10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 20:33:26 +01:00

Trying to handle two sets of integrals

This commit is contained in:
Emmanuel Giner 2017-04-15 19:15:10 +02:00
parent 5da6b38206
commit 1bb2d5ebcd
30 changed files with 5955 additions and 27 deletions

View File

@ -0,0 +1,84 @@
[do_direct_integrals]
type: logical
doc: Compute integrals on the fly
interface: ezfio,provider,ocaml
default: False
ezfio_name: direct
[no_vvvv_integrals]
type: logical
doc: If True, computes all integrals except for the integrals having 4 virtual index
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_vvvv_integrals
[no_ivvv_integrals]
type: logical
doc: Can be switched on only if no_vvvv_integrals is True, then do not computes the integrals having 3 virtual index and 1 belonging to the core inactive active orbitals
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_ivvv_integrals
[no_vvv_integrals]
type: logical
doc: Can be switched on only if no_vvvv_integrals is True, then do not computes the integrals having 3 virtual orbitals
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_vvv_integrals
[disk_access_mo_integrals]
type: Disk_access
doc: Read/Write MO integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[disk_access_ao_integrals_standard]
type: Disk_access
doc: Read/Write AO integrals_standard from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[disk_access_mo_integrals_standard]
type: Disk_access
doc: Read/Write MO integrals_standard from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[disk_access_ao_integrals]
type: Disk_access
doc: Read/Write AO integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[ao_integrals_threshold]
type: Threshold
doc: If |<pq|rs>| < ao_integrals_threshold then <pq|rs> is zero
interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_ao
[mo_integrals_threshold]
type: Threshold
doc: If |<ij|kl>| < ao_integrals_threshold then <pq|rs> is zero
interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_mo
[mu_erf]
type: double precision
doc: cutting of the interaction in the range separated model
interface: ezfio,provider,ocaml
default: 0.5
ezfio_name: mu_erf
[long_range]
type: logical
doc: if true, compute all the integrals using the long range interaction
interface: ezfio,provider,ocaml
default: False
ezfio_name: long_range

View File

@ -0,0 +1 @@
Pseudo Bitmask ZMQ

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,570 @@
double precision function ao_bielec_integral_erf(i,j,k,l)
implicit none
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
integer,intent(in) :: i,j,k,l
integer :: p,q,r,s
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
double precision :: integral
include 'Utils/constants.include.F'
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
integer :: iorder_p(3), iorder_q(3)
double precision :: ao_bielec_integral_schwartz_accel_erf
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
ao_bielec_integral_erf = ao_bielec_integral_schwartz_accel_erf(i,j,k,l)
return
endif
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
ao_bielec_integral_erf = 0.d0
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
double precision :: coef1, coef2, coef3, coef4
double precision :: p_inv,q_inv
double precision :: general_primitive_integral_erf
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = general_primitive_integral_erf(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_bielec_integral_erf = ao_bielec_integral_erf + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
else
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI_erf
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
integral = ERI_erf( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_bielec_integral_erf = ao_bielec_integral_erf + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif
end
double precision function ao_bielec_integral_schwartz_accel_erf(i,j,k,l)
implicit none
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
integer,intent(in) :: i,j,k,l
integer :: p,q,r,s
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
double precision :: integral
include 'Utils/constants.include.F'
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
integer :: iorder_p(3), iorder_q(3)
double precision, allocatable :: schwartz_kl(:,:)
double precision :: schwartz_ij
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
ao_bielec_integral_schwartz_accel_erf = 0.d0
double precision :: thr
thr = ao_integrals_threshold*ao_integrals_threshold
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
schwartz_kl(0,0) = 0.d0
do r = 1, ao_prim_num(k)
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
schwartz_kl(0,r) = 0.d0
do s = 1, ao_prim_num(l)
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
schwartz_kl(s,r) = general_primitive_integral_erf(dim1, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q) &
* coef2
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
enddo
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
enddo
do p = 1, ao_prim_num(i)
double precision :: coef1
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
double precision :: coef2
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
double precision :: p_inv,q_inv
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
schwartz_ij = general_primitive_integral_erf(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
P_new,P_center,fact_p,pp,p_inv,iorder_p) * &
coef2*coef2
if (schwartz_kl(0,0)*schwartz_ij < thr) then
cycle
endif
do r = 1, ao_prim_num(k)
if (schwartz_kl(0,r)*schwartz_ij < thr) then
cycle
endif
double precision :: coef3
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
double precision :: coef4
if (schwartz_kl(s,r)*schwartz_ij < thr) then
cycle
endif
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
double precision :: general_primitive_integral_erf
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = general_primitive_integral_erf(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_bielec_integral_schwartz_accel_erf = ao_bielec_integral_schwartz_accel_erf + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
else
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI_erf
schwartz_kl(0,0) = 0.d0
do r = 1, ao_prim_num(k)
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
schwartz_kl(0,r) = 0.d0
do s = 1, ao_prim_num(l)
coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l)
schwartz_kl(s,r) = ERI_erf( &
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
K_power(1),L_power(1),K_power(1),L_power(1), &
K_power(2),L_power(2),K_power(2),L_power(2), &
K_power(3),L_power(3),K_power(3),L_power(3)) * &
coef2
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
enddo
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
enddo
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
schwartz_ij = ERI_erf( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),&
I_power(1),J_power(1),I_power(1),J_power(1), &
I_power(2),J_power(2),I_power(2),J_power(2), &
I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2
if (schwartz_kl(0,0)*schwartz_ij < thr) then
cycle
endif
do r = 1, ao_prim_num(k)
if (schwartz_kl(0,r)*schwartz_ij < thr) then
cycle
endif
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
if (schwartz_kl(s,r)*schwartz_ij < thr) then
cycle
endif
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
integral = ERI_erf( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_bielec_integral_schwartz_accel_erf = ao_bielec_integral_schwartz_accel_erf + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif
deallocate (schwartz_kl)
end
subroutine compute_ao_bielec_integrals_erf(j,k,l,sze,buffer_value)
implicit none
use map_module
BEGIN_DOC
! Compute AO 1/r12 integrals for all i and fixed j,k,l
END_DOC
include 'Utils/constants.include.F'
integer, intent(in) :: j,k,l,sze
real(integral_kind), intent(out) :: buffer_value(sze)
double precision :: ao_bielec_integral_erf
integer :: i
if (ao_overlap_abs(j,l) < thresh) then
buffer_value = 0._integral_kind
return
endif
if (ao_bielec_integral_schwartz(j,l) < thresh ) then
buffer_value = 0._integral_kind
return
endif
do i = 1, ao_num
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thresh) then
buffer_value(i) = 0._integral_kind
cycle
endif
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thresh ) then
buffer_value(i) = 0._integral_kind
cycle
endif
!DIR$ FORCEINLINE
buffer_value(i) = ao_bielec_integral_erf(i,k,j,l)
enddo
end
double precision function general_primitive_integral_erf(dim, &
P_new,P_center,fact_p,p,p_inv,iorder_p, &
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
implicit none
BEGIN_DOC
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
END_DOC
integer,intent(in) :: dim
include 'Utils/constants.include.F'
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
integer, intent(in) :: iorder_p(3)
integer, intent(in) :: iorder_q(3)
double precision :: r_cut,gama_r_cut,rho,dist
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
double precision :: bla
integer :: ix,iy,iz,jx,jy,jz,i
double precision :: a,b,c,d,e,f,accu,pq,const
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
integer :: n_pt_tmp,n_pt_out, iorder
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
general_primitive_integral_erf = 0.d0
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
! Gaussian Product
! ----------------
double precision :: p_plus_q
p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf)
pq = p_inv*0.5d0*q_inv
pq_inv = 0.5d0/p_plus_q
p10_1 = q*pq ! 1/(2p)
p01_1 = p*pq ! 1/(2q)
pq_inv_2 = pq_inv+pq_inv
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
accu = 0.d0
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
!DIR$ VECTOR ALIGNED
do ix=0,iorder
Ix_pol(ix) = 0.d0
enddo
n_Ix = 0
do ix = 0, iorder_p(1)
if (abs(P_new(ix,1)) < thresh) cycle
a = P_new(ix,1)
do jx = 0, iorder_q(1)
d = a*Q_new(jx,1)
if (abs(d) < thresh) cycle
!DEC$ FORCEINLINE
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
!DEC$ FORCEINLINE
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
enddo
enddo
if (n_Ix == -1) then
return
endif
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
!DIR$ VECTOR ALIGNED
do ix=0, iorder
Iy_pol(ix) = 0.d0
enddo
n_Iy = 0
do iy = 0, iorder_p(2)
if (abs(P_new(iy,2)) > thresh) then
b = P_new(iy,2)
do jy = 0, iorder_q(2)
e = b*Q_new(jy,2)
if (abs(e) < thresh) cycle
!DEC$ FORCEINLINE
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
!DEC$ FORCEINLINE
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
enddo
endif
enddo
if (n_Iy == -1) then
return
endif
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
do ix=0,iorder
Iz_pol(ix) = 0.d0
enddo
n_Iz = 0
do iz = 0, iorder_p(3)
if (abs(P_new(iz,3)) > thresh) then
c = P_new(iz,3)
do jz = 0, iorder_q(3)
f = c*Q_new(jz,3)
if (abs(f) < thresh) cycle
!DEC$ FORCEINLINE
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
!DEC$ FORCEINLINE
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
enddo
endif
enddo
if (n_Iz == -1) then
return
endif
rho = p*q *pq_inv_2 ! le rho qui va bien
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
const = dist*rho
n_pt_tmp = n_Ix+n_Iy
do i=0,n_pt_tmp
d_poly(i)=0.d0
enddo
!DEC$ FORCEINLINE
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
if (n_pt_tmp == -1) then
return
endif
n_pt_out = n_pt_tmp+n_Iz
do i=0,n_pt_out
d1(i)=0.d0
enddo
!DEC$ FORCEINLINE
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
double precision :: rint_sum
accu = accu + rint_sum(n_pt_out,const,d1)
! change p+q in dsqrt
general_primitive_integral_erf = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p_plus_q)
end
double precision function ERI_erf(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
implicit none
BEGIN_DOC
! ATOMIC PRIMTIVE bielectronic integral between the 4 primitives ::
! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2)
! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2)
END_DOC
double precision, intent(in) :: delta,gama,alpha,beta
integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2
integer :: i,j,k,l,n_pt
integer :: n_pt_sup
double precision :: p,q,denom,coeff
double precision :: I_f
integer :: nx,ny,nz
include 'Utils/constants.include.F'
nx = a_x+b_x+c_x+d_x
if(iand(nx,1) == 1) then
ERI_erf = 0.d0
return
endif
ny = a_y+b_y+c_y+d_y
if(iand(ny,1) == 1) then
ERI_erf = 0.d0
return
endif
nz = a_z+b_z+c_z+d_z
if(iand(nz,1) == 1) then
ERI_erf = 0.d0
return
endif
ASSERT (alpha >= 0.d0)
ASSERT (beta >= 0.d0)
ASSERT (delta >= 0.d0)
ASSERT (gama >= 0.d0)
p = alpha + beta
q = delta + gama
double precision :: p_plus_q
p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf)
ASSERT (p+q >= 0.d0)
n_pt = ishft( nx+ny+nz,1 )
coeff = pi_5_2 / (p * q * dsqrt(p_plus_q))
if (n_pt == 0) then
ERI_erf = coeff
return
endif
call integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
ERI_erf = I_f * coeff
end
subroutine compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
implicit none
use map_module
BEGIN_DOC
! Parallel client for AO integrals
END_DOC
integer, intent(in) :: j,l
integer,intent(out) :: n_integrals
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
integer :: i,k
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
double precision :: integral, wall_0
double precision :: thr
integer :: kk, m, j1, i1
thr = ao_integrals_threshold
n_integrals = 0
j1 = j+ishft(l*l-l,-1)
do k = 1, ao_num ! r1
i1 = ishft(k*k-k,-1)
if (i1 > j1) then
exit
endif
do i = 1, k
i1 += 1
if (i1 > j1) then
exit
endif
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thr) then
cycle
endif
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thr ) then
cycle
endif
!DIR$ FORCEINLINE
integral = ao_bielec_integral_erf(i,k,j,l) ! i,k : r1 j,l : r2
if (abs(integral) < thr) then
cycle
endif
n_integrals += 1
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,buffer_i(n_integrals))
buffer_value(n_integrals) = integral
enddo
enddo
end

