mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 10:05:57 +01:00
Improved diagonalization
This commit is contained in:
parent
9c50e4de2e
commit
18ff53e063
@ -799,7 +799,7 @@ end
|
||||
call dress_diag_elem_2h2p(dressing_H_mat_elem,N_det)
|
||||
call dress_diag_elem_2h1p(dressing_H_mat_elem,N_det,lmct,i_hole)
|
||||
call dress_diag_elem_1h2p(dressing_H_mat_elem,N_det,lmct,i_hole)
|
||||
call davidson_diag_hjj(psi_det,psi_coef,dressing_H_mat_elem,energies,size(psi_coef,1),N_det,N_states_diag,N_int,output_determinants)
|
||||
call davidson_diag_hjj(psi_det,psi_coef,dressing_H_mat_elem,energies,size(psi_coef,1),N_det,N_states,N_states_diag,N_int,output_determinants)
|
||||
do i = 1, 2
|
||||
print*,'psi_coef = ',psi_coef(i,1)
|
||||
enddo
|
||||
|
@ -1,7 +1,4 @@
|
||||
|
||||
|
||||
|
||||
subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit,istate)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -22,7 +19,7 @@ subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit,i
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit, istate
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit, istate, N_st_diag
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
@ -31,6 +28,7 @@ subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit,i
|
||||
double precision :: diag_h_mat_elem
|
||||
integer :: i
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
@ -52,11 +50,11 @@ subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit,i
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
call davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit,istate)
|
||||
deallocate (H_jj)
|
||||
end
|
||||
|
||||
subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit,istate)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -79,7 +77,7 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nin
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, istate
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, istate, N_st_diag
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: iunit
|
||||
@ -106,6 +104,9 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nin
|
||||
double precision :: cpu, wall
|
||||
|
||||
!PROVIDE det_connections
|
||||
if (N_st_diag /= N_st) then
|
||||
stop 'N_st_diag /= N_st todo in davidson'
|
||||
endif
|
||||
|
||||
call write_time(iunit)
|
||||
call wall_time(wall)
|
||||
|
@ -149,7 +149,7 @@ END_PROVIDER
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
|
||||
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,mrcc_state)
|
||||
size(CI_eigenvectors_dressed,1),N_det,N_states,N_states_diag,N_int,output_determinants,mrcc_state)
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
|
||||
N_states_diag,size(CI_eigenvectors_dressed,1))
|
||||
|
||||
|
@ -1,4 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated MRCC energy
|
||||
interface: ezfio
|
@ -1 +0,0 @@
|
||||
Perturbation Selectors_full Generators_full Psiref_Utils
|
@ -1,168 +0,0 @@
|
||||
===========
|
||||
MRCC Module
|
||||
===========
|
||||
|
||||
Multi-Reference Coupled Cluster.
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
.. image:: tree_dependency.png
|
||||
|
||||
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation>`_
|
||||
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/src/Selectors_full>`_
|
||||
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/src/Generators_full>`_
|
||||
* `Psiref_Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Psiref_Utils>`_
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
`apply_excitation_operator <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_dress.irp.f#L132>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L84>`_
|
||||
Eigenvectors/values of the CI matrix
|
||||
|
||||
|
||||
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L85>`_
|
||||
Eigenvectors/values of the CI matrix
|
||||
|
||||
|
||||
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L83>`_
|
||||
Eigenvectors/values of the CI matrix
|
||||
|
||||
|
||||
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L150>`_
|
||||
N_states lowest eigenvalues of the dressed CI matrix
|
||||
|
||||
|
||||
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/davidson.irp.f#L56>`_
|
||||
Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
.br
|
||||
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
.br
|
||||
dets_in : bitmasks corresponding to determinants
|
||||
.br
|
||||
u_in : guess coefficients on the various states. Overwritten
|
||||
on exit
|
||||
.br
|
||||
dim_in : leftmost dimension of u_in
|
||||
.br
|
||||
sze : Number of determinants
|
||||
.br
|
||||
N_st : Number of eigenstates
|
||||
.br
|
||||
iunit : Unit for the I/O
|
||||
.br
|
||||
Initial guess vectors are not necessarily orthonormal
|
||||
|
||||
|
||||
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/davidson.irp.f#L1>`_
|
||||
Davidson diagonalization.
|
||||
.br
|
||||
dets_in : bitmasks corresponding to determinants
|
||||
.br
|
||||
u_in : guess coefficients on the various states. Overwritten
|
||||
on exit
|
||||
.br
|
||||
dim_in : leftmost dimension of u_in
|
||||
.br
|
||||
sze : Number of determinants
|
||||
.br
|
||||
N_st : Number of eigenstates
|
||||
.br
|
||||
iunit : Unit number for the I/O
|
||||
.br
|
||||
Initial guess vectors are not necessarily orthonormal
|
||||
|
||||
|
||||
`delta_ii <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L45>`_
|
||||
Dressing matrix in N_det basis
|
||||
|
||||
|
||||
`delta_ij <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L44>`_
|
||||
Dressing matrix in N_det basis
|
||||
|
||||
|
||||
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L165>`_
|
||||
Replace the coefficients of the CI states by the coefficients of the
|
||||
eigenstates of the CI matrix
|
||||
|
||||
|
||||
`get_excitation_operators_for_one_ref <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_amplitudes.irp.f#L1>`_
|
||||
This subroutine provides all the amplitudes and excitation operators
|
||||
that one needs to go from the reference to the non reference wave function
|
||||
you enter with det_ref that is a reference determinant
|
||||
.br
|
||||
N_connect_ref is the number of determinants belonging to psi_non_ref
|
||||
that are connected to det_ref.
|
||||
.br
|
||||
amplitudes_phase_less(i) = amplitude phase less t_{I->i} = <I|H|i> * lambda_mrcc(i) * phase(I->i)
|
||||
.br
|
||||
excitation_operators(:,i) represents the holes and particles that
|
||||
link the ith connected determinant to det_ref
|
||||
if ::
|
||||
excitation_operators(5,i) = 2 :: double excitation alpha
|
||||
excitation_operators(5,i) = -2 :: double excitation beta
|
||||
!! excitation_operators(1,i) :: hole 1
|
||||
!! excitation_operators(2,i) :: particle 1
|
||||
!! excitation_operators(3,i) :: hole 2
|
||||
!! excitation_operators(4,i) :: particle 2
|
||||
else if ::
|
||||
excitation_operators(5,i) = 1 :: single excitation alpha
|
||||
!! excitation_operators(1,i) :: hole 1
|
||||
!! excitation_operators(2,i) :: particle 1
|
||||
else if ::
|
||||
excitation_operators(5,i) = -1 :: single excitation beta
|
||||
!! excitation_operators(3,i) :: hole 1
|
||||
!! excitation_operators(4,i) :: particle 1
|
||||
else if ::
|
||||
!! excitation_operators(5,i) = 0 :: double excitation alpha/beta
|
||||
!! excitation_operators(1,i) :: hole 1 alpha
|
||||
!! excitation_operators(2,i) :: particle 1 alpha
|
||||
!! excitation_operators(3,i) :: hole 2 beta
|
||||
!! excitation_operators(4,i) :: particle 2 beta
|
||||
|
||||
|
||||
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L58>`_
|
||||
Dressed H with Delta_ij
|
||||
|
||||
|
||||
`h_u_0_mrcc <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/davidson.irp.f#L360>`_
|
||||
Computes v_0 = H|u_0>
|
||||
.br
|
||||
n : number of determinants
|
||||
.br
|
||||
H_jj : array of <j|H|j>
|
||||
|
||||
|
||||
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L1>`_
|
||||
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
||||
|
||||
|
||||
`lambda_pert <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_utils.irp.f#L2>`_
|
||||
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
||||
|
||||
|
||||
`mrcc_dress <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_dress.irp.f#L1>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
`mrcc_iterations <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_general.irp.f#L7>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
`run_mrcc <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_general.irp.f#L1>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils_new/mrcc_general.irp.f#L39>`_
|
||||
Undocumented
|
||||
|
@ -1,430 +0,0 @@
|
||||
subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization.
