10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 12:23:48 +01:00
This commit is contained in:
Anthony Scemama 2017-06-26 18:27:52 +02:00
parent a59a6b002c
commit 17dd70e86d
19 changed files with 2 additions and 1322 deletions

View File

@ -1,10 +0,0 @@
[energy]
type: double precision
doc: "Calculated CAS-SCF energy"
interface: ezfio
[energy_pt2]
type: double precision
doc: "Calculated selected CAS-SCF energy with PT2 correction"
interface: ezfio

View File

@ -1,39 +0,0 @@
use bitmasks
BEGIN_SHELL [ /usr/bin/env python ]
from generate_h_apply import *
s = H_apply("CAS_SD")
print s
s = H_apply("CAS_SD_selected_no_skip")
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_SD_selected")
s.set_selection_pt2("epstein_nesbet_2x2")
print s
s = H_apply("CAS_SD_PT2")
s.set_perturbation("epstein_nesbet_2x2")
print s
s = H_apply("CAS_S",do_double_exc=False)
print s
s = H_apply("CAS_S_selected_no_skip",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_S_selected",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
print s
s = H_apply("CAS_S_PT2",do_double_exc=False)
s.set_perturbation("epstein_nesbet_2x2")
print s
END_SHELL

View File

@ -1 +0,0 @@
Generators_CAS Perturbation Selectors_full

View File

@ -1,20 +0,0 @@
======
CASSCF
======
This module is not a "real" CAS-SCF. It is an orbital optimization step done by :
1) Doing the CAS+SD
2) Taking one-electron density matrix
3) Cancelling all active-active rotations
4) Finding the order which matches with the input MOs
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -1,217 +0,0 @@
program casscf
implicit none
BEGIN_DOC
! Optimize MOs and CI coefficients of the CAS
END_DOC
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer(bit_kind), allocatable :: generators_bitmask_save(:,:,:,:)
integer :: degree, N_generators_bitmask_save, N_det_ci
double precision :: E_old, E_CI
double precision :: selection_criterion_save, selection_criterion_min_save
integer :: N_det_old
integer :: i, j, k, l
integer :: i_bit, j_bit, i_int, j_int
integer(bit_kind), allocatable :: bit_tmp(:), cas_bm(:)
character*(64) :: label
allocate( pt2(N_states), norm_pert(N_states),H_pert_diag(N_states) )
allocate( generators_bitmask_save(N_int,2,6,N_generators_bitmask) )
allocate( bit_tmp(N_int), cas_bm(N_int) )
PROVIDE N_det_cas
N_det_old = 0
pt2 = 1.d0
E_CI = 1.d0
E_old = 0.d0
diag_algorithm = "Lapack"
selection_criterion_save = selection_criterion
selection_criterion_min_save = selection_criterion_min
cas_bm = 0_bit_kind
do i=1,N_cas_bitmask
do j=1,N_int
cas_bm(j) = ior(cas_bm(j), cas_bitmask(j,1,i))
cas_bm(j) = ior(cas_bm(j), cas_bitmask(j,2,i))
enddo
enddo
! Save CAS-SD bitmask
generators_bitmask_save = generators_bitmask
N_generators_bitmask_save = N_generators_bitmask
! Set the CAS bitmask
do i=1,6
generators_bitmask(:,:,i,:) = cas_bitmask
enddo
N_generators_bitmask = N_cas_bitmask
SOFT_TOUCH generators_bitmask N_generators_bitmask
! If the number of dets already in the file is larger than the requested
! number of determinants, truncate the wf
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
! Start MCSCF iteration
! CAS-CI
