) CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j)
call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,i_state + i_other_state),n_det,psi_det,N_int,mrcc_state) CI_electronic_energy_dressed(i_state + i_other_state) = e_array(i_state + i_other_state)
CI_electronic_energy_dressed(i_state + i_other_state) = e_0
enddo enddo
deallocate(index_good_state_array,good_state_array) deallocate(iorder,e_array,index_good_state_array,good_state_array)
deallocate(s2_eigvalues) deallocate(s2_eigvalues)
endif endif

View File

@ -72,7 +72,7 @@ END_PROVIDER
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,& call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,&
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
call get_s2_u0_nstates(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int,& call u_0_S2_u_0_nstates(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int,&
N_states_diag,size(CI_eigenvectors,1)) N_states_diag,size(CI_eigenvectors,1))
@ -88,7 +88,7 @@ END_PROVIDER
allocate (s2_eigvalues(N_det)) allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False. good_state_array = .False.
call get_s2_u0_nstates(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& call u_0_S2_u_0_nstates(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1)) N_det,size(eigenvectors,1))
do j=1,N_det do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2" ! Select at least n_states states with S^2 values closed to "expected_s2"
@ -145,7 +145,7 @@ END_PROVIDER
deallocate(index_good_state_array,good_state_array) deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues) deallocate(s2_eigvalues)
else else
call get_s2_u0_nstates(CI_eigenvectors_s2,eigenvectors,N_det,psi_det,N_int,& call u_0_S2_u_0_nstates(CI_eigenvectors_s2,eigenvectors,N_det,psi_det,N_int,&
min(N_det,N_states_diag),size(eigenvectors,1)) min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy ! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag) do j=1,min(N_det,N_states_diag)
@ -169,7 +169,7 @@ END_PROVIDER
psi_coef(i,j) = CI_eigenvectors(i,j) psi_coef(i,j) = CI_eigenvectors(i,j)
enddo enddo
enddo enddo
call u0_H_u_0_nstates(e_array,psi_coef,n_det,psi_det,N_int,N_states_diag,psi_det_size) call u_0_H_u_0_nstates(e_array,psi_coef,n_det,psi_det,N_int,N_states_diag,psi_det_size)
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input ! closer to the "expected_s2" set as input

View File

@ -69,38 +69,86 @@ BEGIN_PROVIDER [ double precision, s2_values, (N_states) ]
! array of the averaged values of the S^2 operator on the various states ! array of the averaged values of the S^2 operator on the various states
END_DOC END_DOC
integer :: i integer :: i
call get_s2_u0_nstates(s2_values,psi_coef,n_det,psi_det,N_int,N_states,psi_det_size) call u_0_S2_u_0_nstates(s2_values,psi_coef,n_det,psi_det,N_int,N_states,psi_det_size)
END_PROVIDER END_PROVIDER
subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2) subroutine u_0_S2_u_0(e_0,u_0,n,keys_tmp,Nint)
implicit none
use bitmasks
integer, intent(in) :: n,nmax
integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax)
double precision, intent(in) :: psi_coefs_tmp(nmax)
double precision, intent(out) :: s2
call get_s2_u0_nstates(s2,psi_coefs_tmp,n,psi_keys_tmp,N_int,1,nmax)
end
subroutine get_s2_u0_nstates(s2,u_0,n,keys_tmp,Nint,N_st,sze_8)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Computes s2 = <u_0|S^2|u_0> ! Computes e_0 = <u_0|S2|u_0>/<u_0|u_0>
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint
double precision, intent(out) :: e_0
double precision, intent(in) :: u_0(n)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
call u_0_S2_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,1,n)
end
subroutine u_0_S2_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
use bitmasks
implicit none
BEGIN_DOC
! Computes e_0 = <u_0|S2|u_0>/<u_0|u_0>
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint, N_st, sze_8
double precision, intent(out) :: e_0(N_st)
double precision, intent(in) :: u_0(sze_8,N_st)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision, allocatable :: v_0(:,:)
double precision :: u_dot_u,u_dot_v
integer :: i,j
allocate (v_0(sze_8,N_st))
call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
do i=1,N_st
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n) + S_z2_Sz
enddo
end
subroutine S2_u_0(v_0,u_0,n,keys_tmp,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = S^2|u_0>
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint
double precision, intent(out) :: v_0(n)
double precision, intent(in) :: u_0(n)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,1,n)
end
subroutine S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = S^2|u_0>
! !