View File

@ -0,0 +1,175 @@
subroutine ao_bielec_integrals_erf_in_map_slave_tcp(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Computes a buffer of integrals. i is the ID of the current thread.
END_DOC
call ao_bielec_integrals_erf_in_map_slave(0,i)
end
subroutine ao_bielec_integrals_erf_in_map_slave_inproc(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Computes a buffer of integrals. i is the ID of the current thread.
END_DOC
call ao_bielec_integrals_erf_in_map_slave(1,i)
end
subroutine ao_bielec_integrals_erf_in_map_slave(thread,iproc)
use map_module
use f77_zmq
implicit none
BEGIN_DOC
! Computes a buffer of integrals
END_DOC
integer, intent(in) :: thread, iproc
integer :: j,l,n_integrals
integer :: rc
real(integral_kind), allocatable :: buffer_value(:)
integer(key_kind), allocatable :: buffer_i(:)
integer :: worker_id, task_id
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
character*(64) :: state
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
allocate ( buffer_i(ao_num*ao_num), buffer_value(ao_num*ao_num) )
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task)
if (task_id == 0) exit
read(task,*) j, l
call compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id)
call push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
enddo
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
deallocate( buffer_i, buffer_value )
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end
subroutine ao_bielec_integrals_erf_in_map_collector
use map_module
use f77_zmq
implicit none
BEGIN_DOC
! Collects results from the AO integral calculation
END_DOC
integer :: j,l,n_integrals
integer :: rc
real(integral_kind), allocatable :: buffer_value(:)
integer(key_kind), allocatable :: buffer_i(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer*8 :: control, accu
integer :: task_id, more, sze
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
sze = ao_num*ao_num
allocate ( buffer_i(sze), buffer_value(sze) )
accu = 0_8
more = 1
do while (more == 1)
rc = f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)
if (rc == -1) then
n_integrals = 0
return
endif
if (rc /= 4) then
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)'
stop 'error'
endif
if (n_integrals >= 0) then
if (n_integrals > sze) then
deallocate (buffer_value, buffer_i)
sze = n_integrals
allocate (buffer_value(sze), buffer_i(sze))
endif
rc = f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)
if (rc /= key_kind*n_integrals) then
print *, rc, key_kind, n_integrals
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)
if (rc /= integral_kind*n_integrals) then
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
! Activate if zmq_socket_pull is a REP
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
if (rc /= 4) then
print *, irp_here, ' : f77_zmq_send (zmq_socket_pull,...'
stop 'error'
endif
call insert_into_ao_integrals_erf_map(n_integrals,buffer_i,buffer_value)
accu += n_integrals
if (task_id /= 0) then
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
endif
endif
enddo
deallocate( buffer_i, buffer_value )
integer (map_size_kind) :: get_ao_erf_map_size
control = get_ao_erf_map_size(ao_integrals_erf_map)
if (control /= accu) then
print *, ''
print *, irp_here
print *, 'Control : ', control
print *, 'Accu : ', accu
print *, 'Some integrals were lost during the parallel computation.'
print *, 'Try to reduce the number of threads.'
stop
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
end

View File

@ -0,0 +1,225 @@
subroutine ao_bielec_integrals_in_map_slave_tcp(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Computes a buffer of integrals. i is the ID of the current thread.
END_DOC
call ao_bielec_integrals_in_map_slave(0,i)
end
subroutine ao_bielec_integrals_in_map_slave_inproc(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Computes a buffer of integrals. i is the ID of the current thread.
END_DOC
call ao_bielec_integrals_in_map_slave(1,i)
end
subroutine push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
use f77_zmq
use map_module
implicit none
BEGIN_DOC
! Push integrals in the push socket
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
integer, intent(in) :: n_integrals
integer(key_kind), intent(in) :: buffer_i(*)
real(integral_kind), intent(in) :: buffer_value(*)
integer, intent(in) :: task_id
integer :: rc
rc = f77_zmq_send( zmq_socket_push, n_integrals, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, ': f77_zmq_send( zmq_socket_push, n_integrals, 4, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, buffer_i, key_kind*n_integrals, ZMQ_SNDMORE)
if (rc /= key_kind*n_integrals) then
print *, irp_here, ': f77_zmq_send( zmq_socket_push, buffer_i, key_kind*n_integrals, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, buffer_value, integral_kind*n_integrals, ZMQ_SNDMORE)
if (rc /= integral_kind*n_integrals) then
print *, irp_here, ': f77_zmq_send( zmq_socket_push, buffer_value, integral_kind*n_integrals, 0)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, ': f77_zmq_send( zmq_socket_push, task_id, 4, 0)'
stop 'error'
endif
! Activate is zmq_socket_push is a REQ
integer :: idummy
rc = f77_zmq_recv( zmq_socket_push, idummy, 4, 0)
if (rc /= 4) then
print *, irp_here, ': f77_zmq_send( zmq_socket_push, idummy, 4, 0)'
stop 'error'
endif
end
subroutine ao_bielec_integrals_in_map_slave(thread,iproc)
use map_module
use f77_zmq
implicit none
BEGIN_DOC
! Computes a buffer of integrals
END_DOC
integer, intent(in) :: thread, iproc
integer :: j,l,n_integrals
integer :: rc
real(integral_kind), allocatable :: buffer_value(:)
integer(key_kind), allocatable :: buffer_i(:)
integer :: worker_id, task_id
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
character*(64) :: state
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
allocate ( buffer_i(ao_num*ao_num), buffer_value(ao_num*ao_num) )
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task)
if (task_id == 0) exit
read(task,*) j, l
call compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id)
call push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
enddo
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
deallocate( buffer_i, buffer_value )
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end
subroutine ao_bielec_integrals_in_map_collector
use map_module
use f77_zmq
implicit none
BEGIN_DOC
! Collects results from the AO integral calculation
END_DOC
integer :: j,l,n_integrals
integer :: rc
real(integral_kind), allocatable :: buffer_value(:)
integer(key_kind), allocatable :: buffer_i(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer*8 :: control, accu
integer :: task_id, more, sze
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
sze = ao_num*ao_num
allocate ( buffer_i(sze), buffer_value(sze) )
accu = 0_8
more = 1
do while (more == 1)
rc = f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)
if (rc == -1) then
n_integrals = 0
return
endif
if (rc /= 4) then
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)'
stop 'error'
endif
if (n_integrals >= 0) then
if (n_integrals > sze) then
deallocate (buffer_value, buffer_i)
sze = n_integrals
allocate (buffer_value(sze), buffer_i(sze))
endif
rc = f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)
if (rc /= key_kind*n_integrals) then
print *, rc, key_kind, n_integrals
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)
if (rc /= integral_kind*n_integrals) then
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
! Activate if zmq_socket_pull is a REP
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
if (rc /= 4) then
print *, irp_here, ' : f77_zmq_send (zmq_socket_pull,...'
stop 'error'
endif
call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_value)
accu += n_integrals
if (task_id /= 0) then
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
endif
endif
enddo
deallocate( buffer_i, buffer_value )
integer (map_size_kind) :: get_ao_map_size
control = get_ao_map_size(ao_integrals_map)
if (control /= accu) then
print *, ''
print *, irp_here
print *, 'Control : ', control
print *, 'Accu : ', accu
print *, 'Some integrals were lost during the parallel computation.'
print *, 'Try to reduce the number of threads.'
stop
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
end

