10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 20:35:19 +01:00

KS LDA is okay

This commit is contained in:
Emmanuel Giner 2017-04-14 17:33:35 +02:00
parent 5b8175e818
commit 1df5dced1e
11 changed files with 938 additions and 7 deletions

View File

@ -1,25 +1,54 @@
double precision function ex_lda(rho)
subroutine ex_lda(rho_a,rho_b,ex,vx_a,vx_b)
include 'constants.include.F'
implicit none
double precision, intent(in) :: rho
ex_lda = cst_lda * rho**(c_4_3)
double precision, intent(in) :: rho_a,rho_b
double precision, intent(out) :: ex,vx_a,vx_b
double precision :: tmp_a,tmp_b
tmp_a = rho_a**(c_1_3)
tmp_b = rho_b**(c_1_3)
ex = cst_lda * (tmp_a*tmp_a*tmp_a*tmp_a + tmp_b*tmp_b*tmp_b*tmp_b)
vx_a = cst_lda * c_4_3 * tmp_a
vx_b = cst_lda * c_4_3 * tmp_b
end
BEGIN_PROVIDER [double precision, lda_exchange, (N_states)]
BEGIN_PROVIDER [double precision, lda_exchange, (N_states)]
&BEGIN_PROVIDER [double precision, lda_ex_potential_alpha_ao,(ao_num_align,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, lda_ex_potential_beta_ao,(ao_num_align,ao_num,N_states)]
implicit none
integer :: i,j,k,l
double precision :: ex_lda
integer :: m,n
double precision :: aos_array(ao_num)
double precision :: r(3)
lda_ex_potential_alpha_ao = 0.d0
lda_ex_potential_beta_ao = 0.d0
do l = 1, N_states
lda_exchange(l) = 0.d0
do j = 1, nucl_num
do i = 1, n_points_radial_grid
do k = 1, n_points_integration_angular
lda_exchange(l) += final_weight_functions_at_grid_points(k,i,j) * &
(ex_lda(one_body_dm_mo_alpha_at_grid_points(k,i,j,l)) + ex_lda(one_body_dm_mo_beta_at_grid_points(k,i,j,l)))
double precision :: rho_a,rho_b,ex
double precision :: vx_a,vx_b
rho_a = one_body_dm_mo_alpha_at_grid_points(k,i,j,l)
rho_b = one_body_dm_mo_beta_at_grid_points(k,i,j,l)
call ex_lda(rho_a,rho_b,ex,vx_a,vx_b)
lda_exchange(l) += final_weight_functions_at_grid_points(k,i,j) * ex
r(1) = grid_points_per_atom(1,k,i,j)
r(2) = grid_points_per_atom(2,k,i,j)
r(3) = grid_points_per_atom(3,k,i,j)
call give_all_aos_at_r(r,aos_array)
do m = 1, ao_num
! lda_ex_potential_ao(m,m,l) += (vx_a + vx_b) * aos_array(m)*aos_array(m)
do n = 1, ao_num
lda_ex_potential_alpha_ao(m,n,l) += (vx_a ) * aos_array(m)*aos_array(n) * final_weight_functions_at_grid_points(k,i,j)
lda_ex_potential_beta_ao(m,n,l) += (vx_b) * aos_array(m)*aos_array(n) * final_weight_functions_at_grid_points(k,i,j)
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,54 @@
[thresh_scf]
type: Threshold
doc: Threshold on the convergence of the Hartree Fock energy
interface: ezfio,provider,ocaml
default: 1.e-10
[exchange_functional]
type: character*(256)
doc: name of the exchange functional
interface: ezfio, provider, ocaml
default: "LDA"
[correlation_functional]
type: character*(256)
doc: name of the correlation functional
interface: ezfio, provider, ocaml
default: "LDA"
[HF_exchange]
type: double precision
doc: Percentage of HF exchange in the DFT model
interface: ezfio,provider,ocaml
default: 0.
[n_it_scf_max]
type: Strictly_positive_int
doc: Maximum number of SCF iterations
interface: ezfio,provider,ocaml
default: 200
[level_shift]
type: Positive_float
doc: Energy shift on the virtual MOs to improve SCF convergence
interface: ezfio,provider,ocaml
default: 0.5
[mo_guess_type]
type: MO_guess
doc: Initial MO guess. Can be [ Huckel | HCore ]
interface: ezfio,provider,ocaml
default: Huckel
[energy]
type: double precision
doc: Calculated HF energy
interface: ezfio
[no_oa_or_av_opt]
type: logical
doc: If true, skip the (inactive+core) --> (active) and the (active) --> (virtual) orbital rotations within the SCF procedure
interface: ezfio,provider,ocaml
default: False