! n : number of determinants ! n : number of determinants
! !
END_DOC END_DOC
integer, intent(in) :: N_st,n,Nint, sze_8 integer, intent(in) :: N_st,n,Nint, sze_8
double precision, intent(out) :: s2(N_st) double precision, intent(out) :: v_0(sze_8,N_st)
double precision, intent(in) :: u_0(sze_8,N_st) double precision, intent(in) :: u_0(sze_8,N_st)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision :: s2_tmp double precision :: s2_tmp
double precision :: s2t(N_st) double precision, allocatable :: vt(:,:)
integer :: i,j,k,l, jj,ii integer :: i,j,k,l, jj,ii
integer :: i0, j0 integer :: i0, j0
@ -117,15 +165,16 @@ subroutine get_s2_u0_nstates(s2,u_0,n,keys_tmp,Nint,N_st,sze_8)
PROVIDE ref_bitmask_energy davidson_criterion PROVIDE ref_bitmask_energy davidson_criterion
allocate (shortcut(0:n+1,2), sort_idx(n,2), sorted(Nint,n,2), version(Nint,n,2)) allocate (shortcut(0:n+1,2), sort_idx(n,2), sorted(Nint,n,2), version(Nint,n,2))
s2 = 0.d0 v_0 = 0.d0
call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint) call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint)
call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint) call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint)
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,s2_tmp,j,k,jj,s2t,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)& !$OMP PRIVATE(i,s2_tmp,j,k,jj,vt,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)&
!$OMP SHARED(n,u_0,keys_tmp,Nint,s2,sorted,shortcut,sort_idx,version,N_st,sze_8) !$OMP SHARED(n,u_0,keys_tmp,Nint,v_0,sorted,shortcut,sort_idx,version,N_st,sze_8)
s2t = 0.d0 allocate(vt(sze_8,N_st))
vt = 0.d0
!$OMP DO SCHEDULE(dynamic) !$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0,1) do sh=1,shortcut(0,1)
@ -158,7 +207,8 @@ subroutine get_s2_u0_nstates(s2,u_0,n,keys_tmp,Nint,N_st,sze_8)
if(ext <= 4) then if(ext <= 4) then
call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),s2_tmp,Nint) call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),s2_tmp,Nint)
do istate=1,N_st do istate=1,N_st
s2t(istate) = s2t(istate) + u_0(org_i,istate)*u_0(org_j,istate)*s2_tmp vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate)
vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate)
enddo enddo
endif endif
enddo enddo
@ -180,7 +230,8 @@ subroutine get_s2_u0_nstates(s2,u_0,n,keys_tmp,Nint,N_st,sze_8)
if(ext == 4) then if(ext == 4) then
call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),s2_tmp,Nint) call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),s2_tmp,Nint)
do istate=1,N_st do istate=1,N_st
s2t(istate) = s2t(istate) + u_0(org_i,istate)*u_0(org_j,istate)*s2_tmp vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate)
vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate)
enddo enddo
end if end if
end do end do
@ -190,21 +241,22 @@ subroutine get_s2_u0_nstates(s2,u_0,n,keys_tmp,Nint,N_st,sze_8)
!$OMP CRITICAL !$OMP CRITICAL
do istate=1,N_st do istate=1,N_st
s2(istate) = s2(istate) + 2.d0*s2t(istate) do i=n,1,-1
v_0(i,istate) = v_0(i,istate) + vt(i,istate)
enddo
enddo enddo
!$OMP END CRITICAL !$OMP END CRITICAL
deallocate(vt)
!$OMP END PARALLEL !$OMP END PARALLEL
do i=1,n do i=1,n
call get_s2(keys_tmp(1,1,i),keys_tmp(1,1,i),s2_tmp,Nint) call get_s2(keys_tmp(1,1,i),keys_tmp(1,1,i),s2_tmp,Nint)
do istate=1,N_st do istate=1,N_st
s2(istate) = s2(istate) + u_0(i,istate)*u_0(i,istate)*s2_tmp v_0(i,istate) += s2_tmp * u_0(i,istate)
enddo enddo
enddo enddo
do istate=1,N_st
s2(istate) += S_z2_Sz
enddo
deallocate (shortcut, sort_idx, sorted, version) deallocate (shortcut, sort_idx, sorted, version)
end end
@ -214,116 +266,6 @@ end