View File

@ -0,0 +1,66 @@
BEGIN_PROVIDER [ integer, n_pt_max_integrals_16 ]
implicit none
BEGIN_DOC
! Aligned n_pt_max_integrals
END_DOC
integer, external :: align_double
n_pt_max_integrals_16 = align_double(n_pt_max_integrals)
END_PROVIDER
BEGIN_PROVIDER [ double precision, gauleg_t2, (n_pt_max_integrals_16,n_pt_max_integrals/2) ]
&BEGIN_PROVIDER [ double precision, gauleg_w, (n_pt_max_integrals_16,n_pt_max_integrals/2) ]
implicit none
BEGIN_DOC
! t_w(i,1,k) = w(i)
! t_w(i,2,k) = t(i)
END_DOC
integer :: i,j,l
l=0
do i = 2,n_pt_max_integrals,2
l = l+1
call gauleg(0.d0,1.d0,gauleg_t2(1,l),gauleg_w(1,l),i)
do j=1,i
gauleg_t2(j,l) *= gauleg_t2(j,l)
enddo
enddo
END_PROVIDER
subroutine gauleg(x1,x2,x,w,n)
implicit none
BEGIN_DOC
! Gauss-Legendre
END_DOC
integer, intent(in) :: n
double precision, intent(in) :: x1, x2
double precision, intent (out) :: x(n),w(n)
double precision, parameter :: eps=3.d-14
integer :: m,i,j
double precision :: xm, xl, z, z1, p1, p2, p3, pp, dn
m=(n+1)/2
xm=0.5d0*(x2+x1)
xl=0.5d0*(x2-x1)
dn = dble(n)
do i=1,m
z=dcos(3.141592654d0*(dble(i)-.25d0)/(dble(n)+.5d0))
z1 = z+1.d0
do while (dabs(z-z1) > eps)
p1=1.d0
p2=0.d0
do j=1,n
p3=p2
p2=p1
p1=(dble(j+j-1)*z*p2-dble(j-1)*p3)/j
enddo
pp=dn*(z*p1-p2)/(z*z-1.d0)
z1=z
z=z1-p1/pp
end do
x(i)=xm-xl*z
x(n+1-i)=xm+xl*z
w(i)=(xl+xl)/((1.d0-z*z)*pp*pp)
w(n+1-i)=w(i)
enddo
end