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! iunit : Unit number for the I/O
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit, istate
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
double precision :: diag_h_mat_elem
|
||||
integer :: i
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
allocate(H_jj(sze))
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj,N_det_ref,dets_in,Nint,istate,delta_ii,idx_ref) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,sze
|
||||
H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,N_det_ref
|
||||
H_jj(idx_ref(i)) += delta_ii(i,istate)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
deallocate (H_jj)
|
||||
end
|
||||
|
||||
subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit,istate)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! iunit : Unit for the I/O
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, istate
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: iunit
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
|
||||
integer :: iter
|
||||
integer :: i,j,k,l,m
|
||||
logical :: converged
|
||||
|
||||
double precision :: overlap(N_st,N_st)
|
||||
double precision :: u_dot_v, u_dot_u
|
||||
|
||||
integer, allocatable :: kl_pairs(:,:)
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2
|
||||
double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:)
|
||||
double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:)
|
||||
double precision :: diag_h_mat_elem
|
||||
double precision :: residual_norm(N_st)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
|
||||
PROVIDE det_connections
|
||||
|
||||
call write_time(iunit)
|
||||
call wall_time(wall)
|
||||
call cpu_time(cpu)
|
||||
write(iunit,'(A)') ''
|
||||
write(iunit,'(A)') 'Davidson Diagonalization'
|
||||
write(iunit,'(A)') '------------------------'
|
||||
write(iunit,'(A)') ''
|
||||
call write_int(iunit,N_st,'Number of states')
|
||||
call write_int(iunit,sze,'Number of determinants')
|
||||
write(iunit,'(A)') ''
|
||||
write_buffer = '===== '
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ================'
|
||||
enddo
|
||||
write(iunit,'(A)') trim(write_buffer)
|
||||
write_buffer = ' Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual'
|
||||
enddo
|
||||
write(iunit,'(A)') trim(write_buffer)
|
||||
write_buffer = '===== '
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ================'
|
||||
enddo
|
||||
write(iunit,'(A)') trim(write_buffer)
|
||||
|
||||
allocate( &
|
||||
kl_pairs(2,N_st*(N_st+1)/2), &
|
||||
W(sze,N_st,davidson_sze_max), &
|
||||
U(sze,N_st,davidson_sze_max), &
|
||||
R(sze,N_st), &
|
||||
h(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
||||
y(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
||||
lambda(N_st*davidson_sze_max))
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Initialization
|
||||
! ==============
|
||||
|
||||
k_pairs=0
|
||||
do l=1,N_st
|
||||
do k=1,l
|
||||
k_pairs+=1
|
||||
kl_pairs(1,k_pairs) = k
|
||||
kl_pairs(2,k_pairs) = l
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
|
||||
!$OMP Nint,dets_in,u_in) &
|
||||
!$OMP PRIVATE(k,l,kl,i)
|
||||
|
||||
|
||||
! Orthonormalize initial guess
|
||||
! ============================
|
||||
|
||||
!$OMP DO
|
||||
do kl=1,k_pairs
|
||||
k = kl_pairs(1,kl)
|
||||
l = kl_pairs(2,kl)
|
||||
if (k/=l) then
|
||||
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
|
||||
overlap(l,k) = overlap(k,l)
|
||||
else
|
||||
overlap(k,k) = u_dot_u(U_in(1,k),sze)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st)
|
||||
do k=1,N_st
|
||||
!$OMP DO
|
||||
do i=1,sze
|
||||
U(i,k,1) = u_in(i,k)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do iter=1,davidson_sze_max-1
|
||||
|
||||
! Compute W_k = H |u_k>
|
||||
! ----------------------
|
||||
|
||||
do k=1,N_st
|
||||
call H_u_0_mrcc(W(1,k,iter),U(1,k,iter),H_jj,sze,dets_in,Nint,istate)
|
||||
enddo
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
do l=1,N_st
|
||||
do k=1,N_st
|
||||
do iter2=1,iter-1
|
||||
h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
|
||||
h(k,iter,l,iter2) = h(k,iter2,l,iter)
|
||||
enddo
|
||||
enddo
|
||||
do k=1,l
|
||||
h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
|
||||
h(l,iter,k,iter) = h(k,iter,l,iter)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!DEBUG H MATRIX
|
||||
!do i=1,iter
|
||||
! print '(10(x,F16.10))', h(1,i,1,1:i)
|
||||
!enddo
|
||||
!print *, ''
|
||||
!END
|
||||
|
||||
! Diagonalize h
|
||||
! -------------
|
||||
call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter)
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = 0.d0
|
||||
W(i,k,iter+1) = 0.d0
|
||||
do l=1,N_st
|
||||
do iter2=1,iter
|
||||
U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
|
||||
W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute residual vector
|
||||
! -----------------------
|
||||
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1)
|
||||
enddo
|
||||
residual_norm(k) = u_dot_u(R(1,k),sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
enddo
|
||||
|
||||
write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))'), iter, to_print(:,1:N_st)
|
||||
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
! Davidson step
|
||||
! -------------
|
||||
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Gram-Schmidt
|
||||
! ------------
|
||||
|
||||
double precision :: c
|
||||
do k=1,N_st
|
||||
do iter2=1,iter
|
||||
do l=1,N_st
|
||||
c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) -= c * U(i,l,iter2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do l=1,k-1
|
||||
c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze)
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) -= c * U(i,l,iter+1)
|
||||
enddo
|
||||
enddo
|
||||
call normalize( U(1,k,iter+1), sze )
|
||||
enddo
|
||||
|
||||
!DEBUG : CHECK OVERLAP
|
||||
!print *, '==='
|
||||
!do k=1,iter+1
|
||||
! do l=1,k
|
||||
! c = u_dot_v(U(1,1,k),U(1,1,l),sze)
|
||||
! print *, k,l, c
|
||||
! enddo
|
||||
!enddo
|
||||
!print *, '==='
|
||||
!pause
|
||||
!END DEBUG
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
if (.not.converged) then
|
||||
iter = davidson_sze_max-1
|
||||
endif
|
||||
|
||||
! Re-contract to u_in
|
||||
! -----------
|
||||
|
||||
do k=1,N_st
|
||||
energies(k) = lambda(k)
|
||||
do i=1,sze
|
||||
u_in(i,k) = 0.d0
|
||||
do iter2=1,iter
|
||||
do l=1,N_st
|
||||
u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
write_buffer = '===== '
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ================'
|
||||
enddo
|
||||
write(iunit,'(A)') trim(write_buffer)
|
||||
write(iunit,'(A)') ''
|
||||
call write_time(iunit)
|
||||
|
||||
deallocate ( &
|
||||
kl_pairs, &
|
||||
W, &
|
||||
U, &
|
||||
R, &
|
||||
h, &
|
||||
y, &
|
||||
lambda &
|
||||
)
|
||||
abort_here = abort_all
|
||||
end
|
||||
|
||||
subroutine H_u_0_mrcc(v_0,u_0,H_jj,n,keys_tmp,Nint,istate)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes v_0 = H|u_0>
|
||||
!
|
||||
! n : number of determinants
|
||||
!
|
||||
! H_jj : array of <j|H|j>
|
||||
END_DOC
|
||||
integer, intent(in) :: n,Nint,istate
|
||||
double precision, intent(out) :: v_0(n)
|
||||
double precision, intent(in) :: u_0(n)
|
||||
double precision, intent(in) :: H_jj(n)
|
||||
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
|
||||
integer, allocatable :: idx(:)
|
||||
double precision :: hij
|
||||
double precision, allocatable :: vt(:)
|
||||
integer :: i,j,k,l, jj,ii
|
||||
integer :: i0, j0
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
ASSERT (n>0)
|
||||
PROVIDE ref_bitmask_energy delta_ij
|
||||
integer, parameter :: block_size = 157
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,hij,j,k,idx,jj,ii,vt) &
|
||||
!$OMP SHARED(n_det_ref,n_det_non_ref,idx_ref,idx_non_ref,n,H_jj,u_0,keys_tmp,Nint,v_0,istate,delta_ij)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i=1,n
|
||||
v_0(i) = H_jj(i) * u_0(i)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
allocate(idx(0:n), vt(n))
|
||||
Vt = 0.d0
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,n
|
||||
idx(0) = i
|
||||
call filter_connected_davidson(keys_tmp,keys_tmp(1,1,i),Nint,i-1,idx)
|
||||
do jj=1,idx(0)
|
||||
j = idx(jj)
|
||||
if ( (dabs(u_0(j)) > 1.d-7).or.((dabs(u_0(i)) > 1.d-7)) ) then
|
||||
call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij)
|
||||
hij = hij
|
||||
vt (i) = vt (i) + hij*u_0(j)
|
||||
vt (j) = vt (j) + hij*u_0(i)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do ii=1,n_det_ref
|
||||
i = idx_ref(ii)
|
||||
do jj = 1, n_det_non_ref
|
||||
j = idx_non_ref(jj)
|
||||
vt (i) = vt (i) + delta_ij(ii,jj,istate)*u_0(j)
|
||||
vt (j) = vt (j) + delta_ij(ii,jj,istate)*u_0(i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP CRITICAL
|
||||
do i=1,n
|
||||
v_0(i) = v_0(i) + vt(i)
|
||||
enddo
|
||||
!$OMP END CRITICAL
|
||||
deallocate(idx,vt)
|
||||
!$OMP END PARALLEL
|
||||
end
|
||||
|
||||
|
@ -1,93 +0,0 @@
|
||||
subroutine get_excitation_operators_for_one_ref(det_ref,i_state,ndetnonref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: det_ref(N_int,2)
|
||||
integer, intent(in) :: i_state,ndetnonref
|
||||
integer*2, intent(out) :: excitation_operators(5,ndetnonref)
|
||||
integer, intent(out) :: index_connected(ndetnonref)
|
||||
integer, intent(out) :: N_connect_ref
|
||||
double precision, intent(out) :: amplitudes_phase_less(ndetnonref)
|
||||
|
||||
integer :: i,j,k,l,degree,h1,p1,h2,p2,s1,s2
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase,hij
|
||||
BEGIN_DOC
|
||||
! This subroutine provides all the amplitudes and excitation operators
|
||||
! that one needs to go from the reference to the non reference wave function
|
||||
! you enter with det_ref that is a reference determinant
|
||||
!
|
||||
! N_connect_ref is the number of determinants belonging to psi_non_ref
|
||||
! that are connected to det_ref.
|
||||
!
|
||||
! amplitudes_phase_less(i) = amplitude phase less t_{I->i} = <I|H|i> * lambda_mrcc(i) * phase(I->i)
|
||||
!
|
||||
! excitation_operators(:,i) represents the holes and particles that
|
||||
! link the ith connected determinant to det_ref
|
||||
! if ::
|
||||
! excitation_operators(5,i) = 2 :: double excitation alpha
|
||||
! excitation_operators(5,i) = -2 :: double excitation beta
|
||||
!!! excitation_operators(1,i) :: hole 1
|
||||
!!! excitation_operators(2,i) :: particle 1
|
||||
!!! excitation_operators(3,i) :: hole 2
|
||||
!!! excitation_operators(4,i) :: particle 2
|
||||
! else if ::
|
||||
! excitation_operators(5,i) = 1 :: single excitation alpha
|
||||
!!! excitation_operators(1,i) :: hole 1
|
||||
!!! excitation_operators(2,i) :: particle 1
|
||||
! else if ::
|
||||
! excitation_operators(5,i) = -1 :: single excitation beta
|
||||
!!! excitation_operators(3,i) :: hole 1
|
||||
!!! excitation_operators(4,i) :: particle 1
|
||||
! else if ::
|
||||
!!! excitation_operators(5,i) = 0 :: double excitation alpha/beta
|
||||
!!! excitation_operators(1,i) :: hole 1 alpha
|
||||
!!! excitation_operators(2,i) :: particle 1 alpha
|
||||
!!! excitation_operators(3,i) :: hole 2 beta
|
||||
!!! excitation_operators(4,i) :: particle 2 beta
|
||||
END_DOC
|
||||
N_connect_ref = 0
|
||||
do i = 1, ndetnonref
|
||||
call i_H_j_phase_out(det_ref,psi_non_ref(1,1,i),N_int,hij,phase,exc,degree)
|
||||
if (dabs(hij) <= mo_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
N_connect_ref +=1
|
||||
index_connected(N_connect_ref) = i
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
amplitudes_phase_less(N_connect_ref) = hij * lambda_mrcc(i_state,i) !*phase
|
||||
|
||||
if (degree==2) then
|
||||
|
||||
excitation_operators(1,N_connect_ref) = h1
|
||||
excitation_operators(2,N_connect_ref) = p1
|
||||
excitation_operators(3,N_connect_ref) = h2
|
||||
excitation_operators(4,N_connect_ref) = p2
|
||||
if(s1==s2.and.s1==1)then ! double alpha
|
||||
excitation_operators(5,N_connect_ref) = 2
|
||||
elseif(s1==s2.and.s1==2)then ! double beta
|
||||
excitation_operators(5,N_connect_ref) = -2
|
||||
else ! double alpha/beta
|
||||
excitation_operators(5,N_connect_ref) = 0
|
||||
endif
|
||||
|
||||
else if(degree==1) then
|
||||
|
||||
if(s1==1)then ! mono alpha
|
||||
excitation_operators(5,N_connect_ref) = 1
|
||||
excitation_operators(1,N_connect_ref) = h1
|
||||
excitation_operators(2,N_connect_ref) = p1
|
||||
else ! mono beta
|
||||
excitation_operators(5,N_connect_ref) = -1
|
||||
excitation_operators(3,N_connect_ref) = h1
|
||||
excitation_operators(4,N_connect_ref) = p1
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
N_connect_ref-=1
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end
|
@ -1,183 +0,0 @@
|
||||
subroutine mrcc_dress(ndetref,ndetnonref,nstates,delta_ij_,delta_ii_)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: ndetref,nstates,ndetnonref
|
||||
double precision, intent(inout) :: delta_ii_(ndetref,nstates),delta_ij_(ndetref,ndetnonref,nstates)
|
||||
integer :: i,j,k,l,m
|
||||
integer :: i_state
|
||||
integer :: N_connect_ref
|
||||
integer*2,allocatable :: excitation_operators(:,:)
|
||||
double precision, allocatable :: amplitudes_phase_less(:)
|
||||
double precision, allocatable :: coef_test(:)
|
||||
integer(bit_kind), allocatable :: key_test(:,:)
|
||||
integer, allocatable :: index_connected(:)
|
||||
integer :: i_hole,i_particle,ispin,i_ok,connected_to_ref,index_wf
|
||||
integer, allocatable :: idx_vector(:)
|
||||
double precision :: phase_ij
|
||||
double precision :: dij,phase_la
|
||||
double precision :: hij,phase
|
||||
integer :: exc(0:2,2,2),degree
|
||||
logical :: is_in_wavefunction
|
||||
double precision, allocatable :: delta_ij_tmp(:,:,:), delta_ii_tmp(:,:)
|
||||
logical, external :: is_in_psi_ref
|
||||
|
||||
i_state = 1
|
||||
allocate(excitation_operators(5,N_det_non_ref))
|
||||
allocate(amplitudes_phase_less(N_det_non_ref))
|
||||
allocate(index_connected(N_det_non_ref))
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(N_det_ref, N_det_non_ref, psi_ref, i_state, &
|
||||
!$OMP N_connect_ref,index_connected,psi_non_ref, &
|
||||
!$OMP excitation_operators,amplitudes_phase_less, &
|
||||
!$OMP psi_non_ref_coef,N_int,lambda_mrcc, &
|
||||
!$OMP delta_ii_,delta_ij_,psi_ref_coef,nstates, &
|
||||
!$OMP mo_integrals_threshold,idx_non_ref_rev) &
|
||||
!$OMP PRIVATE(i,j,k,l,hil,phase_il,exc,degree,t_il, &
|
||||
!$OMP key_test,i_ok,phase_la,hij,phase_ij,m, &
|
||||
!$OMP dij,idx_vector,delta_ij_tmp, &
|
||||
!$OMP delta_ii_tmp,phase)
|
||||
allocate(idx_vector(0:N_det_non_ref))
|
||||
allocate(key_test(N_int,2))
|
||||
allocate(delta_ij_tmp(size(delta_ij_,1),size(delta_ij_,2),nstates))
|
||||
allocate(delta_ii_tmp(size(delta_ij_,1),nstates))
|
||||
delta_ij_tmp = 0.d0
|
||||
delta_ii_tmp = 0.d0
|
||||
|
||||
do i = 1, N_det_ref
|
||||
!$OMP SINGLE
|
||||
call get_excitation_operators_for_one_ref(psi_ref(1,1,i),i_state,N_det_non_ref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected)
|
||||
print*,'N_connect_ref =',N_connect_ref
|
||||
print*,'N_det_non_ref =',N_det_non_ref
|
||||
!$OMP END SINGLE
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do l = 1, N_det_non_ref
|
||||
! print *, l, '/', N_det_non_ref
|
||||
double precision :: t_il,phase_il,hil
|
||||
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,l),N_int,hil,phase_il,exc,degree)
|
||||
t_il = hil * lambda_mrcc(i_state,l)
|
||||
if (dabs(t_il) < mo_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
! loop on the non ref determinants
|
||||
|
||||
do j = 1, N_connect_ref
|
||||
! loop on the excitation operators linked to i
|
||||
|
||||
do k = 1, N_int
|
||||
key_test(k,1) = psi_non_ref(k,1,l)
|
||||
key_test(k,2) = psi_non_ref(k,2,l)
|
||||
enddo
|
||||
|
||||
! we apply the excitation operator T_I->j
|
||||
call apply_excitation_operator(key_test,excitation_operators(1,j),i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
|
||||
! we check if such determinant is already in the wave function
|
||||
if(is_in_wavefunction(key_test,N_int))cycle
|
||||
|
||||
! we get the phase for psi_non_ref(l) -> T_I->j |psi_non_ref(l)>
|
||||
call get_excitation(psi_non_ref(1,1,l),key_test,exc,degree,phase_la,N_int)
|
||||
|
||||
! we get the phase T_I->j
|
||||
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,index_connected(j)),N_int,hij,phase_ij,exc,degree)
|
||||
|
||||
! we compute the contribution to the coef of key_test
|
||||
dij = t_il * hij * phase_la *phase_ij *lambda_mrcc(i_state,index_connected(j)) * 0.5d0
|
||||
if (dabs(dij) < mo_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! we compute the interaction of such determinant with all the non_ref dets
|
||||
call filter_connected(psi_non_ref,key_test,N_int,N_det_non_ref,idx_vector)
|
||||
|
||||
do k = 1, idx_vector(0)
|
||||
m = idx_vector(k)
|
||||
call i_H_j_phase_out(key_test,psi_non_ref(1,1,m),N_int,hij,phase,exc,degree)
|
||||
delta_ij_tmp(i,m,i_state) += hij * dij
|
||||
enddo
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
if(dabs(psi_ref_coef(i,i_state)).le.5.d-5) then
|
||||
delta_ii_tmp(i,i_state) -= &
|
||||
delta_ij_tmp(i,l,i_state) * psi_non_ref_coef(l,i_state) &
|
||||
/ psi_ref_coef(i,i_state)
|
||||
endif
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
enddo
|
||||
|
||||
!$OMP CRITICAL
|
||||
delta_ij_ = delta_ij_ + delta_ij_tmp
|
||||
delta_ii_ = delta_ii_ + delta_ii_tmp
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(delta_ii_tmp,delta_ij_tmp)
|
||||
deallocate(idx_vector)
|
||||
deallocate(key_test)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(excitation_operators)
|
||||
deallocate(amplitudes_phase_less)
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine apply_excitation_operator(key_in,excitation_operator,i_ok)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer(bit_kind), intent(inout) :: key_in
|
||||
integer, intent (out) :: i_ok
|
||||
integer*2 :: excitation_operator(5)
|
||||
integer :: i_particle,i_hole,ispin
|
||||
! Do excitation
|
||||
if(excitation_operator(5)==1)then ! mono alpha
|
||||
i_hole = excitation_operator(1)
|
||||
i_particle = excitation_operator(2)
|
||||
ispin = 1
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
else if (excitation_operator(5)==-1)then ! mono beta
|
||||
i_hole = excitation_operator(3)
|
||||
i_particle = excitation_operator(4)
|
||||
ispin = 2
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
else if (excitation_operator(5) == -2 )then ! double beta
|
||||
i_hole = excitation_operator(1)
|
||||
i_particle = excitation_operator(2)
|
||||
ispin = 2
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
if(i_ok.ne.1)return
|
||||
i_hole = excitation_operator(3)
|
||||
i_particle = excitation_operator(4)
|
||||
ispin = 2
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
|
||||
else if (excitation_operator(5) == 2 )then ! double alpha
|
||||
i_hole = excitation_operator(1)
|
||||
i_particle = excitation_operator(2)
|
||||
ispin = 1
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
if(i_ok.ne.1)return
|
||||
i_hole = excitation_operator(3)
|
||||
i_particle = excitation_operator(4)
|
||||
ispin = 1
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
|
||||
else if (excitation_operator(5) == 0 )then ! double alpha/alpha
|
||||
i_hole = excitation_operator(1)
|
||||
i_particle = excitation_operator(2)
|
||||
ispin = 1
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
if(i_ok.ne.1)return
|
||||
i_hole = excitation_operator(3)
|
||||
i_particle = excitation_operator(4)
|
||||
ispin = 2
|
||||
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
endif
|
||||
end
|
@ -1,67 +0,0 @@
|
||||
subroutine run_mrcc
|
||||
implicit none
|
||||
call set_generators_bitmasks_as_holes_and_particles
|
||||
call mrcc_iterations
|
||||
end
|
||||
|
||||
subroutine mrcc_iterations
|
||||
implicit none
|
||||
|
||||
integer :: i,j
|
||||
|
||||
double precision :: E_new, E_old, delta_e
|
||||
integer :: iteration
|
||||
E_new = 0.d0
|
||||
delta_E = 1.d0
|
||||
iteration = 0
|
||||
do while (delta_E > 1.d-8)
|
||||
iteration += 1
|
||||
print *, '==========================='
|
||||
print *, 'MRCC Iteration', iteration
|
||||
print *, '==========================='
|
||||
print *, ''
|
||||
E_old = sum(ci_energy_dressed)
|
||||
call write_double(6,ci_energy_dressed(1),"MRCC energy")
|
||||
call diagonalize_ci_dressed
|
||||
E_new = sum(ci_energy_dressed)
|
||||
delta_E = dabs(E_new - E_old)
|
||||
! stop
|
||||
if (iteration > 200) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
call write_double(6,ci_energy_dressed(1),"Final MRCC energy")
|
||||
call ezfio_set_mrcc_cassd_energy(ci_energy_dressed(1))
|
||||
call save_wavefunction
|
||||
|
||||
end
|
||||
|
||||
subroutine set_generators_bitmasks_as_holes_and_particles
|
||||
implicit none
|
||||
integer :: i,k
|
||||
do k = 1, N_generators_bitmask
|
||||
do i = 1, N_int
|
||||
! Pure single part
|
||||
generators_bitmask(i,1,1,k) = holes_operators(i,1) ! holes for pure single exc alpha
|
||||
generators_bitmask(i,1,2,k) = particles_operators(i,1) ! particles for pure single exc alpha
|
||||
generators_bitmask(i,2,1,k) = holes_operators(i,2) ! holes for pure single exc beta
|
||||
generators_bitmask(i,2,2,k) = particles_operators(i,2) ! particles for pure single exc beta
|
||||
|
||||
! Double excitation
|
||||
generators_bitmask(i,1,3,k) = holes_operators(i,1) ! holes for first single exc alpha
|
||||
generators_bitmask(i,1,4,k) = particles_operators(i,1) ! particles for first single exc alpha
|
||||
generators_bitmask(i,2,3,k) = holes_operators(i,2) ! holes for first single exc beta
|
||||
generators_bitmask(i,2,4,k) = particles_operators(i,2) ! particles for first single exc beta
|
||||
|
||||
generators_bitmask(i,1,5,k) = holes_operators(i,1) ! holes for second single exc alpha
|
||||
generators_bitmask(i,1,6,k) = particles_operators(i,1) ! particles for second single exc alpha
|
||||
generators_bitmask(i,2,5,k) = holes_operators(i,2) ! holes for second single exc beta
|
||||
generators_bitmask(i,2,6,k) = particles_operators(i,2) ! particles for second single exc beta
|
||||
|
||||
enddo
|
||||
enddo
|
||||
touch generators_bitmask
|
||||
|
||||
|
||||
|
||||
end
|
@ -1,179 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, lambda_pert, (N_states,psi_det_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
double precision :: ihpsi(N_states), hii
|
||||
integer :: i_ok
|
||||
i_ok = 0
|
||||
|
||||
do i=1,N_det_non_ref
|
||||
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
|
||||
size(psi_ref_coef,1), n_states, ihpsi)
|
||||
call i_h_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
|
||||
do k=1,N_states
|
||||
lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
|
||||
if (dabs(ihpsi(k)).le.1.d-3) then
|
||||
i_ok +=1
|
||||
lambda_mrcc(k,i) = lambda_pert(k,i)
|
||||
else
|
||||
lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi(k)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'N_det_non_ref = ',N_det_non_ref
|
||||
print*,'Number of Perturbatively treated determinants = ',i_ok
|
||||
print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
!BEGIN_PROVIDER [ double precision, delta_ij_non_ref, (N_det_non_ref, N_det_non_ref,N_states) ]
|
||||
!implicit none
|
||||
!BEGIN_DOC
|
||||
!! Dressing matrix in SD basis
|
||||
!END_DOC
|
||||
!delta_ij_non_ref = 0.d0
|
||||
!call H_apply_mrcc_simple(delta_ij_non_ref,N_det_non_ref)
|
||||
!END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij, (N_det_ref,N_det_non_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii, (N_det_ref,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressing matrix in N_det basis
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
delta_ij = 0.d0
|
||||
delta_ii = 0.d0
|
||||
call mrcc_dress(N_det_ref,N_det_non_ref,N_states,delta_ij,delta_ii)
|
||||
write(33,*)delta_ij
|
||||
write(34,*)delta_ii
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressed H with Delta_ij
|
||||
END_DOC
|
||||
integer :: i, j,istate,ii,jj
|
||||
do istate = 1,N_states
|
||||
do j=1,N_det
|
||||
do i=1,N_det
|
||||
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do ii = 1, N_det_ref
|
||||
i =idx_ref(ii)
|
||||
h_matrix_dressed(i,i,istate) += delta_ii(ii,istate)
|
||||
do jj = 1, N_det_non_ref
|
||||
j =idx_non_ref(jj)
|
||||
h_matrix_dressed(i,j,istate) += delta_ij(ii,jj,istate)
|
||||
h_matrix_dressed(j,i,istate) += delta_ij(ii,jj,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
do j=1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
integer :: istate
|
||||
istate = 1
|
||||
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
|
||||
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
|
||||
enddo
|
||||
integer :: i_state
|
||||
double precision :: s2
|
||||
i_state = 0
|
||||
if (s2_eig) then
|
||||
do j=1,N_det
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
||||
if(dabs(s2-expected_s2).le.0.3d0)then
|
||||
i_state += 1
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state) = s2
|
||||
endif
|
||||
if (i_state.ge.N_states_diag) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
else
|
||||
do j=1,N_states_diag
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
||||
i_state += 1
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state) = s2
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! N_states lowest eigenvalues of the dressed CI matrix
|
||||
END_DOC
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
call write_time(output_determinants)
|
||||
do j=1,N_states_diag
|
||||
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine diagonalize_CI_dressed
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do j=1,N_states_diag
|
||||
do i=1,N_det
|
||||
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
|
||||
enddo
|
||||
enddo
|
||||
SOFT_TOUCH psi_coef
|
||||
|
||||
end
|
Binary file not shown.
Before Width: | Height: | Size: 106 KiB |
@ -57,7 +57,7 @@ program dressed_dmc
|
||||
enddo
|
||||
|
||||
|
||||
call davidson_diag_hjj(psi_det,psi_coef,H_jj,energies,size(psi_coef,1),N_det,N_states,N_int,6)
|
||||
call davidson_diag_hjj(psi_det,psi_coef,H_jj,energies,size(psi_coef,1),N_det,N_states,N_states_diag,,N_int,6)
|
||||
|
||||
call save_wavefunction
|
||||
call write_spindeterminants
|
||||
|
@ -1,5 +1,5 @@
|
||||
[lambda_type]
|
||||
type: Positive_int
|
||||
doc: lambda type ( 0 = none, 1 = last version )
|
||||
doc: lambda type
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0
|
||||
|
@ -796,7 +796,7 @@ def create_build_ninja_global():
|
||||
|
||||
|
||||
l_string += ["build dummy_target: update_build_ninja_root",
|
||||
"build ocaml_target: make_ocaml",
|
||||
"build ocaml_target: make_ocaml | dummy_target",
|
||||
"",
|
||||
"build all: make_all dummy_target ocaml_target",
|
||||
"default all",
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -19,9 +19,9 @@ subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint, iunit
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
double precision, allocatable :: H_jj(:)
|
||||
|
||||
@ -44,7 +44,7 @@ subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
|
||||
deallocate (H_jj)
|
||||
end
|
||||
|
||||
@ -270,7 +270,7 @@ subroutine sort_dets_ab(key, idx, shortcut, N_key, Nint)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -288,24 +288,26 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag : Number of states in which H is diagonalized
|
||||
!
|
||||
! iunit : Unit for the I/O
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: iunit
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
|
||||
integer :: sze_8
|
||||
integer :: iter
|
||||
integer :: i,j,k,l,m
|
||||
logical :: converged
|
||||
|
||||
double precision :: overlap(N_st,N_st)
|
||||
double precision, allocatable :: overlap(:,:)
|
||||
double precision :: u_dot_v, u_dot_u
|
||||
|
||||
integer, allocatable :: kl_pairs(:,:)
|
||||
@ -315,13 +317,14 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:)
|
||||
double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:)
|
||||
double precision :: diag_h_mat_elem
|
||||
double precision :: residual_norm(N_st)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, R, y, h, lambda
|
||||
|
||||
PROVIDE nuclear_repulsion
|
||||
|
||||
call write_time(iunit)
|
||||
call wall_time(wall)
|
||||
@ -331,6 +334,7 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
write(iunit,'(A)') '------------------------'
|
||||
write(iunit,'(A)') ''
|
||||
call write_int(iunit,N_st,'Number of states')
|
||||
call write_int(iunit,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(iunit,sze,'Number of determinants')
|
||||
write(iunit,'(A)') ''
|
||||
write_buffer = '===== '
|
||||
@ -353,70 +357,22 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
sze_8 = align_double(sze)
|
||||
|
||||
allocate( &
|
||||
kl_pairs(2,N_st*(N_st+1)/2), &
|
||||
W(sze_8,N_st,davidson_sze_max), &
|
||||
U(sze_8,N_st,davidson_sze_max), &
|
||||
R(sze_8,N_st), &
|
||||
h(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
||||
y(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
||||
lambda(N_st*davidson_sze_max))
|
||||
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
|
||||
W(sze_8,N_st_diag,davidson_sze_max), &
|
||||
U(sze_8,N_st_diag,davidson_sze_max), &
|
||||
R(sze_8,N_st_diag), &
|
||||
h(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
|
||||
y(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
|
||||
residual_norm(N_st_diag), &
|
||||
overlap(N_st_diag,N_st_diag), &
|
||||
lambda(N_st_diag*davidson_sze_max))
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
|
||||
! Initialization
|
||||
! ==============
|
||||
|
||||
|
||||
if (N_st > 1) then
|
||||
|
||||
k_pairs=0
|
||||
do l=1,N_st
|
||||
do k=1,l
|
||||
k_pairs+=1
|
||||
kl_pairs(1,k_pairs) = k
|
||||
kl_pairs(2,k_pairs) = l
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
|
||||
!$OMP Nint,dets_in,u_in) &
|
||||
!$OMP PRIVATE(k,l,kl)
|
||||
|
||||
|
||||
! Orthonormalize initial guess
|
||||
! ============================
|
||||
|
||||
!$OMP DO
|
||||
do kl=1,k_pairs
|
||||
k = kl_pairs(1,kl)
|
||||
l = kl_pairs(2,kl)
|
||||
if (k/=l) then
|
||||
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
|
||||
overlap(l,k) = overlap(k,l)
|
||||
else
|
||||
overlap(k,k) = u_dot_u(U_in(1,k),sze)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
|
||||
|
||||
else
|
||||
|
||||
overlap(1,1) = u_dot_u(U_in(1,1),sze)
|
||||
double precision :: f
|
||||
f = 1.d0 / dsqrt(overlap(1,1))
|
||||
do i=1,sze
|
||||
U_in(i,1) = U_in(i,1) * f
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
@ -424,40 +380,57 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st)
|
||||
do k=1,N_st
|
||||
!$OMP DO
|
||||
do i=1,sze
|
||||
U(i,k,1) = u_in(i,k)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do k=N_st+1,N_st_diag
|
||||
do i=1,sze
|
||||
call RANDOM_NUMBER(U(i,k,1))
|
||||
U(i,k,1) = U(i,k,1) - 0.5d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute overlap matrix
|
||||
call DGEMM('T','N', N_st_diag, N_st_diag, sze, &
|
||||
1.d0, U(1,1,1), size(U,1), U(1,1,1), size(U,1), &
|
||||
0.d0, overlap, size(overlap,1))
|
||||
|
||||
call ortho_lowdin(overlap,size(overlap,1),N_st_diag,U,size(U,1),sze)
|
||||
|
||||
do iter=1,davidson_sze_max-1
|
||||
|
||||
! Compute W_k = H |u_k>
|
||||
! ----------------------
|
||||
|
||||
call H_u_0_nstates(W(1,1,iter),U(1,1,iter),H_jj,sze,dets_in,Nint,N_st,sze_8)
|
||||
call H_u_0_nstates(W(1,1,iter),U(1,1,iter),H_jj,sze,dets_in,Nint,N_st_diag,sze_8)
|
||||
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
do l=1,N_st
|
||||
do k=1,N_st
|
||||
!$OMP PARALLEL PRIVATE(k,l,iter2) SHARED(h,U,W,sze,iter)
|
||||
do l=1,N_st_diag
|
||||
!$OMP DO
|
||||
do k=1,N_st_diag
|
||||
do iter2=1,iter-1
|
||||
h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
|
||||
h(k,iter,l,iter2) = h(k,iter2,l,iter)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
enddo
|
||||
do l=1,N_st_diag
|
||||
!$OMP DO
|
||||
do k=1,l
|
||||
h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
|
||||
h(l,iter,k,iter) = h(k,iter,l,iter)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!DEBUG H MATRIX
|
||||
!do i=1,iter
|
||||
@ -468,16 +441,16 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
|
||||
! Diagonalize h
|
||||
! -------------
|
||||
call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter)
|
||||
call lapack_diag(lambda,y,h,N_st_diag*davidson_sze_max,N_st_diag*iter)
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(k,i,l,iter2) &
|
||||
!$OMP SHARED(U,W,R,y,iter,lambda,N_st,sze,to_print, &
|
||||
!$OMP residual_norm,nuclear_repulsion)
|
||||
do k=1,N_st
|
||||
!$OMP SHARED(U,W,R,y,iter,lambda,N_st_diag,sze,to_print, &
|
||||
!$OMP residual_norm,nuclear_repulsion,N_st)
|
||||
do k=1,N_st_diag
|
||||
!$OMP DO
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = 0.d0
|
||||
@ -485,7 +458,7 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
enddo
|
||||
!$OMP END DO
|
||||
do iter2=1,iter
|
||||
do l=1,N_st
|
||||
do l=1,N_st_diag
|
||||
!$OMP DO
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
|
||||
@ -504,15 +477,17 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP SINGLE
|
||||
residual_norm(k) = u_dot_u(R(1,k),sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(R(1,k),sze)
|
||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
!$OMP END SINGLE
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))') iter, to_print(:,1:N_st)
|
||||
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_states_diag,converged)
|
||||
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
@ -521,7 +496,7 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
! Davidson step
|
||||
! -------------
|
||||
|
||||
do k=1,N_st
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k)
|
||||
enddo
|
||||
@ -531,9 +506,9 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
! ------------
|
||||
|
||||
double precision :: c
|
||||
do k=1,N_st
|
||||
do k=1,N_st_diag
|
||||
do iter2=1,iter
|
||||
do l=1,N_st
|
||||
do l=1,N_st_diag
|
||||
c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
|
||||
do i=1,sze
|
||||
U(i,k,iter+1) = U(i,k,iter+1) - c * U(i,l,iter2)
|
||||
@ -571,12 +546,12 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
! Re-contract to u_in
|
||||
! -----------
|
||||
|
||||
do k=1,N_st
|
||||
do k=1,N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
do i=1,sze
|
||||
u_in(i,k) = 0.d0
|
||||
do iter2=1,iter
|
||||
do l=1,N_st
|
||||
do l=1,N_st_diag
|
||||
u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
|
||||
enddo
|
||||
enddo
|
||||
@ -595,8 +570,8 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
|
||||
|
||||
deallocate ( &
|
||||
kl_pairs, &
|
||||
W, &
|
||||
U, &
|
||||
W, residual_norm, &
|
||||
U, overlap, &
|
||||
R, &
|
||||
h, &
|
||||
y, &
|
||||
|
@ -54,7 +54,7 @@ END_PROVIDER
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,&
|
||||
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
|
||||
size(CI_eigenvectors,1),N_det,N_states,N_states_diag,N_int,output_determinants)
|
||||
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int,&
|
||||
N_states_diag,size(CI_eigenvectors,1))
|
||||
|
@ -16,7 +16,7 @@
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
call davidson_diag(psi_det,CI_eigenvectors_mono,CI_electronic_energy, &
|
||||
size(CI_eigenvectors_mono,1),N_det,N_states_diag,N_int,output_determinants)
|
||||
size(CI_eigenvectors_mono,1),N_det,N_states,N_states_diag,N_int,output_determinants)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
|
@ -1,216 +0,0 @@
|
||||
subroutine CISD_SC2(dets_in,u_in,energies,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
|
||||
!
|
||||
! dets_in : bitmasks corresponding to determinants
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
double precision, intent(out) :: diag_H_elements(dim_in)
|
||||
double precision, intent(in) :: convergence
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
integer :: iter
|
||||
integer :: i,j,k,l,m
|
||||
logical :: converged
|
||||
double precision :: overlap(N_st,N_st)
|
||||
double precision :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: degree,N_double,index_hf
|
||||
double precision :: hij_elec, e_corr_double,e_corr,diag_h_mat_elem,inv_c0
|
||||
double precision :: e_corr_double_before,accu,cpu_2,cpu_1
|
||||
integer,allocatable :: degree_exc(:), index_double(:)
|
||||
integer :: i_ok
|
||||
double precision,allocatable :: e_corr_array(:),H_jj_ref(:),H_jj_dressed(:),hij_double(:)
|
||||
integer(bit_kind), allocatable :: doubles(:,:,:)
|
||||
|
||||
|
||||
allocate (doubles(Nint,2,sze),e_corr_array(sze),H_jj_ref(sze),H_jj_dressed(sze),&
|
||||
index_double(sze), degree_exc(sze), hij_double(sze))
|
||||
call write_time(output_determinants)
|
||||
write(output_determinants,'(A)') ''
|
||||
write(output_determinants,'(A)') 'CISD SC2'
|
||||
write(output_determinants,'(A)') '========'
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,N_st, &
|
||||
!$OMP H_jj_ref,Nint,dets_in,u_in) &
|
||||
!$OMP PRIVATE(i)
|
||||
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,sze
|
||||
H_jj_ref(i) = diag_h_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
N_double = 0
|
||||
e_corr = 0.d0
|
||||
e_corr_double = 0.d0
|
||||
do i = 1, sze
|
||||
call get_excitation_degree(ref_bitmask,dets_in(1,1,i),degree,Nint)
|
||||
degree_exc(i) = degree+1
|
||||
if(degree==0)then
|
||||
index_hf=i
|
||||
else if (degree == 2)then
|
||||
N_double += 1
|
||||
index_double(N_double) = i
|
||||
doubles(:,:,N_double) = dets_in(:,:,i)
|
||||
call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec)
|
||||
hij_double(N_double) = hij_elec
|
||||
e_corr_array(N_double) = u_in(i,1)* hij_elec
|
||||
e_corr_double += e_corr_array(N_double)
|
||||
e_corr += e_corr_array(N_double)
|
||||
else if (degree == 1)then
|
||||
call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec)
|
||||
e_corr += u_in(i,1)* hij_elec
|
||||
endif
|
||||
enddo
|
||||
inv_c0 = 1.d0/u_in(index_hf,1)
|
||||
do i = 1, N_double
|
||||
e_corr_array(i) = e_corr_array(i) * inv_c0
|
||||
enddo
|
||||
e_corr = e_corr * inv_c0
|
||||
e_corr_double = e_corr_double * inv_c0
|
||||
converged = .False.
|
||||
e_corr_double_before = e_corr_double
|
||||
iter = 0
|
||||
do while (.not.converged)
|
||||
iter +=1
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,degree,accu) &
|
||||
!$OMP SHARED(H_jj_dressed,sze,H_jj_ref,index_hf,N_int,N_double,&
|
||||
!$OMP dets_in,doubles,degree_exc,e_corr_array,e_corr_double)
|
||||
!$OMP DO SCHEDULE(STATIC)
|
||||
do i=1,sze
|
||||
H_jj_dressed(i) = H_jj_ref(i)
|
||||
if (i==index_hf)cycle
|
||||
accu = -e_corr_double
|
||||
select case (N_int)
|
||||
case (1)
|
||||
do j=1,N_double
|
||||
degree = &
|
||||
popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + &
|
||||
popcnt(xor( dets_in(1,2,i),doubles(1,2,j)))
|
||||
|
||||
if (degree<=ishft(degree_exc(i),1)) then
|
||||
accu += e_corr_array(j)
|
||||
endif
|
||||
enddo
|
||||
case (2)
|
||||
do j=1,N_double
|
||||
degree = &
|
||||
popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + &
|
||||
popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + &
|
||||
popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + &
|
||||
popcnt(xor( dets_in(2,2,i),doubles(2,2,j)))
|
||||
|
||||
if (degree<=ishft(degree_exc(i),1)) then
|
||||
accu += e_corr_array(j)
|
||||
endif
|
||||
enddo
|
||||
case (3)
|
||||
do j=1,N_double
|
||||
degree = &
|
||||
popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + &
|
||||
popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + &
|
||||
popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + &
|
||||
popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + &
|
||||
popcnt(xor( dets_in(3,1,i),doubles(3,1,j))) + &
|
||||
popcnt(xor( dets_in(3,2,i),doubles(3,2,j)))
|
||||
|
||||
if (degree<=ishft(degree_exc(i),1)) then
|
||||
accu += e_corr_array(j)
|
||||
endif
|
||||
enddo
|
||||
case default
|
||||
do j=1,N_double
|
||||
call get_excitation_degree(dets_in(1,1,i),doubles(1,1,j),degree,N_int)
|
||||
if (degree<=degree_exc(i)) then
|
||||
accu += e_corr_array(j)
|
||||
endif
|
||||
enddo
|
||||
end select
|
||||
H_jj_dressed(i) -= accu
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if(sze<=N_det_max_jacobi)then
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
|
||||
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze))
|
||||
do j=1,sze
|
||||
do i=1,sze
|
||||
H_matrix_tmp(i,j) = H_matrix_all_dets(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i = 1,sze
|
||||
H_matrix_tmp(i,i) = H_jj_dressed(i)
|
||||
enddo
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
|
||||
do j=1,min(N_states_diag,sze)
|
||||
do i=1,sze
|
||||
u_in(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
energies(j) = eigenvalues(j)
|
||||
enddo
|
||||
deallocate (H_matrix_tmp, eigenvalues, eigenvectors)
|
||||
else
|
||||
call davidson_diag_hjj(dets_in,u_in,H_jj_dressed,energies,dim_in,sze,N_st,Nint,output_determinants)
|
||||
endif
|
||||
|
||||
e_corr_double = 0.d0
|
||||
inv_c0 = 1.d0/u_in(index_hf,1)
|
||||
do i = 1, N_double
|
||||
e_corr_array(i) = u_in(index_double(i),1)*inv_c0 * hij_double(i)
|
||||
e_corr_double += e_corr_array(i)
|
||||
enddo
|
||||
write(output_determinants,'(A,I3)') 'SC2 Iteration ', iter
|
||||
write(output_determinants,'(A)') '------------------'
|
||||
write(output_determinants,'(A)') ''
|
||||
write(output_determinants,'(A)') '===== ================'
|
||||
write(output_determinants,'(A)') 'State Energy '
|
||||
write(output_determinants,'(A)') '===== ================'
|
||||
do i=1,N_st
|
||||
write(output_determinants,'(I5,1X,F16.10)') i, energies(i)+nuclear_repulsion
|
||||
enddo
|
||||
write(output_determinants,'(A)') '===== ================'
|
||||
write(output_determinants,'(A)') ''
|
||||
call write_double(output_determinants,(e_corr_double - e_corr_double_before),&
|
||||
'Delta(E_corr)')
|
||||
converged = dabs(e_corr_double - e_corr_double_before) < convergence
|
||||
converged = converged
|
||||
if (converged) then
|
||||
do i = 1, dim_in
|
||||
diag_H_elements(i) = H_jj_dressed(i) - H_jj_ref(i)
|
||||
enddo
|
||||
exit
|
||||
endif
|
||||
e_corr_double_before = e_corr_double
|
||||
|
||||
enddo
|
||||
|
||||
call write_time(output_determinants)
|
||||
deallocate (doubles,e_corr_array,H_jj_ref,H_jj_dressed, &
|
||||
index_double, degree_exc, hij_double)
|
||||
|
||||
end
|
||||
|
||||
|
@ -12,6 +12,9 @@ BEGIN_PROVIDER [ integer, N_states_diag ]
|
||||
else
|
||||
N_states_diag = N_states
|
||||
endif
|
||||
if (N_states_diag < N_states) then
|
||||
N_states_diag = N_states
|
||||
endif
|
||||
|
||||
call write_time(output_determinants)
|
||||
call write_int(output_determinants, N_states_diag, &
|
||||
|
Loading…
Reference in New Issue
Block a user