! ------
E_old = E_CI
! Reset the selection criterion
selection_criterion = selection_criterion_save
selection_criterion_min = selection_criterion_min_save
SOFT_TOUCH selection_criterion_min selection_criterion selection_criterion_factor
! Set the CAS bitmask
do i=1,6
generators_bitmask(:,:,i,:) = cas_bitmask
enddo
N_generators_bitmask = N_cas_bitmask
SOFT_TOUCH generators_bitmask N_generators_bitmask
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_states))) > pt2_max)
N_det_old = N_det
call H_apply_CAS_SD_selected_no_skip(pt2, norm_pert, H_pert_diag, N_states)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
endif
call diagonalize_CI
call save_wavefunction
print *, '======'
print *, 'CAS-CI'
print *, '======'
print *, ''
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E(CAS) = ', CI_energy
print *, 'E(CAS)+PT2 = ', CI_energy+pt2
print *, '-----'
print *, ''
E_CI = sum(CI_energy(1:N_states)+pt2(1:N_states))/dble(N_states)
call ezfio_set_casscf_energy(CI_energy(1))
if (N_det == N_det_old) then
exit
endif
enddo
! Super-CI
! --------
selection_criterion_min = 1.d-12
selection_criterion = 1.d-12
! Set the CAS bitmask
generators_bitmask = generators_bitmask_save
N_generators_bitmask = N_generators_bitmask_save
SOFT_TOUCH generators_bitmask N_generators_bitmask selection_criterion selection_criterion_min selection_criterion_factor
N_det_ci = N_det
call H_apply_CAS_SD_selected(pt2, norm_pert, H_pert_diag, N_states)
do i=1,mo_tot_num
i_int = ishft(i-1,-bit_kind_shift)+1
i_bit = j-ishft(i_int-1,bit_kind_shift)-1
bit_tmp(:) = 0_bit_kind
bit_tmp(i_int) = ibset(0_bit_kind,i_bit)
if (iand(bit_tmp(i_int), cas_bm(i_int)) == 0_bit_kind) then
! Not a CAS MO
cycle
endif
do j=1,mo_tot_num
if (j == i) then
cycle
endif
j_int = ishft(j-1,-bit_kind_shift)+1
j_bit = j-ishft(j_int-1,bit_kind_shift)-1
bit_tmp(:) = 0_bit_kind
bit_tmp(j_int) = ibset(0_bit_kind,j_bit)
if (iand(bit_tmp(j_int), cas_bm(j_int)) == 0_bit_kind) then
! Not a CAS MO
cycle
endif
! Now, both i and j are MOs of the CAS. De-couple them in the DM
one_body_dm_mo(i,j) = 0.d0
enddo
enddo
SOFT_TOUCH one_body_dm_mo
double precision :: mx, ov
double precision, allocatable :: mo_coef_old(:,:)
integer, allocatable :: iorder(:)
logical, allocatable :: selected(:)
allocate( mo_coef_old(size(mo_coef,1), size(mo_coef,2)), iorder(mo_tot_num), selected(mo_tot_num) )
mo_coef_old = mo_coef
label = "Canonical"
call mo_as_eigvectors_of_mo_matrix(one_body_dm_mo,size(one_body_dm_mo,1),size(one_body_dm_mo,2),label,-1)
selected = .False.
do j=1,mo_tot_num
mx = -1.d0
iorder(j) = j
do i=1,mo_tot_num
if (selected(i)) then
cycle
endif
ov = 0.d0
do l=1,ao_num
do k=1,ao_num
ov = ov + mo_coef_old(k,j) * ao_overlap(k,l) * mo_coef(l,i)
enddo
enddo
ov= dabs(ov)
if (ov > mx) then
mx = ov
iorder(j) = i
endif
enddo
selected( iorder(j) ) = .True.
enddo
mo_coef_old = mo_coef
do i=1,mo_tot_num
mo_coef(:,i) = mo_coef_old(:,iorder(i))
enddo
call save_mos
call write_double(6,E_CI,"Energy(CAS)")
deallocate( mo_coef_old )
deallocate( pt2, norm_pert,H_pert_diag )
deallocate( generators_bitmask_save )
deallocate( bit_tmp, cas_bm, iorder )
end