View File

@ -0,0 +1,22 @@
BEGIN_PROVIDER [double precision, big_array_coulomb_integrals, (mo_tot_num_align,mo_tot_num, mo_tot_num)]
&BEGIN_PROVIDER [double precision, big_array_exchange_integrals,(mo_tot_num_align,mo_tot_num, mo_tot_num)]
implicit none
integer :: i,j,k,l
double precision :: get_mo_bielec_integral
double precision :: integral
do k = 1, mo_tot_num
do i = 1, mo_tot_num
do j = 1, mo_tot_num
l = j
integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
big_array_coulomb_integrals(j,i,k) = integral
l = j
integral = get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
big_array_exchange_integrals(j,i,k) = integral
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,717 @@
use map_module
!! AO Map
!! ======
BEGIN_PROVIDER [ type(map_type), ao_integrals_map ]
implicit none
BEGIN_DOC
! AO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
sze = key_max
call map_init(ao_integrals_map,sze)
print*, 'AO map initialized : ', sze
END_PROVIDER
subroutine bielec_integrals_index(i,j,k,l,i1)
use map_module
implicit none
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer(key_kind) :: p,q,r,s,i2
p = min(i,k)
r = max(i,k)
p = p+ishft(r*r-r,-1)
q = min(j,l)
s = max(j,l)
q = q+ishft(s*s-s,-1)
i1 = min(p,q)
i2 = max(p,q)
i1 = i1+ishft(i2*i2-i2,-1)
end
subroutine bielec_integrals_index_reverse(i,j,k,l,i1)
use map_module
implicit none
integer, intent(out) :: i(8),j(8),k(8),l(8)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i2,i3
i = 0
i2 = ceiling(0.5d0*(dsqrt(8.d0*dble(i1)+1.d0)-1.d0))
l(1) = ceiling(0.5d0*(dsqrt(8.d0*dble(i2)+1.d0)-1.d0))
i3 = i1 - ishft(i2*i2-i2,-1)
k(1) = ceiling(0.5d0*(dsqrt(8.d0*dble(i3)+1.d0)-1.d0))
j(1) = int(i2 - ishft(l(1)*l(1)-l(1),-1),4)
i(1) = int(i3 - ishft(k(1)*k(1)-k(1),-1),4)
!ijkl
i(2) = i(1) !ilkj
j(2) = l(1)
k(2) = k(1)
l(2) = j(1)
i(3) = k(1) !kjil
j(3) = j(1)
k(3) = i(1)
l(3) = l(1)
i(4) = k(1) !klij
j(4) = l(1)
k(4) = i(1)
l(4) = j(1)
i(5) = j(1) !jilk
j(5) = i(1)
k(5) = l(1)
l(5) = k(1)
i(6) = j(1) !jkli
j(6) = k(1)
k(6) = l(1)
l(6) = i(1)
i(7) = l(1) !lijk
j(7) = i(1)
k(7) = j(1)
l(7) = k(1)
i(8) = l(1) !lkji
j(8) = k(1)
k(8) = j(1)
l(8) = i(1)
integer :: ii, jj
do ii=2,8
do jj=1,ii-1
if ( (i(ii) == i(jj)).and. &
(j(ii) == j(jj)).and. &
(k(ii) == k(jj)).and. &
(l(ii) == l(jj)) ) then
i(ii) = 0
exit
endif
enddo
enddo
do ii=1,8
if (i(ii) /= 0) then
call bielec_integrals_index(i(ii),j(ii),k(ii),l(ii),i2)
if (i1 /= i2) then
print *, i1, i2
print *, i(ii), j(jj), k(jj), l(jj)
stop 'bielec_integrals_index_reverse failed'
endif
endif
enddo
end
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the AOs for which the integrals are in the cache
END_DOC
ao_integrals_cache_min = max(1,ao_num - 63)
ao_integrals_cache_max = ao_num
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_bielec_integrals_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx
real(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_map,idx,integral)
ii = l-ao_integrals_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_ao_bielec_integral(i,j,k,l,map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
type(map_type), intent(inout) :: map
integer :: ii
real(integral_kind) :: tmp
PROVIDE ao_bielec_integrals_in_map ao_integrals_cache ao_integrals_cache_min
!DIR$ FORCEINLINE
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
tmp = 0.d0
else if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < ao_integrals_threshold) then
tmp = 0.d0
else
ii = l-ao_integrals_cache_min
ii = ior(ii, k-ao_integrals_cache_min)
ii = ior(ii, j-ao_integrals_cache_min)
ii = ior(ii, i-ao_integrals_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
tmp = tmp
else
ii = l-ao_integrals_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_cache_min)
tmp = ao_integrals_cache(ii)
endif
endif
result = tmp
end
subroutine get_ao_bielec_integrals(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
double precision :: thresh
PROVIDE ao_bielec_integrals_in_map ao_integrals_map
thresh = ao_integrals_threshold
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
double precision :: get_ao_bielec_integral
do i=1,sze
out_val(i) = get_ao_bielec_integral(i,j,k,l,ao_integrals_map)
enddo
end
subroutine get_ao_bielec_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer, intent(out) :: out_val_index(sze),non_zero_int
integer :: i
integer(key_kind) :: hash
double precision :: thresh,tmp
PROVIDE ao_bielec_integrals_in_map
thresh = ao_integrals_threshold
non_zero_int = 0
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
non_zero_int = 0
do i=1,sze
integer, external :: ao_l4
double precision, external :: ao_bielec_integral
!DIR$ FORCEINLINE
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh) then
cycle
endif
call bielec_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_map, hash,tmp)
if (dabs(tmp) < thresh ) cycle
non_zero_int = non_zero_int+1
out_val_index(non_zero_int) = i
out_val(non_zero_int) = tmp
enddo
end
function get_ao_map_size()
implicit none
integer (map_size_kind) :: get_ao_map_size
BEGIN_DOC
! Returns the number of elements in the AO map
END_DOC
get_ao_map_size = ao_integrals_map % n_elements
end
subroutine clear_ao_map
implicit none
BEGIN_DOC
! Frees the memory of the AO map
END_DOC
call map_deinit(ao_integrals_map)
FREE ao_integrals_map
end
!! MO Map
!! ======
BEGIN_PROVIDER [ type(map_type), mo_integrals_map ]
implicit none
BEGIN_DOC
! MO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
sze = key_max
call map_init(mo_integrals_map,sze)
print*, 'MO map initialized'
END_PROVIDER
subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
use map_module
implicit none
BEGIN_DOC
! Create new entry into AO map
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals)
end
subroutine insert_into_mo_integrals_map(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into MO map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_map, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ integer, mo_integrals_cache_min ]
&BEGIN_PROVIDER [ integer, mo_integrals_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the MOs for which the integrals are in the cache
END_DOC
mo_integrals_cache_min = max(1,elec_alpha_num - 31)
mo_integrals_cache_max = min(mo_tot_num,mo_integrals_cache_min+63)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_integrals_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of MO integrals for fast access
END_DOC
PROVIDE mo_bielec_integrals_in_map
integer :: i,j,k,l
integer :: ii
integer(key_kind) :: idx
real(integral_kind) :: integral
FREE ao_integrals_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=mo_integrals_cache_min,mo_integrals_cache_max
do k=mo_integrals_cache_min,mo_integrals_cache_max
do j=mo_integrals_cache_min,mo_integrals_cache_max
do i=mo_integrals_cache_min,mo_integrals_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_map,idx,integral)
ii = l-mo_integrals_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_cache_min)
mo_integrals_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_mo_bielec_integral(i,j,k,l,map)
use map_module
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
integer :: ii
type(map_type), intent(inout) :: map
real(integral_kind) :: tmp
PROVIDE mo_bielec_integrals_in_map mo_integrals_cache
ii = l-mo_integrals_cache_min
ii = ior(ii, k-mo_integrals_cache_min)
ii = ior(ii, j-mo_integrals_cache_min)
ii = ior(ii, i-mo_integrals_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
get_mo_bielec_integral = dble(tmp)
else
ii = l-mo_integrals_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_cache_min)
get_mo_bielec_integral = mo_integrals_cache(ii)
endif
end
double precision function mo_bielec_integral(i,j,k,l)
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
double precision :: get_mo_bielec_integral
PROVIDE mo_bielec_integrals_in_map mo_integrals_cache
!DIR$ FORCEINLINE
PROVIDE mo_bielec_integrals_in_map
mo_bielec_integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
return
end
subroutine get_mo_bielec_integrals(j,k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_ij(k,l,sze,out_array,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i(1)j(2) 1/r12 k(1)l(2)
! i, j for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_array(sze,sze)
type(map_type), intent(inout) :: map
integer :: i,j,kk,ll,m
integer(key_kind),allocatable :: hash(:)
integer ,allocatable :: pairs(:,:), iorder(:)
real(integral_kind), allocatable :: tmp_val(:)
PROVIDE mo_bielec_integrals_in_map
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
tmp_val(sze*sze))
kk=0
out_array = 0.d0
do j=1,sze
do i=1,sze
kk += 1
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(kk))
pairs(1,kk) = i
pairs(2,kk) = j
iorder(kk) = kk
enddo
enddo
logical :: integral_is_in_map
if (key_kind == 8) then
call i8radix_sort(hash,iorder,kk,-1)
else if (key_kind == 4) then
call iradix_sort(hash,iorder,kk,-1)
else if (key_kind == 2) then
call i2radix_sort(hash,iorder,kk,-1)
endif
call map_get_many(mo_integrals_map, hash, tmp_val, kk)
do ll=1,kk
m = iorder(ll)
i=pairs(1,m)
j=pairs(2,m)
out_array(i,j) = tmp_val(ll)
enddo
deallocate(pairs,hash,iorder,tmp_val)
end
subroutine get_mo_bielec_integrals_coulomb_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|li>
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,l,i,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_exch_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|il>
! k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,i,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
integer*8 function get_mo_map_size()
implicit none
BEGIN_DOC
! Return the number of elements in the MO map
END_DOC
get_mo_map_size = mo_integrals_map % n_elements
end
BEGIN_TEMPLATE
subroutine dump_$ao_integrals(filename)
use map_module
implicit none
BEGIN_DOC
! Save to disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, n
call ezfio_set_work_empty(.False.)
open(unit=66,file=filename,FORM='unformatted')
write(66) integral_kind, key_kind
write(66) $ao_integrals_map%sorted, $ao_integrals_map%map_size, &
$ao_integrals_map%n_elements
do i=0_8,$ao_integrals_map%map_size
write(66) $ao_integrals_map%map(i)%sorted, $ao_integrals_map%map(i)%map_size,&
$ao_integrals_map%map(i)%n_elements
enddo
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
write(66) (key(j), j=1,n), (val(j), j=1,n)
enddo
close(66)
end
IRP_IF COARRAY
subroutine communicate_$ao_integrals()
use map_module
implicit none
BEGIN_DOC
! Communicate the $ao integrals with co-array
END_DOC
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, k, nmax
integer*8, save :: n[*]
integer :: copy_n
real(integral_kind), allocatable :: buffer_val(:)[:]
integer(cache_key_kind), allocatable :: buffer_key(:)[:]
real(integral_kind), allocatable :: copy_val(:)
integer(key_kind), allocatable :: copy_key(:)
n = 0_8
do i=0_8,$ao_integrals_map%map_size
n = max(n,$ao_integrals_map%map(i)%n_elements)
enddo
sync all
nmax = 0_8
do j=1,num_images()
nmax = max(nmax,n[j])
enddo
allocate( buffer_key(nmax)[*], buffer_val(nmax)[*])
allocate( copy_key(nmax), copy_val(nmax))
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
do j=1,n
buffer_key(j) = key(j)
buffer_val(j) = val(j)
enddo
sync all
do j=1,num_images()
if (j /= this_image()) then
copy_n = n[j]
do k=1,copy_n
copy_val(k) = buffer_val(k)[j]
copy_key(k) = buffer_key(k)[j]
copy_key(k) = copy_key(k)+ishft(i,-map_shift)
enddo
call map_append($ao_integrals_map, copy_key, copy_val, copy_n )
endif
enddo
sync all
enddo
deallocate( buffer_key, buffer_val, copy_val, copy_key)
end
IRP_ENDIF
integer function load_$ao_integrals(filename)
implicit none
BEGIN_DOC
! Read from disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer*8 :: i
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer :: iknd, kknd
integer*8 :: n, j
load_$ao_integrals = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd
stop 1
endif
if (kknd /= key_kind) then
print *, 'Wrong key kind in file :', kknd
stop 1
endif
read(66,err=98,end=98) $ao_integrals_map%sorted, $ao_integrals_map%map_size,&
$ao_integrals_map%n_elements
do i=0_8, $ao_integrals_map%map_size
read(66,err=99,end=99) $ao_integrals_map%map(i)%sorted, &
$ao_integrals_map%map(i)%map_size, $ao_integrals_map%map(i)%n_elements
call cache_map_reallocate($ao_integrals_map%map(i),$ao_integrals_map%map(i)%map_size)
enddo
do i=0_8, $ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo
call map_sort($ao_integrals_map)
load_$ao_integrals = 0
return
99 continue
call map_deinit($ao_integrals_map)
98 continue
stop 'Problem reading $ao_integrals_map file in work/'
end
SUBST [ ao_integrals_map, ao_integrals, ao_num ]
ao_integrals_map ; ao_integrals ; ao_num ;;
mo_integrals_map ; mo_integrals ; mo_tot_num ;;
END_TEMPLATE

