10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-09 20:48:47 +01:00

Optimise a litle the pseudo(10-20%)

This commit is contained in:
Thomas Applencourt 2015-05-05 19:13:32 +02:00
parent 92258bb7a3
commit 17155b5ec1
2 changed files with 110 additions and 55 deletions

View File

@ -800,13 +800,13 @@ end
double precision function bigA(i,j,k) double precision function bigA(i,j,k)
implicit none implicit none
integer i,j,k integer i,j,k
double precision fourpi,dblefact double precision fourpi,dble_fact
fourpi=4.d0*dacos(-1.d0) fourpi=4.d0*dacos(-1.d0)
bigA=0.d0 bigA=0.d0
if(mod(i,2).eq.1)return if(mod(i,2).eq.1)return
if(mod(j,2).eq.1)return if(mod(j,2).eq.1)return
if(mod(k,2).eq.1)return if(mod(k,2).eq.1)return
bigA=fourpi*dblefact(i-1)*dblefact(j-1)*dblefact(k-1)/dblefact(i+j+k+1) bigA=fourpi*dble_fact(i-1)*dble_fact(j-1)*dble_fact(k-1)/dble_fact(i+j+k+1)
end end
!! !!
!! I_{lambda,mu,l,m}^{k1,k2,k3} = /int dOmega Y_{lambda mu} xchap^k1 ychap^k2 zchap^k3 Y_{lm} !! I_{lambda,mu,l,m}^{k1,k2,k3} = /int dOmega Y_{lambda mu} xchap^k1 ychap^k2 zchap^k3 Y_{lm}
@ -996,10 +996,10 @@ end
double precision function crochet(n,g) double precision function crochet(n,g)
implicit none implicit none
integer n integer n
double precision g,pi,dblefact,expo double precision g,pi,dble_fact,expo
pi=dacos(-1.d0) pi=dacos(-1.d0)
expo=0.5d0*dfloat(n+1) expo=0.5d0*dfloat(n+1)
crochet=dblefact(n-1)/(2.d0*g)**expo crochet=dble_fact(n-1)/(2.d0*g)**expo
if(mod(n,2).eq.0)crochet=crochet*dsqrt(pi/2.d0) if(mod(n,2).eq.0)crochet=crochet*dsqrt(pi/2.d0)
end end
@ -1431,30 +1431,6 @@ end
stop stop
end end
double precision function dblefact(n)
implicit none
integer :: n,k
double precision prod
dblefact=1.d0
if(n.lt.0)return
if(mod(n,2).eq.1)then
prod=1.d0
do k=1,n,2
prod=prod*dfloat(k)
enddo
dblefact=prod
return
endif
if(mod(n,2).eq.0)then
prod=1.d0
do k=2,n,2
prod=prod*dfloat(k)
enddo
dblefact=prod
return
endif
end
!! !!
!! R_{lambda,lamba',N}= exp(-ga_a AC**2 -g_b BC**2) /int_{0}{+infty} r**(2+n) exp(-(g_a+g_b+g_k)r**2) !! R_{lambda,lamba',N}= exp(-ga_a AC**2 -g_b BC**2) /int_{0}{+infty} r**(2+n) exp(-(g_a+g_b+g_k)r**2)
!! * M_{lambda}( 2g_a ac r) M_{lambda'}(2g_b bc r) !! * M_{lambda}( 2g_a ac r) M_{lambda'}(2g_b bc r)
@ -1510,10 +1486,10 @@ end
double precision function bessel_mod_exp(n,x) double precision function bessel_mod_exp(n,x)
implicit none implicit none
integer n,k integer n,k
double precision x,coef,accu,fact,dblefact double precision x,coef,accu,fact,dble_fact
accu=0.d0 accu=0.d0
do k=0,10 do k=0,10
coef=1.d0/fact(k)/dblefact(2*(n+k)+1) coef=1.d0/fact(k)/dble_fact(2*(n+k)+1)
accu=accu+(x**2/2.d0)**k*coef accu=accu+(x**2/2.d0)**k*coef
enddo enddo
bessel_mod_exp=x**n*accu bessel_mod_exp=x**n*accu
@ -1835,22 +1811,6 @@ double precision function binom_gen(alpha,n)
enddo enddo
end end
recursive function fact1(n,a) result(x)
implicit none
integer n
double precision a,x,erf
if(n.eq.0)then
x=dsqrt(dacos(-1.d0))/2.d0*erf(a)
return
endif
if(n.eq.1)then
x=1.d0-dexp(-a**2)
return
endif
if(mod(n,2).eq.0)x=0.5d0*dfloat(n-1)*fact1(n-2,a)+a**n*dexp(-a**2)