View File

@ -1,10 +0,0 @@
[energy]
type: double precision
doc: "Calculated CAS-SD energy"
interface: ezfio
[energy_pt2]
type: double precision
doc: "Calculated selected CAS-SD energy with PT2 correction"
interface: ezfio

View File

@ -1,37 +0,0 @@
use bitmasks
BEGIN_SHELL [ /usr/bin/env python ]
from generate_h_apply import *
s = H_apply("CAS_SD")
s.unset_skip()
print s
s = H_apply("CAS_SD_selected_no_skip")
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_SD_selected")
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_SD_PT2")
s.set_perturbation("epstein_nesbet_2x2")
print s
s = H_apply("CAS_S",do_double_exc=False)
print s
s = H_apply("CAS_S_selected",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_S_PT2",do_double_exc=False)
s.set_perturbation("epstein_nesbet_2x2")
print s
END_SHELL

View File

@ -1 +0,0 @@
Perturbation Selectors_full Generators_CAS Davidson

View File

@ -1,295 +0,0 @@
======================
CAS_SD_selected Module
======================
Selected CAS + SD module.
1) Set the different MO classes using the ``qp_set_mo_class`` command
2) Run the selected CAS+SD program
Documentation
=============
.. Do not edit this section. It was auto-generated from the
.. by the `update_README.py` script.
`full_ci <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/cas_sd_selected.irp.f#L1>`_
Undocumented
`h_apply_cas_sd <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L414>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L269>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_pt2 <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L2610>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_pt2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L2118>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_pt2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L2427>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L1872>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_selected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L1346>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L1675>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_no_skip <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L1128>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_selected_no_skip_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L602>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_no_skip_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CAS_SD/H_apply.irp.f_shell_22#L931>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
Needed Modules
==============
.. Do not edit this section. It was auto-generated from the
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/src/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/src/Generators_CAS>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`full_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/cas_sd_selected.irp.f#L1>`_
Undocumented
h_apply_cas_s
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_s_diexc
Undocumented
h_apply_cas_s_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_diexcp
Undocumented
h_apply_cas_s_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_s_pt2_diexc
Undocumented
h_apply_cas_s_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_pt2_diexcp
Undocumented
h_apply_cas_s_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_selected
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_s_selected_diexc
Undocumented
h_apply_cas_s_selected_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_selected_diexcp
Undocumented
h_apply_cas_s_selected_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_sd_diexc
Undocumented
h_apply_cas_sd_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_diexcp
Undocumented
h_apply_cas_sd_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_sd_pt2_diexc
Undocumented
h_apply_cas_sd_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_pt2_diexcp
Undocumented
h_apply_cas_sd_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_selected
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_sd_selected_diexc
Undocumented
h_apply_cas_sd_selected_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_selected_diexcp
Undocumented
h_apply_cas_sd_selected_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_selected_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_sd_selected_no_skip_diexc
Undocumented
h_apply_cas_sd_selected_no_skip_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd_selected_no_skip_diexcp
Undocumented
h_apply_cas_sd_selected_no_skip_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.

View File

@ -1,92 +0,0 @@
program full_ci
implicit none
integer :: i,k
integer :: N_det_old
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
character*(64) :: perturbation
PROVIDE N_det_cas
N_det_old = 0
pt2 = 1.d0
diag_algorithm = "Lapack"
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
N_det_old = N_det
call H_apply_CAS_S(pt2, norm_pert, H_pert_diag, N_st)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
endif
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
call ezfio_set_cas_sd_energy(CI_energy(1))
if (N_det == N_det_old) then
exit
endif
enddo
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
call H_apply_CAS_S_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
call ezfio_set_cas_sd_energy_pt2(CI_energy(1)+pt2(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,10)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
end