subroutine get_s2_u0_nstates_old(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2,N_st)
implicit none
use bitmasks
integer, intent(in) :: n,nmax, N_st
integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax)
double precision, intent(in) :: psi_coefs_tmp(nmax)
double precision, intent(out) :: s2
double precision :: s2_tmp
integer :: i,j,l,jj,ii
integer, allocatable :: idx(:)
integer, allocatable :: shortcut(:), sort_idx(:)
integer(bit_kind), allocatable :: sorted(:,:), version(:,:)
integer :: sh, sh2, ni, exa, ext, org_i, org_j, endi, pass
allocate (shortcut(0:n+1), sort_idx(n), sorted(N_int,n), version(N_int,n))
s2 = 0.d0
call sort_dets_ab_v(psi_keys_tmp, sorted, sort_idx, shortcut, version, n, N_int)
PROVIDE threshold_davidson
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,s2_tmp,sh, sh2, ni, exa, ext, org_i, org_j, endi, pass)&
!$OMP SHARED(n,psi_coefs_tmp,psi_keys_tmp,N_int,threshold_davidson,shortcut,sorted,sort_idx,version)&
!$OMP REDUCTION(+:s2)
!$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0)
do sh2=1,sh
exa = 0
do ni=1,N_int
exa += popcnt(xor(version(ni,sh), version(ni,sh2)))
end do
if(exa > 2) then
cycle
end if
do i=shortcut(sh),shortcut(sh+1)-1
if(sh==sh2) then
endi = i-1
else
endi = shortcut(sh2+1)-1
end if
do j=shortcut(sh2),endi
ext = exa
do ni=1,N_int
ext += popcnt(xor(sorted(ni,i), sorted(ni,j)))
end do
if(ext <= 4) then
org_i = sort_idx(i)
org_j = sort_idx(j)
if ( dabs(psi_coefs_tmp(org_j)) + dabs(psi_coefs_tmp(org_i))&
> threshold_davidson ) then
call get_s2(psi_keys_tmp(1,1,org_i),psi_keys_tmp(1,1,org_j),s2_tmp,N_int)
s2 = s2 + psi_coefs_tmp(org_i)*psi_coefs_tmp(org_j)*s2_tmp
endif
end if
end do
end do
end do
enddo
!$OMP END DO
!$OMP END PARALLEL
call sort_dets_ba_v(psi_keys_tmp, sorted, sort_idx, shortcut, version, n, N_int)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,s2_tmp,sh, sh2, ni, exa, ext, org_i, org_j, endi, pass)&
!$OMP SHARED(n,psi_coefs_tmp,psi_keys_tmp,N_int,threshold_davidson,shortcut,sorted,sort_idx,version)&
!$OMP REDUCTION(+:s2)
!$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0)
do i=shortcut(sh),shortcut(sh+1)-1
do j=shortcut(sh),i-1
ext = 0
do ni=1,N_int
ext += popcnt(xor(sorted(ni,i), sorted(ni,j)))
end do
if(ext == 4) then
org_i = sort_idx(i)
org_j = sort_idx(j)
if ( dabs(psi_coefs_tmp(org_j)) + dabs(psi_coefs_tmp(org_i))&
> threshold_davidson ) then
call get_s2(psi_keys_tmp(1,1,org_i),psi_keys_tmp(1,1,org_j),s2_tmp,N_int)
s2 = s2 + psi_coefs_tmp(org_i)*psi_coefs_tmp(org_j)*s2_tmp
endif
end if
end do
end do
enddo
!$OMP END DO
!$OMP END PARALLEL
s2 = s2+s2
do i=1,n
call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),s2_tmp,N_int)
s2 = s2 + psi_coefs_tmp(i)*psi_coefs_tmp(i)*s2_tmp
enddo
s2 = s2 + S_z2_Sz
deallocate (shortcut, sort_idx, sorted, version)
end
subroutine get_uJ_s2_uI(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nstates) subroutine get_uJ_s2_uI(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nstates)
implicit none implicit none
use bitmasks use bitmasks
@ -373,9 +315,9 @@ subroutine get_uJ_s2_uI(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nst
enddo enddo
end end
subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nmax_coefs,nstates,s2_eigvalues) subroutine diagonalize_s2_betweenstates(keys_tmp,u_0,n,nmax_keys,nmax_coefs,nstates,s2_eigvalues)
BEGIN_DOC BEGIN_DOC
! You enter with nstates vectors in psi_coefs_inout that may be coupled by S^2 ! You enter with nstates vectors in u_0 that may be coupled by S^2
! The subroutine diagonalize the S^2 operator in the basis of these states. ! The subroutine diagonalize the S^2 operator in the basis of these states.