View File

@ -0,0 +1,468 @@
BEGIN_PROVIDER [ double precision, Fock_matrix_mo, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo, (mo_tot_num)]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
! |---------------------------------|
! | F | F - K/2 | F + K |
!
! F = 1/2 (Fa + Fb)
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo = Fock_matrix_alpha_mo
else
do j=1,elec_beta_num
! F-K
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
! F+K/2
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
! F
do i=elec_alpha_num+1, mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
enddo
enddo
do j=elec_beta_num+1,elec_alpha_num
! F+K/2
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
! F
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
enddo
! F-K/2
do i=elec_alpha_num+1, mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
enddo
do j=elec_alpha_num+1, mo_tot_num
! F
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
enddo
! F-K/2
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
! F+K
do i=elec_alpha_num+1,mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j)) &
+ (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
enddo
enddo
endif
do i = 1, mo_tot_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_ao, (ao_num_align, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_ao, (ao_num_align, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num
Fock_matrix_alpha_ao(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j)
Fock_matrix_beta_ao (i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_no_xc_ao, (ao_num_align, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num_align, ao_num) ]
implicit none
BEGIN_DOC
! Mono electronic an Coulomb matrix in AO basis set
END_DOC
integer :: i,j
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num
Fock_matrix_alpha_no_xc_ao(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_alpha(i,j)
Fock_matrix_beta_no_xc_ao(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_beta (i,j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_bi_elec_integral_alpha, (ao_num_align, ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_bi_elec_integral_beta , (ao_num_align, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
double precision :: integral, c0, c1, c2
double precision :: ao_bielec_integral, local_threshold
double precision, allocatable :: ao_bi_elec_integral_alpha_tmp(:,:)
double precision, allocatable :: ao_bi_elec_integral_beta_tmp(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_beta_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_alpha_tmp
ao_bi_elec_integral_alpha = 0.d0
ao_bi_elec_integral_beta = 0.d0
if (do_direct_integrals) then
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s,i0,j0,k0,l0, &
!$OMP ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp, c0, c1, c2, &
!$OMP local_threshold)&
!$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_bielec_integral_schwartz, &
!$OMP ao_overlap_abs, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta)
allocate(keys(1), values(1))
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
ao_bi_elec_integral_alpha_tmp = 0.d0
ao_bi_elec_integral_beta_tmp = 0.d0
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(dynamic)
do p=1_8,q
call bielec_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. &
(ii(1)>ao_num).or. &
(jj(1)>ao_num).or. &
(ll(1)>ao_num) ) then
cycle
endif
k = kk(1)
i = ii(1)
l = ll(1)
j = jj(1)
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
< ao_integrals_threshold) then
cycle
endif
local_threshold = ao_bielec_integral_schwartz(k,l)*ao_bielec_integral_schwartz(i,j)
if (local_threshold < ao_integrals_threshold) then
cycle
endif
i0 = i
j0 = j
k0 = k
l0 = l
values(1) = 0.d0
local_threshold = ao_integrals_threshold/local_threshold
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
c0 = HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)
c1 = HF_density_matrix_ao_alpha(k,i)
c2 = HF_density_matrix_ao_beta(k,i)
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
cycle
endif
if (values(1) == 0.d0) then
values(1) = ao_bielec_integral(k0,l0,i0,j0)
endif
integral = c0 * values(1)
ao_bi_elec_integral_alpha_tmp(i,j) += integral
ao_bi_elec_integral_beta_tmp (i,j) += integral
integral = values(1)
ao_bi_elec_integral_alpha_tmp(l,j) -= c1 * integral
ao_bi_elec_integral_beta_tmp (l,j) -= c2 * integral
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_bielec_integrals_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer*8 :: i8
integer :: ii(8), jj(8), kk(8), ll(8), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
! !$OMP PARALLEL DEFAULT(NONE) &
! !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
! !$OMP n_elements,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)&
! !$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
! !$OMP ao_integrals_map, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta,HF_exchange)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
ao_bi_elec_integral_alpha_tmp = 0.d0
ao_bi_elec_integral_beta_tmp = 0.d0
! !OMP DO SCHEDULE(dynamic)
! !DIR$ NOVECTOR
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
call bielec_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = (HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)) * values(k1)
ao_bi_elec_integral_alpha_tmp(i,j) += integral
ao_bi_elec_integral_beta_tmp (i,j) += integral
integral = values(k1)
ao_bi_elec_integral_alpha_tmp(l,j) -= HF_exchange * (HF_density_matrix_ao_alpha(k,i) * integral)
ao_bi_elec_integral_beta_tmp (l,j) -= HF_exchange * (HF_density_matrix_ao_beta (k,i) * integral)
enddo
enddo
enddo
! !$OMP END DO NOWAIT
! !$OMP CRITICAL
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
! !$OMP END CRITICAL
! !$OMP CRITICAL
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
! !$OMP END CRITICAL
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
! !$OMP END PARALLEL
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_mo, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
double precision, allocatable :: T(:,:)
allocate ( T(ao_num_align,mo_tot_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, Fock_matrix_alpha_ao,size(Fock_matrix_alpha_ao,1), &
mo_coef, size(mo_coef,1), &
0.d0, T, ao_num_align)
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, size(T,1), &
0.d0, Fock_matrix_alpha_mo, mo_tot_num_align)
deallocate(T)
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_beta_mo, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
double precision, allocatable :: T(:,:)
allocate ( T(ao_num_align,mo_tot_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, Fock_matrix_beta_ao,size(Fock_matrix_beta_ao,1), &
mo_coef, size(mo_coef,1), &
0.d0, T, ao_num_align)
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, size(T,1), &
0.d0, Fock_matrix_beta_mo, mo_tot_num_align)
deallocate(T)
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_energy ]
&BEGIN_PROVIDER [ double precision, two_electron_energy]
&BEGIN_PROVIDER [ double precision, one_electron_energy]
implicit none
BEGIN_DOC
! Hartree-Fock energy
END_DOC
HF_energy = nuclear_repulsion
integer :: i,j
double precision :: accu_mono,accu_fock
one_electron_energy = 0.d0
two_electron_energy = 0.d0
do j=1,ao_num
do i=1,ao_num
two_electron_energy += 0.5d0 * ( ao_bi_elec_integral_alpha(i,j) * HF_density_matrix_ao_alpha(i,j) &
+ao_bi_elec_integral_beta(i,j) * HF_density_matrix_ao_beta(i,j) )
one_electron_energy += ao_mono_elec_integral(i,j) * (HF_density_matrix_ao_alpha(i,j) + HF_density_matrix_ao_beta (i,j) )
enddo
enddo
print*, 'one_electron_energy = ',one_electron_energy
print*, 'two_electron_energy = ',two_electron_energy
print*, 'e_exchange_dft = ',(1.d0 - HF_exchange) * e_exchange_dft
!print*, 'accu_cor = ',e_correlation_dft
HF_energy += (1.d0 - HF_exchange) * e_exchange_dft + e_correlation_dft + one_electron_energy + two_electron_energy
!print*, 'HF_energy '
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num_align, ao_num) ]
implicit none
BEGIN_DOC
! Fock matrix in AO basis set
END_DOC
if ( (elec_alpha_num == elec_beta_num).and. &
(level_shift == 0.) ) &
then
integer :: i,j
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num_align
Fock_matrix_ao(i,j) = Fock_matrix_alpha_ao(i,j)
enddo
enddo
else
double precision, allocatable :: T(:,:), M(:,:)
integer :: ierr
! F_ao = S C F_mo C^t S
allocate (T(ao_num_align,ao_num),M(ao_num_align,ao_num),stat=ierr)
if (ierr /=0 ) then
print *, irp_here, ' : allocation failed'
endif
! ao_overlap (ao_num,ao_num) . mo_coef (ao_num,mo_tot_num)
! -> M(ao_num,mo_tot_num)
call dgemm('N','N', ao_num,mo_tot_num,ao_num, 1.d0, &
ao_overlap, size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
! M(ao_num,mo_tot_num) . Fock_matrix_mo (mo_tot_num,mo_tot_num)
! -> T(ao_num,mo_tot_num)
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
M, size(M,1), &
Fock_matrix_mo, size(Fock_matrix_mo,1), &
0.d0, &
T, size(T,1))
! T(ao_num,mo_tot_num) . mo_coef^T (mo_tot_num,ao_num)
! -> M(ao_num,ao_num)
call dgemm('N','T', ao_num,ao_num,mo_tot_num, 1.d0, &
T, size(T,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
! M(ao_num,ao_num) . ao_overlap (ao_num,ao_num)
! -> Fock_matrix_ao(ao_num,ao_num)
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
M, size(M,1), &
ao_overlap, size(ao_overlap,1), &
0.d0, &
Fock_matrix_ao, size(Fock_matrix_ao,1))
deallocate(T)
endif
END_PROVIDER
subroutine Fock_mo_to_ao(FMO,LDFMO,FAO,LDFAO)
implicit none
integer, intent(in) :: LDFMO ! size(FMO,1)
integer, intent(in) :: LDFAO ! size(FAO,1)
double precision, intent(in) :: FMO(LDFMO,*)
double precision, intent(out) :: FAO(LDFAO,*)
double precision, allocatable :: T(:,:), M(:,:)
integer :: ierr
! F_ao = S C F_mo C^t S
allocate (T(ao_num_align,ao_num),M(ao_num_align,ao_num),stat=ierr)
if (ierr /=0 ) then
print *, irp_here, ' : allocation failed'
endif
! ao_overlap (ao_num,ao_num) . mo_coef (ao_num,mo_tot_num)
! -> M(ao_num,mo_tot_num)
call dgemm('N','N', ao_num,mo_tot_num,ao_num, 1.d0, &
ao_overlap, size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
! M(ao_num,mo_tot_num) . FMO (mo_tot_num,mo_tot_num)
! -> T(ao_num,mo_tot_num)
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
M, size(M,1), &
FMO, size(FMO,1), &
0.d0, &
T, size(T,1))
! T(ao_num,mo_tot_num) . mo_coef^T (mo_tot_num,ao_num)
! -> M(ao_num,ao_num)
call dgemm('N','T', ao_num,ao_num,mo_tot_num, 1.d0, &
T, size(T,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
! M(ao_num,ao_num) . ao_overlap (ao_num,ao_num)
! -> Fock_matrix_ao(ao_num,ao_num)
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
M, size(M,1), &
ao_overlap, size(ao_overlap,1), &
0.d0, &
FAO, size(FAO,1))
deallocate(T,M)
end

View File

@ -0,0 +1,41 @@
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_alpha, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! S^-1 x Alpha density matrix in the AO basis x S^-1
END_DOC
call dgemm('N','T',ao_num,ao_num,elec_alpha_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
HF_density_matrix_ao_alpha, size(HF_density_matrix_ao_alpha,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_beta, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! S^-1 Beta density matrix in the AO basis x S^-1
END_DOC
call dgemm('N','T',ao_num,ao_num,elec_beta_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
HF_density_matrix_ao_beta, size(HF_density_matrix_ao_beta,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! S^-1 Density matrix in the AO basis S^-1
END_DOC
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_alpha,1))
if (elec_alpha_num== elec_beta_num) then
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_alpha
else
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_beta ,1))
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_beta
endif
END_PROVIDER

View File

@ -0,0 +1,54 @@
program scf
BEGIN_DOC
! Produce `Hartree_Fock` MO orbital
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
! output: hartree_fock.energy
! optional: mo_basis.mo_coef
END_DOC
call create_guess
call orthonormalize_mos
call run
end
subroutine create_guess
implicit none
BEGIN_DOC
! Create an MO guess if no MOs are present in the EZFIO directory
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_mo_basis_mo_coef(exists)
if (.not.exists) then
if (mo_guess_type == "HCore") then
mo_coef = ao_ortho_lowdin_coef
TOUCH mo_coef
mo_label = 'Guess'
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label)
SOFT_TOUCH mo_coef mo_label
else if (mo_guess_type == "Huckel") then
call huckel_guess
else
print *, 'Unrecognized MO guess type : '//mo_guess_type
stop 1
endif
endif
end
subroutine run
use bitmasks
implicit none
BEGIN_DOC
! Run SCF calculation
END_DOC
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
double precision :: E0
integer :: i_it, i, j, k
E0 = HF_energy
mo_label = "Canonical"
call damping_SCF
end

View File

@ -0,0 +1 @@
Integrals_Bielec MOGuess Bitmask DFT_Utils

View File

@ -0,0 +1,132 @@
subroutine damping_SCF
implicit none
double precision :: E
double precision, allocatable :: D_alpha(:,:), D_beta(:,:)
double precision :: E_new
double precision, allocatable :: D_new_alpha(:,:), D_new_beta(:,:), F_new(:,:)
double precision, allocatable :: delta_alpha(:,:), delta_beta(:,:)
double precision :: lambda, E_half, a, b, delta_D, delta_E, E_min
integer :: i,j,k
logical :: saving
character :: save_char
allocate( &
D_alpha( ao_num_align, ao_num ), &
D_beta( ao_num_align, ao_num ), &
F_new( ao_num_align, ao_num ), &
D_new_alpha( ao_num_align, ao_num ), &
D_new_beta( ao_num_align, ao_num ), &
delta_alpha( ao_num_align, ao_num ), &
delta_beta( ao_num_align, ao_num ))
do j=1,ao_num
do i=1,ao_num
D_alpha(i,j) = HF_density_matrix_ao_alpha(i,j)
D_beta (i,j) = HF_density_matrix_ao_beta (i,j)
enddo
enddo
call write_time(output_hartree_fock)
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
'====','================','================','================', '===='
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
' N ', 'Energy ', 'Energy diff ', 'Density diff ', 'Save'
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
'====','================','================','================', '===='
E = HF_energy + 1.d0
E_min = HF_energy
delta_D = 0.d0
do k=1,n_it_scf_max
delta_E = HF_energy - E
E = HF_energy
if ( (delta_E < 0.d0).and.(dabs(delta_E) < thresh_scf) ) then
exit
endif
saving = E < E_min
if (saving) then
call save_mos
save_char = 'X'
E_min = E
else
save_char = ' '
endif
write(output_hartree_fock,'(I4,1X,F16.10, 1X, F16.10, 1X, F16.10, 3X, A )') &
k, E, delta_E, delta_D, save_char
D_alpha = HF_density_matrix_ao_alpha
D_beta = HF_density_matrix_ao_beta
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
D_new_alpha = HF_density_matrix_ao_alpha
D_new_beta = HF_density_matrix_ao_beta
F_new = Fock_matrix_ao
E_new = HF_energy
delta_alpha = D_new_alpha - D_alpha
delta_beta = D_new_beta - D_beta
lambda = .5d0
E_half = 0.d0
do while (E_half > E)
HF_density_matrix_ao_alpha = D_alpha + lambda * delta_alpha
HF_density_matrix_ao_beta = D_beta + lambda * delta_beta
TOUCH HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
E_half = HF_energy
if ((E_half > E).and.(E_new < E)) then
lambda = 1.d0
exit
else if ((E_half > E).and.(lambda > 5.d-4)) then
lambda = 0.5d0 * lambda
E_new = E_half
else
exit
endif
enddo
a = (E_new + E - 2.d0*E_half)*2.d0
b = -E_new - 3.d0*E + 4.d0*E_half
lambda = -lambda*b/(a+1.d-16)
D_alpha = (1.d0-lambda) * D_alpha + lambda * D_new_alpha
D_beta = (1.d0-lambda) * D_beta + lambda * D_new_beta
delta_E = HF_energy - E
do j=1,ao_num
do i=1,ao_num
delta_D = delta_D + &
(D_alpha(i,j) - HF_density_matrix_ao_alpha(i,j))*(D_alpha(i,j) - HF_density_matrix_ao_alpha(i,j)) + &
(D_beta (i,j) - HF_density_matrix_ao_beta (i,j))*(D_beta (i,j) - HF_density_matrix_ao_beta (i,j))
enddo
enddo
delta_D = dsqrt(delta_D/dble(ao_num)**2)
HF_density_matrix_ao_alpha = D_alpha
HF_density_matrix_ao_beta = D_beta
TOUCH HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
enddo
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') '====','================','================','================', '===='
write(output_hartree_fock,*)
if(.not.no_oa_or_av_opt)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
endif
call write_double(output_hartree_fock, E_min, 'Hartree-Fock energy')
call ezfio_set_hartree_fock_energy(E_min)
call write_time(output_hartree_fock)
deallocate(D_alpha,D_beta,F_new,D_new_alpha,D_new_beta,delta_alpha,delta_beta)
end

View File

@ -0,0 +1,119 @@
BEGIN_PROVIDER [ double precision, diagonal_Fock_matrix_mo, (ao_num) ]
&BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Diagonal Fock matrix in the MO basis
END_DOC
integer :: i,j
integer :: liwork, lwork, n, info
integer, allocatable :: iwork(:)
double precision, allocatable :: work(:), F(:,:), S(:,:)
allocate( F(mo_tot_num_align,mo_tot_num) )
do j=1,mo_tot_num
do i=1,mo_tot_num
F(i,j) = Fock_matrix_mo(i,j)
enddo
enddo
if(no_oa_or_av_opt)then
integer :: iorb,jorb
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
F(iorb,jorb) = 0.d0
F(jorb,iorb) = 0.d0
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
F(iorb,jorb) = 0.d0
F(jorb,iorb) = 0.d0
enddo
do j = 1, n_core_orb
jorb = list_core(j)
F(iorb,jorb) = 0.d0
F(jorb,iorb) = 0.d0
enddo
enddo
endif
! Insert level shift here
do i = elec_beta_num+1, elec_alpha_num
F(i,i) += 0.5d0*level_shift
enddo
do i = elec_alpha_num+1, mo_tot_num
F(i,i) += level_shift
enddo
n = mo_tot_num
lwork = 1+6*n + 2*n*n
liwork = 3 + 5*n
allocate(work(lwork), iwork(liwork) )
lwork = -1
liwork = -1
call dsyevd( 'V', 'U', mo_tot_num, F, &
size(F,1), diagonal_Fock_matrix_mo, &
work, lwork, iwork, liwork, info)
if (info /= 0) then
print *, irp_here//' failed : ', info
stop 1
endif
lwork = int(work(1))
liwork = iwork(1)
deallocate(work,iwork)
allocate(work(lwork), iwork(liwork) )
call dsyevd( 'V', 'U', mo_tot_num, F, &
size(F,1), diagonal_Fock_matrix_mo, &
work, lwork, iwork, liwork, info)
if (info /= 0) then
print *, irp_here//' failed : ', info
stop 1
endif
call dgemm('N','N',ao_num,mo_tot_num,mo_tot_num, 1.d0, &
mo_coef, size(mo_coef,1), F, size(F,1), &
0.d0, eigenvectors_Fock_matrix_mo, size(eigenvectors_Fock_matrix_mo,1))
deallocate(work, iwork, F)
! endif
END_PROVIDER
BEGIN_PROVIDER [double precision, diagonal_Fock_matrix_mo_sum, (mo_tot_num)]
implicit none
BEGIN_DOC
! diagonal element of the fock matrix calculated as the sum over all the interactions
! with all the electrons in the RHF determinant
! diagonal_Fock_matrix_mo_sum(i) = sum_{j=1, N_elec} 2 J_ij -K_ij
END_DOC
integer :: i,j
double precision :: accu
do j = 1,elec_alpha_num
accu = 0.d0
do i = 1, elec_alpha_num
accu += 2.d0 * mo_bielec_integral_jj_from_ao(i,j) - mo_bielec_integral_jj_exchange_from_ao(i,j)
enddo
diagonal_Fock_matrix_mo_sum(j) = accu + mo_mono_elec_integral(j,j)
enddo
do j = elec_alpha_num+1,mo_tot_num
accu = 0.d0
do i = 1, elec_alpha_num
accu += 2.d0 * mo_bielec_integral_jj_from_ao(i,j) - mo_bielec_integral_jj_exchange_from_ao(i,j)
enddo
diagonal_Fock_matrix_mo_sum(j) = accu + mo_mono_elec_integral(j,j)
enddo
END_PROVIDER

View File

@ -0,0 +1,31 @@
BEGIN_PROVIDER [double precision, ao_potential_alpha_xc, (ao_num_align, ao_num)]
&BEGIN_PROVIDER [double precision, ao_potential_beta_xc, (ao_num_align, ao_num)]
implicit none
integer :: i,j,k,l
ao_potential_alpha_xc = 0.d0
ao_potential_beta_xc = 0.d0
!if(exchange_functional == "LDA")then
do i = 1, ao_num
do j = 1, ao_num
ao_potential_alpha_xc(i,j) = (1.d0 - HF_exchange) * lda_ex_potential_alpha_ao(i,j,1)
ao_potential_beta_xc(i,j) = (1.d0 - HF_exchange) * lda_ex_potential_beta_ao(i,j,1)
enddo
enddo
!endif
END_PROVIDER
BEGIN_PROVIDER [double precision, e_exchange_dft]
implicit none
!if(exchange_functional == "LDA")then
e_exchange_dft = lda_exchange(1)
!endif
END_PROVIDER
BEGIN_PROVIDER [double precision, e_correlation_dft]
implicit none
!if(correlation_functional == "LDA")then
e_correlation_dft = 0.d0
!endif
END_PROVIDER

View File

@ -26,6 +26,7 @@ double precision function ao_value(i,r)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
accu += ao_coef_normalized_ordered_transp(m,i) * dexp(-beta*r2)
! accu += ao_coef_transp(m,i) * dexp(-beta*r2)
enddo
ao_value = accu * dx * dy * dz

View File

@ -14,3 +14,4 @@ double precision, parameter :: cx_lda = -0.73855876638202234d0
double precision, parameter :: c_2_4_3 = 2.5198420997897464d0
double precision, parameter :: cst_lda = -0.93052573634909996d0
double precision, parameter :: c_4_3 = 1.3333333333333333d0
double precision, parameter :: c_1_3 = 0.3333333333333333d0