View File

@ -1,123 +0,0 @@
program full_ci
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
character*(64) :: perturbation
PROVIDE N_det_cas
pt2 = 1.d0
diag_algorithm = "Lapack"
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
double precision :: i_H_psi_array(N_states),diag_H_mat_elem,h,i_O1_psi_array(N_states)
double precision :: E_CI_before(N_states)
if(read_wf)then
call i_H_psi(psi_det(1,1,N_det),psi_det,psi_coef,N_int,N_det,psi_det_size,N_states,i_H_psi_array)
h = diag_H_mat_elem(psi_det(1,1,N_det),N_int)
selection_criterion = dabs(psi_coef(N_det,1) * (i_H_psi_array(1) - h * psi_coef(N_det,1))) * 0.1d0
soft_touch selection_criterion
endif
integer :: n_det_before
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
n_det_before = N_det
call H_apply_CAS_SD_selected(pt2, norm_pert, H_pert_diag, N_st)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
if (N_det > N_det_max) then
N_det = N_det_max
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
touch N_det psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted
endif
call save_wavefunction
if(n_det_before == N_det)then
selection_criterion = selection_criterion * 0.5d0
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k = 1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_energy(CI_energy(1))
enddo
N_det = min(N_det_max,N_det)
touch N_det psi_det psi_coef
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
call H_apply_CAS_SD_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy(1:N_states)
print *, 'E+PT2 = ', CI_energy(1:N_states)+pt2(1:N_states)
print *, '-----'
call ezfio_set_cas_sd_energy_pt2(CI_energy(1)+pt2(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,10)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
print *, psi_coef_cas_diagonalized(i,:)
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
end

View File

@ -1,123 +0,0 @@
program full_ci
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
character*(64) :: perturbation
PROVIDE N_det_cas
pt2 = 1.d0
diag_algorithm = "Lapack"
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
double precision :: i_H_psi_array(N_states),diag_H_mat_elem,h,i_O1_psi_array(N_states)
double precision :: E_CI_before(N_states)
if(read_wf)then
call i_H_psi(psi_det(1,1,N_det),psi_det,psi_coef,N_int,N_det,psi_det_size,N_states,i_H_psi_array)
h = diag_H_mat_elem(psi_det(1,1,N_det),N_int)
selection_criterion = dabs(psi_coef(N_det,1) * (i_H_psi_array(1) - h * psi_coef(N_det,1))) * 0.1d0
soft_touch selection_criterion
endif
integer :: n_det_before
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
n_det_before = N_det
call H_apply_CAS_SD(pt2, norm_pert, H_pert_diag, N_st)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
if (N_det > N_det_max) then
N_det = N_det_max
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
touch N_det psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted
endif
call save_wavefunction
if(n_det_before == N_det)then
selection_criterion = selection_criterion * 0.5d0
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k = 1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_energy(CI_energy(1))
enddo
N_det = min(N_det_max,N_det)
touch N_det psi_det psi_coef
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.999d0
call H_apply_CAS_SD_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy(1:N_states)
print *, 'E+PT2 = ', CI_energy(1:N_states)+pt2(1:N_states)
print *, '-----'
call ezfio_set_cas_sd_energy_pt2(CI_energy(1)+pt2(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,10)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
print *, psi_coef_cas_diagonalized(i,:)
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
end