! The vectors that you obtain in output are no more coupled by S^2, ! The vectors that you obtain in output are no more coupled by S^2,
! which does not necessary mean that they are eigenfunction of S^2. ! which does not necessary mean that they are eigenfunction of S^2.
@ -388,11 +330,7 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
use bitmasks use bitmasks
integer, intent(in) :: n,nmax_keys,nmax_coefs,nstates integer, intent(in) :: n,nmax_keys,nmax_coefs,nstates
integer(bit_kind), intent(in) :: keys_tmp(N_int,2,nmax_keys) integer(bit_kind), intent(in) :: keys_tmp(N_int,2,nmax_keys)
double precision, intent(inout) :: psi_coefs_inout(nmax_coefs,nstates) double precision, intent(inout) :: u_0(nmax_coefs,nstates)
!integer, intent(in) :: ndets_real,ndets_keys,ndets_coefs,nstates
!integer(bit_kind), intent(in) :: keys_tmp(N_int,2,ndets_keys)
!double precision, intent(inout) :: psi_coefs_inout(ndets_coefs,nstates)
double precision, intent(out) :: s2_eigvalues(nstates) double precision, intent(out) :: s2_eigvalues(nstates)
@ -410,43 +348,37 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
print*,'nstates = ',nstates print*,'nstates = ',nstates
allocate(s2(nstates,nstates),overlap(nstates,nstates)) allocate(s2(nstates,nstates),overlap(nstates,nstates))
!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE) SCHEDULE(dynamic) & !$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE) SCHEDULE(dynamic) &
!$OMP PRIVATE(i,j) SHARED(overlap,psi_coefs_inout,nstates,n) !$OMP PRIVATE(i,j) SHARED(overlap,u_0,nstates,n)
do i = 1, nstates do i = 1, nstates
do j = 1, nstates do j = 1, nstates
if (i < j) then if (i < j) then
cycle cycle
else if (i == j) then else if (i == j) then
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n) overlap(i,i) = u_dot_u(u_0(1,i),n)
else else
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n) overlap(i,j) = u_dot_v(u_0(1,j),u_0(1,i),n)
overlap(j,i) = overlap(i,j) overlap(j,i) = overlap(i,j)
endif endif
enddo enddo
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
call ortho_lowdin(overlap,size(overlap,1),nstates,psi_coefs_inout,size(psi_coefs_inout,1),n) call ortho_lowdin(overlap,size(overlap,1),nstates,u_0,size(u_0,1),n)
!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE) SCHEDULE(dynamic) & double precision, allocatable :: v_0(:,:)
!$OMP PRIVATE(i,j) SHARED(overlap,psi_coefs_inout,nstates,n) allocate ( v_0(size(u_0,1),nstates) )
do i = 1, nstates call S2_u_0_nstates(v_0,u_0,n,keys_tmp,N_int,nstates,size(u_0,1))
do j = 1, nstates
if (i < j) then do i=1, nstates
cycle do j=1,i
else if (i == j) then s2(j,i) = u_dot_v(u_0(1,i), v_0(1,j),n)
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n) s2(i,j) = s2(j,i)
else enddo
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
endif
enddo
enddo enddo
!$OMP END PARALLEL DO
call get_uJ_s2_uI(keys_tmp,psi_coefs_inout,n_det,size(psi_coefs_inout,1),size(keys_tmp,3),s2,nstates) ! call get_uJ_s2_uI(keys_tmp,u_0,n_det,size(u_0,1),size(keys_tmp,3),s2,nstates)