View File

@ -0,0 +1,611 @@
use map_module
!! AO Map
!! ======
BEGIN_PROVIDER [ type(map_type), ao_integrals_erf_map ]
implicit none
BEGIN_DOC
! AO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
sze = key_max
call map_init(ao_integrals_erf_map,sze)
print*, 'AO map initialized : ', sze
END_PROVIDER
BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_min ]
&BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the AOs for which the integrals are in the cache
END_DOC
ao_integrals_erf_cache_min = max(1,ao_num - 63)
ao_integrals_erf_cache_max = ao_num
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_erf_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_bielec_integrals_erf_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx
real(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do k=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do j=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do i=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_erf_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_erf_map,idx,integral)
ii = l-ao_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
ao_integrals_erf_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_ao_bielec_integral_erf(i,j,k,l,map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
type(map_type), intent(inout) :: map
integer :: ii
real(integral_kind) :: tmp
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_cache ao_integrals_erf_cache_min
!DIR$ FORCEINLINE
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
tmp = 0.d0
else if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < ao_integrals_threshold) then
tmp = 0.d0
else
ii = l-ao_integrals_erf_cache_min
ii = ior(ii, k-ao_integrals_erf_cache_min)
ii = ior(ii, j-ao_integrals_erf_cache_min)
ii = ior(ii, i-ao_integrals_erf_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
tmp = tmp
else
ii = l-ao_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
tmp = ao_integrals_erf_cache(ii)
endif
endif
result = tmp
end
subroutine get_ao_bielec_integrals_erf(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
double precision :: thresh
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_map
thresh = ao_integrals_threshold
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
double precision :: get_ao_bielec_integral_erf
do i=1,sze
out_val(i) = get_ao_bielec_integral_erf(i,j,k,l,ao_integrals_erf_map)
enddo
end
subroutine get_ao_bielec_integrals_erf_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer, intent(out) :: out_val_index(sze),non_zero_int
integer :: i
integer(key_kind) :: hash
double precision :: thresh,tmp
PROVIDE ao_bielec_integrals_erf_in_map
thresh = ao_integrals_threshold
non_zero_int = 0
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
non_zero_int = 0
do i=1,sze
integer, external :: ao_l4
double precision, external :: ao_bielec_integral_erf
!DIR$ FORCEINLINE
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh) then
cycle
endif
call bielec_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_erf_map, hash,tmp)
if (dabs(tmp) < thresh ) cycle
non_zero_int = non_zero_int+1
out_val_index(non_zero_int) = i
out_val(non_zero_int) = tmp
enddo
end
function get_ao_erf_map_size()
implicit none
integer (map_size_kind) :: get_ao_erf_map_size
BEGIN_DOC
! Returns the number of elements in the AO map
END_DOC
get_ao_erf_map_size = ao_integrals_erf_map % n_elements
end
subroutine clear_ao_erf_map
implicit none
BEGIN_DOC
! Frees the memory of the AO map
END_DOC
call map_deinit(ao_integrals_erf_map)
FREE ao_integrals_erf_map
end
BEGIN_TEMPLATE
subroutine dump_$ao_integrals(filename)
use map_module
implicit none
BEGIN_DOC
! Save to disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, n
call ezfio_set_work_empty(.False.)
open(unit=66,file=filename,FORM='unformatted')
write(66) integral_kind, key_kind
write(66) $ao_integrals_map%sorted, $ao_integrals_map%map_size, &
$ao_integrals_map%n_elements
do i=0_8,$ao_integrals_map%map_size
write(66) $ao_integrals_map%map(i)%sorted, $ao_integrals_map%map(i)%map_size,&
$ao_integrals_map%map(i)%n_elements
enddo
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
write(66) (key(j), j=1,n), (val(j), j=1,n)
enddo
close(66)
end
IRP_IF COARRAY
subroutine communicate_$ao_integrals()
use map_module
implicit none
BEGIN_DOC
! Communicate the $ao integrals with co-array
END_DOC
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, k, nmax
integer*8, save :: n[*]
integer :: copy_n
real(integral_kind), allocatable :: buffer_val(:)[:]
integer(cache_key_kind), allocatable :: buffer_key(:)[:]
real(integral_kind), allocatable :: copy_val(:)
integer(key_kind), allocatable :: copy_key(:)
n = 0_8
do i=0_8,$ao_integrals_map%map_size
n = max(n,$ao_integrals_map%map(i)%n_elements)
enddo
sync all
nmax = 0_8
do j=1,num_images()
nmax = max(nmax,n[j])
enddo
allocate( buffer_key(nmax)[*], buffer_val(nmax)[*])
allocate( copy_key(nmax), copy_val(nmax))
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
do j=1,n
buffer_key(j) = key(j)
buffer_val(j) = val(j)
enddo
sync all
do j=1,num_images()
if (j /= this_image()) then
copy_n = n[j]
do k=1,copy_n
copy_val(k) = buffer_val(k)[j]
copy_key(k) = buffer_key(k)[j]
copy_key(k) = copy_key(k)+ishft(i,-map_shift)
enddo
call map_append($ao_integrals_map, copy_key, copy_val, copy_n )
endif
enddo
sync all
enddo
deallocate( buffer_key, buffer_val, copy_val, copy_key)
end
IRP_ENDIF
integer function load_$ao_integrals(filename)
implicit none
BEGIN_DOC
! Read from disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer*8 :: i
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer :: iknd, kknd
integer*8 :: n, j
load_$ao_integrals = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd
stop 1
endif
if (kknd /= key_kind) then
print *, 'Wrong key kind in file :', kknd
stop 1
endif
read(66,err=98,end=98) $ao_integrals_map%sorted, $ao_integrals_map%map_size,&
$ao_integrals_map%n_elements
do i=0_8, $ao_integrals_map%map_size
read(66,err=99,end=99) $ao_integrals_map%map(i)%sorted, &
$ao_integrals_map%map(i)%map_size, $ao_integrals_map%map(i)%n_elements
call cache_map_reallocate($ao_integrals_map%map(i),$ao_integrals_map%map(i)%map_size)
enddo
do i=0_8, $ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo
call map_sort($ao_integrals_map)
load_$ao_integrals = 0
return
99 continue
call map_deinit($ao_integrals_map)
98 continue
stop 'Problem reading $ao_integrals_map file in work/'
end
SUBST [ ao_integrals_map, ao_integrals, ao_num ]
ao_integrals_erf_map ; ao_integrals_erf ; ao_num ;;
mo_integrals_erf_map ; mo_integrals_erf ; mo_tot_num;;
END_TEMPLATE
BEGIN_PROVIDER [ type(map_type), mo_integrals_erf_map ]
implicit none
BEGIN_DOC
! MO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
sze = key_max
call map_init(mo_integrals_erf_map,sze)
print*, 'MO map initialized'
END_PROVIDER
subroutine insert_into_mo_integrals_map(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into MO map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_erf_map, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_min ]
&BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the MOs for which the integrals are in the cache
END_DOC
mo_integrals_erf_cache_min = max(1,elec_alpha_num - 31)
mo_integrals_erf_cache_max = min(mo_tot_num,mo_integrals_erf_cache_min+63)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of MO integrals for fast access
END_DOC
PROVIDE mo_bielec_integrals_erf_in_map
integer :: i,j,k,l
integer :: ii
integer(key_kind) :: idx
real(integral_kind) :: integral
FREE ao_integrals_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do j=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do i=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_erf_map,idx,integral)
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
mo_integrals_erf_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_mo_bielec_integral_erf(i,j,k,l,map)
use map_module
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
integer :: ii
type(map_type), intent(inout) :: map
real(integral_kind) :: tmp
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
ii = l-mo_integrals_erf_cache_min
ii = ior(ii, k-mo_integrals_erf_cache_min)
ii = ior(ii, j-mo_integrals_erf_cache_min)
ii = ior(ii, i-mo_integrals_erf_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
get_mo_bielec_integral_erf = dble(tmp)
else
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
get_mo_bielec_integral_erf = mo_integrals_erf_cache(ii)
endif
end
double precision function mo_bielec_integral_erf(i,j,k,l)
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
double precision :: get_mo_bielec_integral_erf
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
!DIR$ FORCEINLINE
PROVIDE mo_bielec_integrals_erf_in_map
mo_bielec_integral_erf = get_mo_bielec_integral_erf(i,j,k,l,mo_integrals_erf_map)
return
end
subroutine get_mo_bielec_integrals_erf(j,k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_erf_ij(k,l,sze,out_array,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i(1)j(2) 1/r12 k(1)l(2)
! i, j for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_array(sze,sze)
type(map_type), intent(inout) :: map
integer :: i,j,kk,ll,m
integer(key_kind),allocatable :: hash(:)
integer ,allocatable :: pairs(:,:), iorder(:)
real(integral_kind), allocatable :: tmp_val(:)
PROVIDE mo_bielec_integrals_erf_in_map
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
tmp_val(sze*sze))
kk=0
out_array = 0.d0
do j=1,sze
do i=1,sze
kk += 1
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(kk))
pairs(1,kk) = i
pairs(2,kk) = j
iorder(kk) = kk
enddo
enddo
logical :: integral_is_in_map
if (key_kind == 8) then
call i8radix_sort(hash,iorder,kk,-1)
else if (key_kind == 4) then
call iradix_sort(hash,iorder,kk,-1)
else if (key_kind == 2) then
call i2radix_sort(hash,iorder,kk,-1)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
do ll=1,kk
m = iorder(ll)
i=pairs(1,m)
j=pairs(2,m)
out_array(i,j) = tmp_val(ll)
enddo
deallocate(pairs,hash,iorder,tmp_val)
end
subroutine get_mo_bielec_integrals_erf_coulomb_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|li>
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,l,i,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_erf_exch_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|il>
! k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_erf_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,i,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
integer*8 function get_mo_erf_map_size()
implicit none
BEGIN_DOC
! Return the number of elements in the MO map
END_DOC
get_mo_erf_map_size = mo_integrals_erf_map % n_elements
end

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,616 @@
subroutine mo_bielec_integrals_erf_index(i,j,k,l,i1)
use map_module
implicit none
BEGIN_DOC
! Computes an unique index for i,j,k,l integrals
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer(key_kind) :: p,q,r,s,i2
p = min(i,k)
r = max(i,k)
p = p+ishft(r*r-r,-1)
q = min(j,l)
s = max(j,l)
q = q+ishft(s*s-s,-1)
i1 = min(p,q)
i2 = max(p,q)
i1 = i1+ishft(i2*i2-i2,-1)
end
BEGIN_PROVIDER [ logical, mo_bielec_integrals_erf_in_map ]
use map_module
implicit none
integer(bit_kind) :: mask_ijkl(N_int,4)
integer(bit_kind) :: mask_ijk(N_int,3)
BEGIN_DOC
! If True, the map of MO bielectronic integrals is provided
END_DOC
mo_bielec_integrals_erf_in_map = .True.
! if (read_mo_integrals) then
! print*,'Reading the MO integrals'
! call map_load_from_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
! print*, 'MO integrals provided'
! return
! else
PROVIDE ao_bielec_integrals_in_map
! endif
!if(no_vvvv_integrals)then
! integer :: i,j,k,l
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
! ! (core+inact+act) ^ 4
! ! <ii|ii>
! print*, ''
! print*, '<ii|ii>'
! do i = 1,N_int
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
! enddo
! call add_integrals_to_map(mask_ijkl)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
! ! (core+inact+act) ^ 2 (virt) ^2
! ! <iv|iv> = J_iv
! print*, ''
! print*, '<iv|iv>'
! do i = 1,N_int
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,2) = virt_bitmask(i,1)
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,4) = virt_bitmask(i,1)
! enddo
! call add_integrals_to_map(mask_ijkl)
!
! ! (core+inact+act) ^ 2 (virt) ^2
! ! <ii|vv> = (iv|iv)
! print*, ''
! print*, '<ii|vv>'
! do i = 1,N_int
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,3) = virt_bitmask(i,1)
! mask_ijkl(i,4) = virt_bitmask(i,1)
! enddo
! call add_integrals_to_map(mask_ijkl)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
! if(.not.no_vvv_integrals)then
! print*, ''
! print*, '<rv|sv> and <rv|vs>'
! do i = 1,N_int
! mask_ijk(i,1) = virt_bitmask(i,1)
! mask_ijk(i,2) = virt_bitmask(i,1)
! mask_ijk(i,3) = virt_bitmask(i,1)
! enddo
! call add_integrals_to_map_three_indices(mask_ijk)
! endif
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
! ! (core+inact+act) ^ 3 (virt) ^1
! ! <iv|ii>
! print*, ''
! print*, '<iv|ii>'
! do i = 1,N_int
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,4) = virt_bitmask(i,1)
! enddo
! call add_integrals_to_map(mask_ijkl)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
! ! (core+inact+act) ^ 1 (virt) ^3
! ! <iv|vv>
! if(.not.no_ivvv_integrals)then
! print*, ''
! print*, '<iv|vv>'
! do i = 1,N_int
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
! mask_ijkl(i,2) = virt_bitmask(i,1)
! mask_ijkl(i,3) = virt_bitmask(i,1)
! mask_ijkl(i,4) = virt_bitmask(i,1)
! enddo
! call add_integrals_to_map_no_exit_34(mask_ijkl)
! endif
!
!else
call add_integrals_to_map(full_ijkl_bitmask_4)
!endif
!if (write_mo_integrals) then
! call ezfio_set_work_empty(.False.)
! call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
! call ezfio_set_integrals_bielec_disk_access_mo_integrals("Read")
!endif
END_PROVIDER
subroutine add_integrals_erf_to_map(mask_ijkl)
use bitmasks
implicit none
BEGIN_DOC
! Adds integrals to tha MO map according to some bitmask
END_DOC
integer(bit_kind), intent(in) :: mask_ijkl(N_int,4)
integer :: i,j,k,l
integer :: i0,j0,k0,l0
double precision :: c, cpu_1, cpu_2, wall_1, wall_2, wall_0
integer, allocatable :: list_ijkl(:,:)
integer :: n_i, n_j, n_k, n_l
integer, allocatable :: bielec_tmp_0_idx(:)
real(integral_kind), allocatable :: bielec_tmp_0(:,:)
double precision, allocatable :: bielec_tmp_1(:)
double precision, allocatable :: bielec_tmp_2(:,:)
double precision, allocatable :: bielec_tmp_3(:,:,:)
!DEC$ ATTRIBUTES ALIGN : 64 :: bielec_tmp_1, bielec_tmp_2, bielec_tmp_3
integer :: n_integrals
integer :: size_buffer
integer(key_kind),allocatable :: buffer_i(:)
real(integral_kind),allocatable :: buffer_value(:)
real :: map_mb
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
integer :: i2,i3,i4
double precision,parameter :: thr_coef = 1.d-10
PROVIDE ao_bielec_integrals_in_map mo_coef
!Get list of MOs for i,j,k and l
!-------------------------------
allocate(list_ijkl(mo_tot_num,4))
call bitstring_to_list( mask_ijkl(1,1), list_ijkl(1,1), n_i, N_int )
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
character*(2048) :: output(1)
print*, 'i'
call bitstring_to_str( output(1), mask_ijkl(1,1), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,1))
enddo
if(j==0)then
return
endif
print*, 'j'
call bitstring_to_str( output(1), mask_ijkl(1,2), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,2))
enddo
if(j==0)then
return
endif
print*, 'k'
call bitstring_to_str( output(1), mask_ijkl(1,3), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,3))
enddo
if(j==0)then
return
endif
print*, 'l'
call bitstring_to_str( output(1), mask_ijkl(1,4), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,4))
enddo
if(j==0)then
return
endif
size_buffer = min(ao_num*ao_num*ao_num,16000000)
print*, 'Providing the molecular integrals '
print*, 'Buffers : ', 8.*(mo_tot_num_align*(n_j)*(n_k+1) + mo_tot_num_align +&
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
call wall_time(wall_1)
call cpu_time(cpu_1)
double precision :: accu_bis
accu_bis = 0.d0
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
!$OMP bielec_tmp_0_idx, bielec_tmp_0, bielec_tmp_1,bielec_tmp_2,bielec_tmp_3,&
!$OMP buffer_i,buffer_value,n_integrals,wall_2,i0,j0,k0,l0, &
!$OMP wall_0,thread_num,accu_bis) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(size_buffer,ao_num,mo_tot_num,n_i,n_j,n_k,n_l,mo_tot_num_align,&
!$OMP mo_coef_transp, &
!$OMP mo_coef_transp_is_built, list_ijkl, &
!$OMP mo_coef_is_built, wall_1, &
!$OMP mo_coef,mo_integrals_threshold,mo_integrals_erf_map)
n_integrals = 0
wall_0 = wall_1
allocate(bielec_tmp_3(mo_tot_num_align, n_j, n_k), &
bielec_tmp_1(mo_tot_num_align), &
bielec_tmp_0(ao_num,ao_num), &
bielec_tmp_0_idx(ao_num), &
bielec_tmp_2(mo_tot_num_align, n_j), &
buffer_i(size_buffer), &
buffer_value(size_buffer) )
thread_num = 0
!$ thread_num = omp_get_thread_num()
!$OMP DO SCHEDULE(guided)
do l1 = 1,ao_num
!DEC$ VECTOR ALIGNED
bielec_tmp_3 = 0.d0
do k1 = 1,ao_num
!DEC$ VECTOR ALIGNED
bielec_tmp_2 = 0.d0
do j1 = 1,ao_num
call get_ao_bielec_integrals_erf(j1,k1,l1,ao_num,bielec_tmp_0(1,j1))
! call compute_ao_bielec_integrals(j1,k1,l1,ao_num,bielec_tmp_0(1,j1))
enddo
do j1 = 1,ao_num
kmax = 0
do i1 = 1,ao_num
c = bielec_tmp_0(i1,j1)
if (c == 0.d0) then
cycle
endif
kmax += 1
bielec_tmp_0(kmax,j1) = c
bielec_tmp_0_idx(kmax) = i1
enddo
if (kmax==0) then
cycle
endif
!DEC$ VECTOR ALIGNED
bielec_tmp_1 = 0.d0
ii1=1
do ii1 = 1,kmax-4,4
i1 = bielec_tmp_0_idx(ii1)
i2 = bielec_tmp_0_idx(ii1+1)
i3 = bielec_tmp_0_idx(ii1+2)
i4 = bielec_tmp_0_idx(ii1+3)
do i = list_ijkl(1,1), list_ijkl(n_i,1)
bielec_tmp_1(i) = bielec_tmp_1(i) + &
mo_coef_transp(i,i1) * bielec_tmp_0(ii1,j1) + &
mo_coef_transp(i,i2) * bielec_tmp_0(ii1+1,j1) + &
mo_coef_transp(i,i3) * bielec_tmp_0(ii1+2,j1) + &
mo_coef_transp(i,i4) * bielec_tmp_0(ii1+3,j1)
enddo ! i
enddo ! ii1
i2 = ii1
do ii1 = i2,kmax
i1 = bielec_tmp_0_idx(ii1)
do i = list_ijkl(1,1), list_ijkl(n_i,1)
bielec_tmp_1(i) = bielec_tmp_1(i) + mo_coef_transp(i,i1) * bielec_tmp_0(ii1,j1)