View File

@ -1,123 +0,0 @@
program full_ci
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
character*(64) :: perturbation
PROVIDE N_det_cas
pt2 = 1.d0
diag_algorithm = "Lapack"
if (N_det > N_det_max) then
call diagonalize_CI
call save_wavefunction
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
double precision :: i_H_psi_array(N_states),diag_H_mat_elem,h,i_O1_psi_array(N_states)
double precision :: E_CI_before(N_states)
if(read_wf)then
call i_H_psi(psi_det(1,1,N_det),psi_det,psi_coef,N_int,N_det,psi_det_size,N_states,i_H_psi_array)
h = diag_H_mat_elem(psi_det(1,1,N_det),N_int)
selection_criterion = dabs(psi_coef(N_det,1) * (i_H_psi_array(1) - h * psi_coef(N_det,1))) * 0.1d0
soft_touch selection_criterion
endif
integer :: n_det_before
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
n_det_before = N_det
call H_apply_CAS_SD_selected(pt2, norm_pert, H_pert_diag, N_st)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
if (N_det > N_det_max) then
N_det = N_det_max
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
touch N_det psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted
endif
call save_wavefunction
if(n_det_before == N_det)then
selection_criterion = selection_criterion * 0.5d0
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k = 1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_energy(CI_energy(1))
enddo
N_det = min(N_det_max,N_det)
touch N_det psi_det psi_coef
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
call H_apply_CAS_SD_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy(1:N_states)
print *, 'E+PT2 = ', CI_energy(1:N_states)+pt2(1:N_states)
print *, '-----'
call ezfio_set_cas_sd_energy_pt2(CI_energy(1)+pt2(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,10)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
print *, psi_cas_coef(i,:)
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 109 KiB

View File

@ -1,6 +1,6 @@
[do_pt2_end]
[do_pt2]
type: logical
doc: If true, compute the PT2 at the end of the selection
doc: If true, compute the PT2
interface: ezfio,provider,ocaml
default: True

View File

@ -1,12 +0,0 @@
===============
Selectors_CASSD
===============
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -1,95 +0,0 @@
use bitmasks
BEGIN_PROVIDER [ integer, psi_selectors_size ]
implicit none
psi_selectors_size = psi_det_size
END_PROVIDER
BEGIN_PROVIDER [ integer, N_det_selectors]
implicit none
BEGIN_DOC
! For Single reference wave functions, the number of selectors is 1 : the
! Hartree-Fock determinant
END_DOC
N_det_selectors = N_det
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_selectors, (N_int,2,psi_selectors_size) ]
&BEGIN_PROVIDER [ double precision, psi_selectors_coef, (psi_selectors_size,N_states) ]
implicit none
BEGIN_DOC
! Determinants on which we apply <i|H|psi> for perturbation.
END_DOC
integer :: i, k, l, m
logical :: good
do i=1,N_det_generators
do k=1,N_int
psi_selectors(k,1,i) = psi_det_generators(k,1,i)
psi_selectors(k,2,i) = psi_det_generators(k,2,i)
enddo
enddo
do k=1,N_states
do i=1,N_det_generators
psi_selectors_coef(i,k) = psi_coef_generators(i,k)
enddo
enddo
m=N_det_generators
do i=1,N_det
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det_sorted(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), HF_bitmask(k,1)) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det_sorted(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), HF_bitmask(k,2) )) )
enddo
if (good) then
exit
endif
enddo
if (.not.good) then
m = m+1
do k=1,N_int
psi_selectors(k,1,m) = psi_det_sorted(k,1,i)
psi_selectors(k,2,m) = psi_det_sorted(k,2,i)
enddo
psi_selectors_coef(m,:) = psi_coef_sorted(i,:)
endif
enddo
if (N_det /= m) then
print *, N_det, m
stop 'N_det /= m'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_selectors_coef_transp, (N_states,psi_selectors_size) ]
implicit none
BEGIN_DOC
! Transposed psi_selectors
END_DOC
integer :: i,k
do i=1,N_det_selectors
do k=1,N_states
psi_selectors_coef_transp(k,i) = psi_selectors_coef(i,k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_selectors_diag_h_mat, (psi_selectors_size) ]
implicit none
BEGIN_DOC
! Diagonal elements of the H matrix for each selectors
END_DOC
integer :: i
double precision :: diag_H_mat_elem
do i = 1, N_det_selectors
psi_selectors_diag_h_mat(i) = diag_H_mat_elem(psi_selectors(1,1,i),N_int)
enddo
END_PROVIDER

View File

@ -1,121 +0,0 @@
subroutine zmq_put_psi(zmq_to_qp_run_socket,worker_id, energy, size_energy)
use f77_zmq
implicit none
BEGIN_DOC
! Put the wave function on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer, intent(in) :: size_energy
double precision, intent(out) :: energy(size_energy)
integer :: rc
integer*8 :: rc8
character*(256) :: msg
write(msg,*) 'put_psi ', worker_id, N_states, N_det, psi_det_size, n_det_generators, n_det_selectors
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
print *, 'f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)'
stop 'error'
endif
rc8 = f77_zmq_send8(zmq_to_qp_run_socket,psi_det,N_int*2_8*N_det*bit_kind,ZMQ_SNDMORE)
if (rc8 /= N_int*2_8*N_det*bit_kind) then
print *, 'f77_zmq_send8(zmq_to_qp_run_socket,psi_det,N_int*2_8*N_det*bit_kind,ZMQ_SNDMORE)'
stop 'error'
endif
rc8 = f77_zmq_send8(zmq_to_qp_run_socket,psi_coef,psi_det_size*N_states*8_8,ZMQ_SNDMORE)
if (rc8 /= psi_det_size*N_states*8_8) then
print *, 'f77_zmq_send8(zmq_to_qp_run_socket,psi_coef,psi_det_size*N_states*8_8,ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send(zmq_to_qp_run_socket,energy,size_energy*8,0)
if (rc /= size_energy*8) then
print *, 'f77_zmq_send(zmq_to_qp_run_socket,energy,size_energy*8,0)'
stop 'error'
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_psi_reply 1') then
print *, rc, trim(msg)
print *, 'Error in put_psi_reply'
stop 'error'
endif
end
subroutine zmq_get_psi(zmq_to_qp_run_socket, worker_id, energy, size_energy)
use f77_zmq
implicit none
BEGIN_DOC
! Get the wave function from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer, intent(in) :: size_energy
double precision, intent(out) :: energy(size_energy)
integer :: rc
integer*8 :: rc8
character*(64) :: msg
write(msg,*) 'get_psi ', worker_id
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
print *, 'f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)'
stop 'error'
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:13) /= 'get_psi_reply') then
print *, rc, trim(msg)
print *, 'Error in get_psi_reply'
stop 'error'
endif
integer :: N_states_read, N_det_read, psi_det_size_read
integer :: N_det_selectors_read, N_det_generators_read
read(msg(14:rc),*) N_states_read, N_det_read, psi_det_size_read, &
N_det_generators_read, N_det_selectors_read
N_states = N_states_read
N_det = N_det_read
psi_det_size = psi_det_size_read
TOUCH psi_det_size N_det N_states
rc8 = f77_zmq_recv8(zmq_to_qp_run_socket,psi_det,N_int*2_8*N_det*bit_kind,0)
if (rc8 /= N_int*2_8*N_det*bit_kind) then
print *, 'f77_zmq_recv(zmq_to_qp_run_socket,psi_det,N_int*2*N_det*bit_kind,ZMQ_SNDMORE)'
stop 'error'
endif
rc8 = f77_zmq_recv8(zmq_to_qp_run_socket,psi_coef,psi_det_size*N_states*8_8,0)
if (rc8 /= psi_det_size*N_states*8_8) then
print *, '77_zmq_recv8(zmq_to_qp_run_socket,psi_coef,psi_det_size*N_states*8_8,ZMQ_SNDMORE)'
stop 'error'
endif
TOUCH psi_det psi_coef
rc = f77_zmq_recv(zmq_to_qp_run_socket,energy,size_energy*8,0)
if (rc /= size_energy*8) then
print *, '77_zmq_recv(zmq_to_qp_run_socket,energy,size_energy*8,0)'
stop 'error'
endif
if (N_det_generators_read > 0) then
N_det_generators = N_det_generators_read
TOUCH N_det_generators
endif
if (N_det_selectors_read > 0) then
N_det_selectors = N_det_selectors_read
TOUCH N_det_selectors
endif
end