print*,'S^2 matrix in the basis of the states considered' print*,'S^2 matrix in the basis of the states considered'
do i = 1, nstates do i = 1, nstates
write(*,'(10(F10.6,X))')s2(i,:) write(*,'(10(F10.6,X))')s2(i,:)
s2(i,i) = s2(i,i)
enddo enddo
double precision :: accu_precision_diag,accu_precision_of_diag double precision :: accu_precision_diag,accu_precision_of_diag
@ -476,12 +408,11 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
s2(i,i) = s2(i,i) s2(i,i) = s2(i,i)
enddo enddo
allocate(eigvalues(nstates),eigvectors(nstates,nstates)) allocate(eigvectors(nstates,nstates))
call lapack_diagd(eigvalues,eigvectors,s2,nstates,nstates) call lapack_diagd(s2_eigvalues,eigvectors,s2,nstates,nstates)
print*,'Eigenvalues' print*,'Eigenvalues'
do i = 1, nstates do i = 1, nstates
print*,'s2 = ',eigvalues(i) print*,'s2 = ',s2_eigvalues(i)
s2_eigvalues(i) = eigvalues(i)
enddo enddo
allocate(psi_coefs_tmp(nmax_coefs,nstates)) allocate(psi_coefs_tmp(nmax_coefs,nstates))
@ -490,27 +421,18 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
do k = 1, nstates do k = 1, nstates
coef_contract = eigvectors(k,j) ! <phi_k|Psi_j> coef_contract = eigvectors(k,j) ! <phi_k|Psi_j>
do i = 1, n_det do i = 1, n_det
psi_coefs_tmp(i,j) += psi_coefs_inout(i,k) * coef_contract psi_coefs_tmp(i,j) += u_0(i,k) * coef_contract
enddo enddo
enddo enddo
enddo enddo
do j = 1, nstates do j = 1, nstates
accu = 0.d0 accu = 1.d0/u_dot_u(psi_coefs_tmp(1,j),n_det)
do i = 1, n_det do i = 1, n_det
accu += psi_coefs_tmp(i,j) * psi_coefs_tmp(i,j) u_0(i,j) = psi_coefs_tmp(i,j) * accu
enddo
accu = 1.d0/dsqrt(accu)
do i = 1, n_det
psi_coefs_inout(i,j) = psi_coefs_tmp(i,j) * accu
enddo enddo
enddo enddo
!call get_uJ_s2_uI(keys_tmp,psi_coefs_inout,n_det,size(psi_coefs_inout,1),size(keys_tmp,3),s2,nstates)
!print*,'S^2 matrix in the basis of the NEW states considered'
!do i = 1, nstates
! write(*,'(10(F16.10,X))')s2(i,:)
!enddo
deallocate(s2,eigvalues,eigvectors,psi_coefs_tmp,overlap) deallocate(s2,v_0,eigvectors,psi_coefs_tmp,overlap)
end end

View File

@ -1634,7 +1634,7 @@ subroutine get_occ_from_key(key,occ,Nint)
end end
subroutine u0_H_u_0(e_0,u_0,n,keys_tmp,Nint) subroutine u_0_H_u_0(e_0,u_0,n,keys_tmp,Nint)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -1647,10 +1647,10 @@ subroutine u0_H_u_0(e_0,u_0,n,keys_tmp,Nint)
double precision, intent(out) :: e_0 double precision, intent(out) :: e_0
double precision, intent(in) :: u_0(n) double precision, intent(in) :: u_0(n)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
call u0_H_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,1,n) call u_0_H_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,1,n)
end end
subroutine u0_H_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8) subroutine u_0_H_u_0_nstates(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC