10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

Revert input coordinates

This commit is contained in:
Anthony Scemama 2017-12-19 11:49:48 +01:00
parent ac37a499d3
commit 17e0518410
6 changed files with 235 additions and 165 deletions

View File

@ -6,13 +6,13 @@ program Symmetry
integer :: i, j integer :: i, j
character*8 :: sym character*8 :: sym
print *, 'Molecule is linear:', molecule_is_linear print *, 'Molecule is linear: ', molecule_is_linear
print *, 'Has center of inversion:', molecule_has_center_of_inversion print *, 'Has center of inversion: ', molecule_has_center_of_inversion
print *, 'Has S2n improper rotation:', molecule_has_improper_rotation print *, 'Has S2n improper rotation: ', molecule_has_improper_rotation
print *, 'Symmetry rotation axis:', sym_rotation_axis(:) print *, 'Symmetry rotation axis: ', sym_rotation_axis(:)
print *, 'Group:'//point_group print *, 'Group: '//point_group
print *, 'Symmetry irreps', sym_irrep(1:n_irrep) print *, 'Symmetry irreps : ', sym_irrep(1:n_irrep)
print *, 'Symmetry operations', sym_operation(1:n_irrep) print *, 'Symmetry operations : ', sym_operation(1:n_irrep)
print *, 'Character table' print *, 'Character table'
do i=1,n_irrep do i=1,n_irrep
print *, character_table(i,:) print *, character_table(i,:)

View File

@ -7,8 +7,8 @@ BEGIN_PROVIDER [ double precision, sym_box, (3,2) ]
sym_box(:,:) = 0.d0 sym_box(:,:) = 0.d0
do xyz=1,3 do xyz=1,3
do i=1,nucl_num do i=1,nucl_num
sym_box(xyz,1) = min(sym_box(xyz,1), nucl_coord(i,xyz)) sym_box(xyz,1) = min(sym_box(xyz,1), nucl_coord_sym(i,xyz))
sym_box(xyz,2) = max(sym_box(xyz,2), nucl_coord(i,xyz)) sym_box(xyz,2) = max(sym_box(xyz,2), nucl_coord_sym(i,xyz))
enddo enddo
enddo enddo
sym_box(:,1) = sym_box(:,1) - 2.d0 sym_box(:,1) = sym_box(:,1) - 2.d0
@ -42,24 +42,28 @@ subroutine compute_sym_ao_values(sym_points, n_sym_points, result)
double precision, intent(out) :: result(n_sym_points, ao_num) double precision, intent(out) :: result(n_sym_points, ao_num)
integer :: i, j integer :: i, j
double precision :: x, y, z double precision :: x, y, z
double precision :: x2, y2, z2
result (:,:) = 0.d0 result (:,:) = 0.d0
do j=1,ao_num do j=1,ao_num
do i=1,n_sym_points do i=1,n_sym_points
x = sym_points(1,i) - nucl_coord_transp(1,ao_nucl(j)) x = sym_points(1,i) - nucl_coord_sym_transp(1,ao_nucl(j))
y = sym_points(2,i) - nucl_coord_transp(2,ao_nucl(j)) y = sym_points(2,i) - nucl_coord_sym_transp(2,ao_nucl(j))
z = sym_points(3,i) - nucl_coord_transp(3,ao_nucl(j)) z = sym_points(3,i) - nucl_coord_sym_transp(3,ao_nucl(j))
x = x**ao_power(j,1) x2 = x*sym_molecule_rotation_inv(1,1) + y*sym_molecule_rotation_inv(2,1) + z*sym_molecule_rotation_inv(3,1)
y = y**ao_power(j,2) y2 = x*sym_molecule_rotation_inv(1,2) + y*sym_molecule_rotation_inv(2,2) + z*sym_molecule_rotation_inv(3,2)
z = z**ao_power(j,3) z2 = x*sym_molecule_rotation_inv(1,3) + y*sym_molecule_rotation_inv(2,3) + z*sym_molecule_rotation_inv(3,3)
! result(i,j) = x*y*z*exp(-(x*x+y*y+z*z)) x = x2**ao_power(j,1)
result(i,j) = x*y*z y = y2**ao_power(j,2)
if (result(i,j) > 0.d0) then z = z2**ao_power(j,3)
result(i,j) = 1.d0 result(i,j) = x*y*z*exp(-(x*x+y*y+z*z))
else if (result(i,j) < 0.d0) then ! result(i,j) = x*y*z
result(i,j) = -1.d0 ! if (result(i,j) > 0.d0) then
else ! result(i,j) = 1.d0
result(i,j) = 0.d0 ! else if (result(i,j) < 0.d0) then
endif ! result(i,j) = -1.d0
! else
! result(i,j) = 0.d0
! endif
enddo enddo
enddo enddo

View File

@ -20,7 +20,7 @@ BEGIN_PROVIDER [ logical, molecule_has_center_of_inversion ]
found = .False. found = .False.
do j=1,nucl_num do j=1,nucl_num
if (nucl_charge(i) /= nucl_charge(j)) cycle if (nucl_charge(i) /= nucl_charge(j)) cycle
point(:) = nucl_coord_transp(:,i) + nucl_coord_transp(:,j) point(:) = nucl_coord_sym_transp(:,i) + nucl_coord_sym_transp(:,j)
if (u_dot_u(point,3) < 1.d-5) then if (u_dot_u(point,3) < 1.d-5) then
found = .True. found = .True.
exit exit
@ -52,10 +52,10 @@ BEGIN_PROVIDER [ integer, sym_rotation_axis, (3) ]
sym_rotation_axis(iaxis) = iorder sym_rotation_axis(iaxis) = iorder
do i=1,nucl_num do i=1,nucl_num
found = .False. found = .False.
call sym_apply_rotation(dble(iorder),iaxis,nucl_coord_transp(1,i),point) call sym_apply_rotation(dble(iorder),iaxis,nucl_coord_sym_transp(1,i),point)
do j=1,nucl_num do j=1,nucl_num
if (nucl_charge(i) /= nucl_charge(j)) cycle if (nucl_charge(i) /= nucl_charge(j)) cycle
point2(:) = nucl_coord_transp(:,j) - point(:) point2(:) = nucl_coord_sym_transp(:,j) - point(:)
if (u_dot_u(point2,3) < 1.d-5) then if (u_dot_u(point2,3) < 1.d-5) then
found = .True. found = .True.
exit exit
@ -148,10 +148,10 @@ BEGIN_PROVIDER [ logical, molecule_has_improper_rotation ]
molecule_has_improper_rotation = .True. molecule_has_improper_rotation = .True.
do i=1,nucl_num do i=1,nucl_num
found = .False. found = .False.
call sym_apply_improper_rotation(dble(iorder),iaxis,nucl_coord_transp(1,i),point) call sym_apply_improper_rotation(dble(iorder),iaxis,nucl_coord_sym_transp(1,i),point)
do j=1,nucl_num do j=1,nucl_num
if (nucl_charge(i) /= nucl_charge(j)) cycle if (nucl_charge(i) /= nucl_charge(j)) cycle
point2(:) = nucl_coord_transp(:,j) - point(:) point2(:) = nucl_coord_sym_transp(:,j) - point(:)
if (u_dot_u(point2,3) < 1.d-5) then if (u_dot_u(point2,3) < 1.d-5) then
found = .True. found = .True.
exit exit
@ -179,7 +179,7 @@ BEGIN_PROVIDER [ logical, molecule_has_center_of_inversion ]
found = .False. found = .False.
do j=1,nucl_num do j=1,nucl_num
if (nucl_charge(i) /= nucl_charge(j)) cycle if (nucl_charge(i) /= nucl_charge(j)) cycle
point(:) = nucl_coord_transp(:,i) + nucl_coord_transp(:,j) point(:) = nucl_coord_sym_transp(:,i) + nucl_coord_sym_transp(:,j)
if (u_dot_u(point,3) < 1.d-5) then if (u_dot_u(point,3) < 1.d-5) then
found = .True. found = .True.
exit exit
@ -208,11 +208,11 @@ BEGIN_PROVIDER [ logical, molecule_has_sigma_plane, (3) ]
molecule_has_sigma_plane(iaxis) = .True. molecule_has_sigma_plane(iaxis) = .True.
do i=1,nucl_num do i=1,nucl_num
found = .False. found = .False.
point(:) = nucl_coord_transp(:,i) point(:) = nucl_coord_sym_transp(:,i)
point(iaxis) = -point(iaxis) point(iaxis) = -point(iaxis)
do j=1,nucl_num do j=1,nucl_num
if (nucl_charge(i) /= nucl_charge(j)) cycle if (nucl_charge(i) /= nucl_charge(j)) cycle
point2(:) = nucl_coord_transp(:,j) - point(:) point2(:) = nucl_coord_sym_transp(:,j) - point(:)
if (u_dot_u(point2,3) < 1.d-5) then if (u_dot_u(point2,3) < 1.d-5) then
found = .True. found = .True.
exit exit
@ -233,7 +233,7 @@ BEGIN_PROVIDER [ character*16, point_group ]
! Point group of the molecule ! Point group of the molecule
END_DOC END_DOC
character*2, save :: i_to_a(24) = (/ ' 1', ' 2', ' 3', ' 4', ' 5', ' 6', ' 7', ' 8', ' 9', & character*2, save :: i_to_a(24) = (/ '1 ', '2 ', '3 ', '4 ', '5 ', '6 ', '7 ', '8 ', '9 ', &
'10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', & '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', &
'21', '22', '23', '24' /) '21', '22', '23', '24' /)
point_group = 'C1' point_group = 'C1'
@ -366,7 +366,7 @@ BEGIN_PROVIDER [ integer, mo_sym, (mo_tot_num) ]
integer :: iangle, n_sym_points integer :: iangle, n_sym_points
double precision :: angle double precision :: angle
integer :: iop, imo, ipoint, l, i integer :: iop, imo, ipoint, l, i
double precision :: sym_operations_on_mos(n_irrep) double precision :: sym_operations_on_mos(mo_tot_num)
logical :: possible_irrep(n_irrep,mo_tot_num) logical :: possible_irrep(n_irrep,mo_tot_num)
n_sym_points = 10000 n_sym_points = 10000
@ -443,6 +443,7 @@ BEGIN_PROVIDER [ integer, mo_sym, (mo_tot_num) ]
sym_operations_on_mos(imo) += x sym_operations_on_mos(imo) += x
enddo enddo
sym_operations_on_mos(imo) *= 1.d0/n_sym_points sym_operations_on_mos(imo) *= 1.d0/n_sym_points
print *, iop, imo, sym_operations_on_mos(imo)
if (dabs(sym_operations_on_mos(imo)-1.d0) < 1.d-2) then if (dabs(sym_operations_on_mos(imo)-1.d0) < 1.d-2) then
sym_operations_on_mos(imo)=1.d0 sym_operations_on_mos(imo)=1.d0
else if (dabs(sym_operations_on_mos(imo)+1.d0) < 1.d-2) then else if (dabs(sym_operations_on_mos(imo)+1.d0) < 1.d-2) then

View File

@ -0,0 +1,92 @@
BEGIN_PROVIDER [ double precision, nucl_coord_sym, (nucl_num,3) ]
implicit none
BEGIN_DOC
! Nuclear coordinates in standard orientation
END_DOC
if (mpi_master) then
integer :: i
do i=1,nucl_num
nucl_coord_sym(i,1) = (nucl_coord(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,1) + &
(nucl_coord(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,1) + &
(nucl_coord(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,1)
nucl_coord_sym(i,2) = (nucl_coord(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,2) + &
(nucl_coord(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,2) + &
(nucl_coord(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,2)
nucl_coord_sym(i,3) = (nucl_coord(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,3) + &
(nucl_coord(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,3) + &
(nucl_coord(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,3)
enddo
character*(64), parameter :: f = '(A16, 4(1X,F12.6))'
character*(64), parameter :: ft= '(A16, 4(1X,A12 ))'
double precision, parameter :: a0= 0.529177249d0
call write_time(output_Nuclei)
write(output_Nuclei,'(A)') ''
write(output_Nuclei,'(A)') 'Nuclear Coordinates in standard orientation (Angstroms)'
write(output_Nuclei,'(A)') '======================================================='
write(output_Nuclei,'(A)') ''
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,*) &
' Atom Charge X Y Z '
write(output_Nuclei,ft) &
'================','============','============','============','============'
do i=1,nucl_num
write(output_Nuclei,f) nucl_label(i), nucl_charge(i), &
nucl_coord_sym(i,1)*a0, &
nucl_coord_sym(i,2)*a0, &
nucl_coord_sym(i,3)*a0
enddo
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,'(A)') ''
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( nucl_coord_sym, 3*nucl_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read nucl_coord_sym with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, nucl_coord_sym_transp, (3,nucl_num) ]
implicit none
BEGIN_DOC
! Transposed array of nucl_coord
END_DOC
integer :: i, k
nucl_coord_sym_transp = 0.d0
do i=1,nucl_num
nucl_coord_sym_transp(1,i) = nucl_coord_sym(i,1)
nucl_coord_sym_transp(2,i) = nucl_coord_sym(i,2)
nucl_coord_sym_transp(3,i) = nucl_coord_sym(i,3)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, sym_molecule_rotation, (3,3) ]
implicit none
BEGIN_DOC
! Rotation of the molecule to go from input orientation to standard orientation
END_DOC
call find_rotation(nucl_coord, size(nucl_coord,1), nucl_coord_sym, 3, sym_molecule_rotation, 3)
END_PROVIDER
BEGIN_PROVIDER [ double precision, sym_molecule_rotation_inv, (3,3) ]
implicit none
BEGIN_DOC
! Rotation of the molecule to go from standard orientation to input orientation
END_DOC
call find_rotation(nucl_coord_sym, size(nucl_coord_sym,1), nucl_coord, 3, sym_molecule_rotation_inv, 3)
END_PROVIDER

View File

@ -6,12 +6,12 @@ BEGIN_PROVIDER [ double precision, inertia_tensor, (3,3) ]
integer :: i,j,k integer :: i,j,k
inertia_tensor = 0.d0 inertia_tensor = 0.d0
do k=1,nucl_num do k=1,nucl_num
inertia_tensor(1,1) += element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,2)-center_of_mass(2))**2 + (nucl_coord_input(k,3)-center_of_mass(3))**2) inertia_tensor(1,1) += element_mass(int(nucl_charge(k))) * ((nucl_coord(k,2)-center_of_mass(2))**2 + (nucl_coord(k,3)-center_of_mass(3))**2)
inertia_tensor(2,2) += element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,1)-center_of_mass(1))**2 + (nucl_coord_input(k,3)-center_of_mass(3))**2) inertia_tensor(2,2) += element_mass(int(nucl_charge(k))) * ((nucl_coord(k,1)-center_of_mass(1))**2 + (nucl_coord(k,3)-center_of_mass(3))**2)
inertia_tensor(3,3) += element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,1)-center_of_mass(1))**2 + (nucl_coord_input(k,2)-center_of_mass(2))**2) inertia_tensor(3,3) += element_mass(int(nucl_charge(k))) * ((nucl_coord(k,1)-center_of_mass(1))**2 + (nucl_coord(k,2)-center_of_mass(2))**2)
inertia_tensor(1,2) -= element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,1)-center_of_mass(1)) * (nucl_coord_input(k,2)-center_of_mass(2)) ) inertia_tensor(1,2) -= element_mass(int(nucl_charge(k))) * ((nucl_coord(k,1)-center_of_mass(1)) * (nucl_coord(k,2)-center_of_mass(2)) )
inertia_tensor(1,3) -= element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,1)-center_of_mass(1)) * (nucl_coord_input(k,3)-center_of_mass(3)) ) inertia_tensor(1,3) -= element_mass(int(nucl_charge(k))) * ((nucl_coord(k,1)-center_of_mass(1)) * (nucl_coord(k,3)-center_of_mass(3)) )
inertia_tensor(2,3) -= element_mass(int(nucl_charge(k))) * ((nucl_coord_input(k,2)-center_of_mass(2)) * (nucl_coord_input(k,3)-center_of_mass(3)) ) inertia_tensor(2,3) -= element_mass(int(nucl_charge(k))) * ((nucl_coord(k,2)-center_of_mass(2)) * (nucl_coord(k,3)-center_of_mass(3)) )
enddo enddo
inertia_tensor(2,1) = inertia_tensor(1,2) inertia_tensor(2,1) = inertia_tensor(1,2)
inertia_tensor(3,1) = inertia_tensor(1,3) inertia_tensor(3,1) = inertia_tensor(1,3)

View File

@ -1,4 +1,4 @@
BEGIN_PROVIDER [ double precision, nucl_coord_input, (nucl_num,3) ] BEGIN_PROVIDER [ double precision, nucl_coord, (nucl_num,3) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -8,7 +8,7 @@ BEGIN_PROVIDER [ double precision, nucl_coord_input, (nucl_num,3) ]
if (mpi_master) then if (mpi_master) then
double precision, allocatable :: buffer(:,:) double precision, allocatable :: buffer(:,:)
nucl_coord_input = 0.d0 nucl_coord = 0.d0
allocate (buffer(nucl_num,3)) allocate (buffer(nucl_num,3))
buffer = 0.d0 buffer = 0.d0
logical :: has logical :: has
@ -22,7 +22,7 @@ BEGIN_PROVIDER [ double precision, nucl_coord_input, (nucl_num,3) ]
do i=1,3 do i=1,3
do j=1,nucl_num do j=1,nucl_num
nucl_coord_input(j,i) = buffer(j,i) nucl_coord(j,i) = buffer(j,i)
enddo enddo
enddo enddo
deallocate(buffer) deallocate(buffer)
@ -31,65 +31,6 @@ BEGIN_PROVIDER [ double precision, nucl_coord_input, (nucl_num,3) ]
character*(64), parameter :: ft= '(A16, 4(1X,A12 ))' character*(64), parameter :: ft= '(A16, 4(1X,A12 ))'
double precision, parameter :: a0= 0.529177249d0 double precision, parameter :: a0= 0.529177249d0
call write_time(output_Nuclei)
write(output_Nuclei,'(A)') ''
write(output_Nuclei,'(A)') 'Input Nuclear Coordinates (Angstroms)'
write(output_Nuclei,'(A)') '====================================='
write(output_Nuclei,'(A)') ''
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,*) &
' Atom Charge X Y Z '
write(output_Nuclei,ft) &
'================','============','============','============','============'
do i=1,nucl_num
write(output_Nuclei,f) nucl_label(i), nucl_charge(i), &
nucl_coord_input(i,1)*a0, &
nucl_coord_input(i,2)*a0, &
nucl_coord_input(i,3)*a0
enddo
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,'(A)') ''
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( nucl_coord_input, 3*nucl_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read nucl_coord_input with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, nucl_coord, (nucl_num,3) ]
implicit none
BEGIN_DOC
! Nuclear coordinates in standard orientation
END_DOC
if (mpi_master) then
integer :: i
do i=1,nucl_num
nucl_coord(i,1) = (nucl_coord_input(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,1) + &
(nucl_coord_input(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,1) + &
(nucl_coord_input(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,1)
nucl_coord(i,2) = (nucl_coord_input(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,2) + &
(nucl_coord_input(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,2) + &
(nucl_coord_input(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,2)
nucl_coord(i,3) = (nucl_coord_input(i,1) - center_of_mass(1))*inertia_tensor_eigenvectors(1,3) + &
(nucl_coord_input(i,2) - center_of_mass(2))*inertia_tensor_eigenvectors(2,3) + &
(nucl_coord_input(i,3) - center_of_mass(3))*inertia_tensor_eigenvectors(3,3)
enddo
character*(64), parameter :: f = '(A16, 4(1X,F12.6))'
character*(64), parameter :: ft= '(A16, 4(1X,A12 ))'
double precision, parameter :: a0= 0.529177249d0
call write_time(output_Nuclei) call write_time(output_Nuclei)
write(output_Nuclei,'(A)') '' write(output_Nuclei,'(A)') ''
write(output_Nuclei,'(A)') 'Nuclear Coordinates (Angstroms)' write(output_Nuclei,'(A)') 'Nuclear Coordinates (Angstroms)'
@ -205,6 +146,7 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
END_DOC END_DOC
PROVIDE mpi_master nucl_coord nucl_charge nucl_num PROVIDE mpi_master nucl_coord nucl_charge nucl_num
if (mpi_master) then
if (disk_access_nuclear_repulsion.EQ.'Read') then if (disk_access_nuclear_repulsion.EQ.'Read') then
logical :: has logical :: has
@ -258,6 +200,22 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
call ezfio_set_nuclei_nuclear_repulsion(nuclear_repulsion) call ezfio_set_nuclei_nuclear_repulsion(nuclear_repulsion)
endif endif
endif endif
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( element_name, size(element_name)*4, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
call MPI_BCAST( element_mass, size(element_mass), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
IRP_ENDIF
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ character*(4), element_name, (0:128)] BEGIN_PROVIDER [ character*(4), element_name, (0:128)]
@ -268,6 +226,7 @@ END_PROVIDER
integer :: iunit integer :: iunit
integer, external :: getUnitAndOpen integer, external :: getUnitAndOpen
character*(128) :: filename character*(128) :: filename
if (mpi_master) then
call getenv('QP_ROOT',filename) call getenv('QP_ROOT',filename)
filename = trim(filename)//'/data/list_element.txt' filename = trim(filename)//'/data/list_element.txt'
iunit = getUnitAndOpen(filename,'r') iunit = getUnitAndOpen(filename,'r')
@ -283,6 +242,20 @@ END_PROVIDER
enddo enddo
10 continue 10 continue
close(10) close(10)
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( element_name, size(element_name)*4, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
call MPI_BCAST( element_mass, size(element_mass), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
IRP_ENDIF
END_PROVIDER END_PROVIDER
@ -297,7 +270,7 @@ BEGIN_PROVIDER [ double precision, center_of_mass, (3) ]
s = 0.d0 s = 0.d0
do i=1,nucl_num do i=1,nucl_num
do j=1,3 do j=1,3
center_of_mass(j) += nucl_coord_input(i,j)* element_mass(int(nucl_charge(i))) center_of_mass(j) += nucl_coord(i,j)* element_mass(int(nucl_charge(i)))
enddo enddo
s += element_mass(int(nucl_charge(i))) s += element_mass(int(nucl_charge(i)))
enddo enddo