enddo ! i
enddo ! ii1
c = 0.d0
do i = list_ijkl(1,1), list_ijkl(n_i,1)
c = max(c,abs(bielec_tmp_1(i)))
if (c>mo_integrals_threshold) exit
enddo
if ( c < mo_integrals_threshold ) then
cycle
endif
do j0 = 1, n_j
j = list_ijkl(j0,2)
c = mo_coef_transp(j,j1)
if (abs(c) < thr_coef) then
cycle
endif
do i = list_ijkl(1,1), list_ijkl(n_i,1)
bielec_tmp_2(i,j0) = bielec_tmp_2(i,j0) + c * bielec_tmp_1(i)
enddo ! i
enddo ! j
enddo !j1
if ( maxval(abs(bielec_tmp_2)) < mo_integrals_threshold ) then
cycle
endif
do k0 = 1, n_k
k = list_ijkl(k0,3)
c = mo_coef_transp(k,k1)
if (abs(c) < thr_coef) then
cycle
endif
do j0 = 1, n_j
j = list_ijkl(j0,2)
do i = list_ijkl(1,1), k
bielec_tmp_3(i,j0,k0) = bielec_tmp_3(i,j0,k0) + c* bielec_tmp_2(i,j0)
enddo!i
enddo !j
enddo !k
enddo !k1
do l0 = 1,n_l
l = list_ijkl(l0,4)
c = mo_coef_transp(l,l1)
if (abs(c) < thr_coef) then
cycle
endif
j1 = ishft((l*l-l),-1)
do j0 = 1, n_j
j = list_ijkl(j0,2)
if (j > l) then
exit
endif
j1 += 1
do k0 = 1, n_k
k = list_ijkl(k0,3)
i1 = ishft((k*k-k),-1)
if (i1<=j1) then
continue
else
exit
endif
bielec_tmp_1 = 0.d0
do i0 = 1, n_i
i = list_ijkl(i0,1)
if (i>k) then
exit
endif
bielec_tmp_1(i) = c*bielec_tmp_3(i,j0,k0)
! i1+=1
enddo
do i0 = 1, n_i
i = list_ijkl(i0,1)
if(i> min(k,j1-i1+list_ijkl(1,1)-1))then
exit
endif
if (abs(bielec_tmp_1(i)) < mo_integrals_threshold) then
cycle
endif
n_integrals += 1
buffer_value(n_integrals) = bielec_tmp_1(i)
!DEC$ FORCEINLINE
call mo_bielec_integrals_erf_index(i,j,k,l,buffer_i(n_integrals))
if (n_integrals == size_buffer) then
call insert_into_mo_integrals_erf_map(n_integrals,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
n_integrals = 0
endif
enddo
enddo
enddo
enddo
call wall_time(wall_2)
if (thread_num == 0) then
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(l1)/float(ao_num), '% in ', &
wall_2-wall_1, 's', map_mb(mo_integrals_erf_map) ,'MB'
endif
endif
enddo
!$OMP END DO NOWAIT
deallocate (bielec_tmp_1,bielec_tmp_2,bielec_tmp_3)
integer :: index_needed
call insert_into_mo_integrals_erf_map(n_integrals,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
deallocate(buffer_i, buffer_value)
!$OMP END PARALLEL
call map_unique(mo_integrals_erf_map)
call wall_time(wall_2)
call cpu_time(cpu_2)
integer*8 :: get_mo_erf_map_size, mo_erf_map_size
mo_erf_map_size = get_mo_erf_map_size()
deallocate(list_ijkl)
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_erf_map) ,'MB'
print*,' Number of MO integrals: ', mo_erf_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
end
BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_from_ao, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_exchange_from_ao, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_anti_from_ao, (mo_tot_num_align,mo_tot_num) ]
BEGIN_DOC
! mo_bielec_integral_jj_from_ao(i,j) = J_ij
! mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij
! mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij
END_DOC
implicit none
integer :: i,j,p,q,r,s
double precision :: c
real(integral_kind) :: integral
integer :: n, pp
real(integral_kind), allocatable :: int_value(:)
integer, allocatable :: int_idx(:)
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
if (.not.do_direct_integrals) then
PROVIDE ao_bielec_integrals_erf_in_map mo_coef
endif
mo_bielec_integral_erf_jj_from_ao = 0.d0
mo_bielec_integral_erf_jj_exchange_from_ao = 0.d0
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: iqrs, iqsr
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i,j,p,q,r,s,integral,c,n,pp,int_value,int_idx, &
!$OMP iqrs, iqsr,iqri,iqis) &
!$OMP SHARED(mo_tot_num,mo_coef_transp,mo_tot_num_align,ao_num,&
!$OMP ao_integrals_threshold,do_direct_integrals) &
!$OMP REDUCTION(+:mo_bielec_integral_erf_jj_from_ao,mo_bielec_integral_erf_jj_exchange_from_ao)
allocate( int_value(ao_num), int_idx(ao_num), &
iqrs(mo_tot_num_align,ao_num), iqis(mo_tot_num), iqri(mo_tot_num),&
iqsr(mo_tot_num_align,ao_num) )
!$OMP DO SCHEDULE (guided)
do s=1,ao_num
do q=1,ao_num
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqrs(i,j) = 0.d0
iqsr(i,j) = 0.d0
enddo
enddo
if (do_direct_integrals) then
double precision :: ao_bielec_integral_erf
do r=1,ao_num
call compute_ao_bielec_integrals_erf(q,r,s,ao_num,int_value)
do p=1,ao_num
integral = int_value(p)
if (abs(integral) > ao_integrals_threshold) then
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqrs(i,r) += mo_coef_transp(i,p) * integral
enddo
endif
enddo
call compute_ao_bielec_integrals_erf(q,s,r,ao_num,int_value)
do p=1,ao_num
integral = int_value(p)
if (abs(integral) > ao_integrals_threshold) then
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqsr(i,r) += mo_coef_transp(i,p) * integral
enddo
endif
enddo
enddo
else
do r=1,ao_num
call get_ao_bielec_integrals_erf_non_zero(q,r,s,ao_num,int_value,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral = int_value(pp)
if (abs(integral) > ao_integrals_threshold) then
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqrs(i,r) += mo_coef_transp(i,p) * integral
enddo
endif
enddo
call get_ao_bielec_integrals_erf_non_zero(q,s,r,ao_num,int_value,int_idx,n)
do pp=1,n
p = int_idx(pp)
integral = int_value(pp)
if (abs(integral) > ao_integrals_threshold) then
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqsr(i,r) += mo_coef_transp(i,p) * integral
enddo
endif
enddo
enddo
endif
iqis = 0.d0
iqri = 0.d0
do r=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,mo_tot_num
iqis(i) += mo_coef_transp(i,r) * iqrs(i,r)
iqri(i) += mo_coef_transp(i,r) * iqsr(i,r)
enddo
enddo
do i=1,mo_tot_num
!DIR$ VECTOR ALIGNED
do j=1,mo_tot_num
c = mo_coef_transp(j,q)*mo_coef_transp(j,s)
mo_bielec_integral_erf_jj_from_ao(j,i) += c * iqis(i)
mo_bielec_integral_erf_jj_exchange_from_ao(j,i) += c * iqri(i)
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
deallocate(iqrs,iqsr,int_value,int_idx)
!$OMP END PARALLEL
mo_bielec_integral_erf_jj_anti_from_ao = mo_bielec_integral_erf_jj_from_ao - mo_bielec_integral_erf_jj_exchange_from_ao
! end
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_exchange, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_anti, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! mo_bielec_integral_jj(i,j) = J_ij
! mo_bielec_integral_jj_exchange(i,j) = K_ij
! mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
END_DOC
integer :: i,j
double precision :: get_mo_bielec_integral_erf
PROVIDE mo_bielec_integrals_erf_in_map
mo_bielec_integral_erf_jj = 0.d0
mo_bielec_integral_erf_jj_exchange = 0.d0
do j=1,mo_tot_num
do i=1,mo_tot_num
mo_bielec_integral_erf_jj(i,j) = get_mo_bielec_integral_erf(i,j,i,j,mo_integrals_map)
mo_bielec_integral_erf_jj_exchange(i,j) = get_mo_bielec_integral_erf(i,j,j,i,mo_integrals_map)
mo_bielec_integral_erf_jj_anti(i,j) = mo_bielec_integral_erf_jj(i,j) - mo_bielec_integral_erf_jj_exchange(i,j)
enddo
enddo
END_PROVIDER
subroutine clear_mo_erf_map
implicit none
BEGIN_DOC
! Frees the memory of the MO map
END_DOC
call map_deinit(mo_integrals_erf_map)
FREE mo_integrals_erf_map mo_bielec_integral_erf_jj mo_bielec_integral_erf_jj_anti
FREE mo_bielec_integral_Erf_jj_exchange mo_bielec_integrals_erf_in_map
end
subroutine provide_all_mo_integrals_erf
implicit none
provide mo_integrals_erf_map mo_bielec_integral_erf_jj mo_bielec_integral_erf_jj_anti
provide mo_bielec_integral_erf_jj_exchange mo_bielec_integrals_erf_in_map
end

