10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

New Davidson OK

This commit is contained in:
Anthony Scemama 2017-04-14 15:41:35 +02:00
parent 3a824d5d0a
commit 23685ab5d0

View File

@ -668,6 +668,7 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
logical, allocatable :: is_single_b(:) logical, allocatable :: is_single_b(:)
integer :: maxab, n_singles_max integer :: maxab, n_singles_max
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:) double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: v_t, s_t, u_t
maxab = max(N_det_alpha_unique, N_det_beta_unique) maxab = max(N_det_alpha_unique, N_det_beta_unique)
allocate( buffer(N_int,maxab), & allocate( buffer(N_int,maxab), &
@ -681,18 +682,12 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
idx0(i) = i idx0(i) = i
enddo enddo
! call dtranspose( & call dtranspose( &
! u_0, & u_0, &
! size(u_0, 1), & size(u_0, 1), &
! u_t, & u_t, &
! size(u_t, 1), & size(u_t, 1), &
! N_det, N_st) N_det, N_st)
!
do k=1,N_det
do l=1,N_st
u_t(l,k) = u_0(k,l)
enddo
enddo
! Prepare the array of all alpha single excitations ! Prepare the array of all alpha single excitations
! ------------------------------------------------- ! -------------------------------------------------
@ -770,8 +765,8 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij)
do l=1,N_st do l=1,N_st
v_t(l,l_a) += hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) += hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! single => sij = 0 ! single => sij = 0
enddo enddo
enddo enddo
@ -788,8 +783,8 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
enddo enddo
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, doubles(i)), N_int, hij) call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, doubles(i)), N_int, hij)
do l=1,N_st do l=1,N_st
v_t(l,l_a) += hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) += hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
enddo enddo
@ -836,8 +831,8 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij)
do l=1,N_st do l=1,N_st
v_t(l,l_a) += hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) += hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! single => sij = 0 ! single => sij = 0
enddo enddo
enddo enddo
@ -855,8 +850,8 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, doubles(i)), N_int, hij) call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, doubles(i)), N_int, hij)
do l=1,N_st do l=1,N_st
v_t(l,l_a) += hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) += hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
enddo enddo
@ -867,15 +862,20 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
! Alpha/Beta double excitations ! Alpha/Beta double excitations
! ============================= ! =============================
is_single_a = .False.
krow = 1
do k_a=1,N_det do k_a=1,N_det
do k=1,singles_a(0,krow)
is_single_a( singles_a(k,krow) ) = .False.
enddo
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol)
is_single_a = .False.
do k=1,singles_a(0,krow) do k=1,singles_a(0,krow)
is_single_a( singles_a(k,krow) ) = .True. is_single_a( singles_a(k,krow) ) = .True.
enddo enddo
@ -906,23 +906,33 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
l_a += 1 l_a += 1
enddo enddo
n_doubles=0
do while ( l_a < psi_bilinear_matrix_columns_loc(lcol+1) ) do while ( l_a < psi_bilinear_matrix_columns_loc(lcol+1) )
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
if (is_single_a(lrow)) then if (.not.is_single_a(lrow)) then
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) continue
else
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij) n_doubles = n_doubles+1
call get_s2(tmp_det,tmp_det2,N_int,sij) doubles(n_doubles) = lrow
do l=1,N_st idx(n_doubles) = l_a
v_t(l,k_a) += hij * u_t(l,l_a)
v_t(l,l_a) += hij * u_t(l,k_a)
s_t(l,k_a) += sij * u_t(l,l_a)
s_t(l,l_a) += sij * u_t(l,k_a)
enddo
endif endif
l_a += 1 l_a = l_a+1
enddo enddo
do k=1,n_doubles
lrow = doubles(k)
l_a = idx(k)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
call get_s2(tmp_det,tmp_det2,N_int,sij)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
s_t(l,l_a) = s_t(l,l_a) + sij * u_t(l,k_a)
enddo
enddo
enddo enddo
! Diagonal contribution ! Diagonal contribution
@ -939,25 +949,19 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
enddo enddo
! call dtranspose( & call dtranspose( &
! v_t, & v_t, &
! size(v_t, 1), & size(v_t, 1), &
! v_0, & v_0, &
! size(v_0, 1), & size(v_0, 1), &
! N_st, N_det) N_st, N_det)
!
! call dtranspose( & call dtranspose( &
! s_t, & s_t, &
! size(s_t, 1), & size(s_t, 1), &
! s_0, & s_0, &
! size(s_0, 1), & size(s_0, 1), &
! N_st, N_det) N_st, N_det)
do k=1,N_det
do l=1,N_st
v_0(k,l) = v_t(l,k)
s_0(k,l) = s_t(l,k)
enddo
enddo
end end