View File

@ -0,0 +1,119 @@
BEGIN_PROVIDER [ logical, ao_bielec_integrals_erf_in_map ]
implicit none
use f77_zmq
use map_module
BEGIN_DOC
! Map of Atomic integrals
! i(r1) j(r2) 1/r12 k(r1) l(r2)
END_DOC
integer :: i,j,k,l
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
double precision :: integral, wall_0
include 'Utils/constants.include.F'
! For integrals file
integer(key_kind),allocatable :: buffer_i(:)
integer,parameter :: size_buffer = 1024*64
real(integral_kind),allocatable :: buffer_value(:)
integer :: n_integrals, rc
integer :: kk, m, j1, i1, lmax
character*(64) :: fmt
integral = ao_bielec_integral_erf(1,1,1,1)
real :: map_mb
! PROVIDE read_ao_integrals disk_access_ao_integrals
! if (read_ao_integrals) then
! print*,'Reading the AO integrals'
! call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
! print*, 'AO integrals provided'
! ao_bielec_integrals_in_map = .True.
! return
! endif
print*, 'Providing the AO integrals'
call wall_time(wall_0)
call wall_time(wall_1)
call cpu_time(cpu_1)
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
call new_parallel_job(zmq_to_qp_run_socket,'ao_integrals')
character(len=:), allocatable :: task
allocate(character(len=ao_num*12) :: task)
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
do l=1,ao_num
write(task,fmt) (i,l, i=1,l)
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
enddo
deallocate(task)
call zmq_set_running(zmq_to_qp_run_socket)
PROVIDE nproc
!$OMP PARALLEL DEFAULT(private) num_threads(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call ao_bielec_integrals_erf_in_map_collector(i)
else
call ao_bielec_integrals_erf_in_map_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, 'ao_integrals')
print*, 'Sorting the map'
call map_sort(ao_integrals_erf_map)
call cpu_time(cpu_2)
call wall_time(wall_2)
integer(map_size_kind) :: get_ao_erf_map_size, ao_erf_map_size
ao_erf_map_size = get_ao_erf_map_size()
print*, 'AO integrals provided:'
print*, ' Size of AO map : ', map_mb(ao_integrals_erf_map) ,'MB'
print*, ' Number of AO integrals :', ao_erf_map_size
print*, ' cpu time :',cpu_2 - cpu_1, 's'
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
ao_bielec_integrals_erf_in_map = .True.
! if (write_ao_integrals) then
! call ezfio_set_work_empty(.False.)
! call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_erf_map)
! call ezfio_set_integrals_bielec_disk_access_ao_integrals("Read")
! endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_bielec_integral_erf_schwartz,(ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Needed to compute Schwartz inequalities
END_DOC
integer :: i,k
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
ao_bielec_integral_erf_schwartz(1,1) = ao_bielec_integral_erf(1,1,1,1)
!$OMP PARALLEL DO PRIVATE(i,k) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED (ao_num,ao_bielec_integral_erf_schwartz) &
!$OMP SCHEDULE(dynamic)
do i=1,ao_num
do k=1,i
ao_bielec_integral_erf_schwartz(i,k) = dsqrt(ao_bielec_integral_erf(i,k,i,k))
ao_bielec_integral_erf_schwartz(k,i) = ao_bielec_integral_erf_schwartz(i,k)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -0,0 +1,116 @@
BEGIN_PROVIDER [ logical, ao_bielec_integrals_in_map ]
implicit none
use f77_zmq
use map_module
BEGIN_DOC
! Map of Atomic integrals
! i(r1) j(r2) 1/r12 k(r1) l(r2)
END_DOC
integer :: i,j,k,l
double precision :: ao_bielec_integral,cpu_1,cpu_2, wall_1, wall_2
double precision :: integral, wall_0
include 'Utils/constants.include.F'
! For integrals file
integer(key_kind),allocatable :: buffer_i(:)
integer,parameter :: size_buffer = 1024*64
real(integral_kind),allocatable :: buffer_value(:)
integer :: n_integrals, rc
integer :: kk, m, j1, i1, lmax
character*(64) :: fmt
integral = ao_bielec_integral(1,1,1,1)
real :: map_mb
PROVIDE read_ao_integrals disk_access_ao_integrals
if (read_ao_integrals) then
print*,'Reading the AO integrals'
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
print*, 'AO integrals provided'
ao_bielec_integrals_in_map = .True.
return
endif
print*, 'Providing the AO integrals'
call wall_time(wall_0)
call wall_time(wall_1)
call cpu_time(cpu_1)
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
call new_parallel_job(zmq_to_qp_run_socket,'ao_integrals')
character(len=:), allocatable :: task
allocate(character(len=ao_num*12) :: task)
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
do l=1,ao_num
write(task,fmt) (i,l, i=1,l)
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
enddo
deallocate(task)
call zmq_set_running(zmq_to_qp_run_socket)
PROVIDE nproc
!$OMP PARALLEL DEFAULT(private) num_threads(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call ao_bielec_integrals_in_map_collector(i)
else
call ao_bielec_integrals_in_map_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, 'ao_integrals')
print*, 'Sorting the map'
call map_sort(ao_integrals_map)
call cpu_time(cpu_2)
call wall_time(wall_2)
integer(map_size_kind) :: get_ao_map_size, ao_map_size
ao_map_size = get_ao_map_size()
print*, 'AO integrals provided:'
print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB'
print*, ' Number of AO integrals :', ao_map_size
print*, ' cpu time :',cpu_2 - cpu_1, 's'
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
ao_bielec_integrals_in_map = .True.
if (write_ao_integrals) then
call ezfio_set_work_empty(.False.)
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
call ezfio_set_integrals_bielec_disk_access_ao_integrals("Read")
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_bielec_integral_schwartz,(ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Needed to compute Schwartz inequalities
END_DOC
integer :: i,k
double precision :: ao_bielec_integral,cpu_1,cpu_2, wall_1, wall_2
ao_bielec_integral_schwartz(1,1) = ao_bielec_integral(1,1,1,1)
!$OMP PARALLEL DO PRIVATE(i,k) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED (ao_num,ao_bielec_integral_schwartz) &
!$OMP SCHEDULE(dynamic)
do i=1,ao_num
do k=1,i
ao_bielec_integral_schwartz(i,k) = dsqrt(ao_bielec_integral(i,k,i,k))
ao_bielec_integral_schwartz(k,i) = ao_bielec_integral_schwartz(i,k)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -0,0 +1,32 @@
program qp_ao_ints
use omp_lib
implicit none
BEGIN_DOC
! Increments a running calculation to compute AO integrals
END_DOC
integer :: i
call switch_qp_run_to_master
zmq_context = f77_zmq_ctx_new ()
! Set the state of the ZMQ
zmq_state = 'ao_integrals'
! Provide everything needed
double precision :: integral, ao_bielec_integral
integral = ao_bielec_integral(1,1,1,1)
character*(64) :: state
call wait_for_state(zmq_state,state)
do while (state /= 'Stopped')
!$OMP PARALLEL DEFAULT(PRIVATE) PRIVATE(i)
i = omp_get_thread_num()
call ao_bielec_integrals_in_map_slave_tcp(i)
!$OMP END PARALLEL
call wait_for_state(zmq_state,state)
enddo
print *, 'Done'
end

View File

@ -0,0 +1,47 @@
BEGIN_PROVIDER [ logical, read_ao_integrals ]
&BEGIN_PROVIDER [ logical, read_mo_integrals ]
&BEGIN_PROVIDER [ logical, write_ao_integrals ]
&BEGIN_PROVIDER [ logical, write_mo_integrals ]
BEGIN_DOC
! One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals
END_DOC
implicit none
if (disk_access_ao_integrals.EQ.'Read') then
read_ao_integrals = .True.
write_ao_integrals = .False.
else if (disk_access_ao_integrals.EQ.'Write') then
read_ao_integrals = .False.
write_ao_integrals = .True.
else if (disk_access_ao_integrals.EQ.'None') then
read_ao_integrals = .False.
write_ao_integrals = .False.
else
print *, 'bielec_integrals/disk_access_ao_integrals has a wrong type'
stop 1
endif
if (disk_access_mo_integrals.EQ.'Read') then
read_mo_integrals = .True.
write_mo_integrals = .False.
else if (disk_access_mo_integrals.EQ.'Write') then
read_mo_integrals = .False.
write_mo_integrals = .True.
else if (disk_access_mo_integrals.EQ.'None') then
read_mo_integrals = .False.
write_mo_integrals = .False.
else
print *, 'bielec_integrals/disk_access_mo_integrals has a wrong type'
stop 1
endif
END_PROVIDER

View File

@ -0,0 +1,33 @@
program pouet
implicit none
call routine
end
subroutine routine
implicit none
integer(bit_kind) :: mask_ijkl(N_int,4)
integer, allocatable :: list_ijkl(:,:)
integer :: i,j
integer :: n_i,n_j,n_k,n_l
do i = 1,N_int
mask_ijkl(i,1) = inact_bitmask(i,1)
mask_ijkl(i,2) = inact_bitmask(i,1)
mask_ijkl(i,3) = inact_bitmask(i,1)
mask_ijkl(i,4) = inact_bitmask(i,1)
enddo
allocate(list_ijkl(mo_tot_num,4))
call bitstring_to_list( mask_ijkl(1,1), list_ijkl(1,1), n_i, N_int )
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
print*,'n_i,n_j = ',n_i,n_j
print*,'n_k,n_l = ',n_k,n_l
do i =1, n_i
print*,list_ijkl(i,1), list_ijkl(i,2)
enddo
deallocate(list_ijkl)
end

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/AO_Basis

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Bitmask

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Electrons

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Ezfio_files

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Integrals_Bielec

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Integrals_Monoelec

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/MO_Basis

View File

@ -1,16 +0,0 @@
IRPF90 = irpf90 #-a -d
FC = gfortran
FCFLAGS= -O2 -ffree-line-length-none -I .
NINJA = ninja
AR = ar
RANLIB = ranlib
SRC=
OBJ=
LIB=
include irpf90.make
export
irpf90.make: $(filter-out IRPF90_temp/%, $(wildcard */*.irp.f)) $(wildcard *.irp.f) $(wildcard *.inc.f) Makefile
$(IRPF90)

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Nuclei

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Pseudo

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/Utils

View File

@ -1 +0,0 @@
/home/giner/qp_bis/quantum_package/src/ZMQ