if(mod(n,2).eq.1)x=0.5d0*dfloat(n-1)*fact1(n-2,a)+0.5d0*a**(n-1)*dexp(-a**2)
end
double precision FUNCTION ERF(X) double precision FUNCTION ERF(X)
implicit double precision(a-h,o-z) implicit double precision(a-h,o-z)
IF(X.LT.0.d0)THEN IF(X.LT.0.d0)THEN
@ -1863,15 +1823,71 @@ end
double precision function coef_nk(n,k) double precision function coef_nk(n,k)
implicit none implicit none
integer n,k integer n,k, ISHFT
double precision gam,dblefact,fact
double precision gam,dble_fact,fact
double precision, save :: store_result(0:2,0:10)
integer, save :: ifirst
if (ifirst == 0) then
ifirst =1
if(k.GE.80) then
coef_nk = 0.d0
else
gam=dblefact(2*(n+k)+1)
coef_nk=1.d0/(2.d0**k*fact(k)*gam)
endif endif
store_result(0, 0) = 1.00000000000000d0
store_result(0, 1) = 0.166666666666667d0
store_result(0, 2) = 8.333333333333333d-3
store_result(0, 3) = 1.984126984126984d-4
store_result(0, 4) = 2.755731922398589d-6
store_result(0, 5) = 2.505210838544172d-8
store_result(0, 6) = 1.605904383682161d-10
store_result(0, 7) = 7.647163731819816d-13
store_result(0, 8) = 2.811457254345521d-15
store_result(0, 9) = 8.220635246624329d-018
store_result(0,10) = 1.957294106339126d-020
store_result(1, 0) = 0.333333333333333d0
store_result(1, 1) = 3.333333333333333d-002
store_result(1, 2) = 1.190476190476191d-003
store_result(1, 3) = 2.204585537918871d-005
store_result(1, 4) = 2.505210838544172d-007
store_result(1, 5) = 1.927085260418594d-009
store_result(1, 6) = 1.070602922454774d-011
store_result(1, 7) = 4.498331606952833d-014
store_result(1, 8) = 1.479714344392379d-016
store_result(1, 9) = 3.914588212678252d-019
store_result(1,10) = 8.509974375387505d-022
store_result(2, 0) = 6.666666666666667d-002
store_result(2, 1) = 4.761904761904762d-003
store_result(2, 2) = 1.322751322751323d-004
store_result(2, 3) = 2.004168670835337d-006
store_result(2, 4) = 1.927085260418594d-008
store_result(2, 5) = 1.284723506945729d-010
store_result(2, 6) = 6.297664249733966d-013
store_result(2, 7) = 2.367542951027807d-015
store_result(2, 8) = 7.046258782820854d-018
store_result(2, 9) = 1.701994875077501d-020
store_result(2,10) = 3.403989750155002d-023
if (n.LE.2) then
if (k.LE.10) then
coef_nk = store_result(n,k)
return
endif
endif
if ((n+k).GE.30) then
coef_nk = 0.d0
return
endif
gam=dble_fact(2*(n+k)+1)
coef_nk=1.d0/(dble(ISHFT(1,k))*fact(k)*gam)
return
end end
!! Calculation of !! Calculation of
@ -1885,7 +1901,7 @@ double precision function int_prod_bessel(l,gam,n,m,a,b,arg)
implicit none implicit none
integer n,k,m,q,l,kcp integer n,k,m,q,l,kcp
double precision gam,dblefact,fact,pi,a,b double precision gam,dble_fact,fact,pi,a,b
double precision int,intold,sum,coef_nk,crochet,u,int_prod_bessel_large,freal,arg double precision int,intold,sum,coef_nk,crochet,u,int_prod_bessel_large,freal,arg
double precision dump double precision dump

View File

@ -134,7 +134,46 @@ BEGIN_PROVIDER [ double precision, fact_inv, (128) ]
enddo enddo
END_PROVIDER END_PROVIDER
double precision function dble_fact(n) result(fact2)
double precision function dble_fact(n)
implicit none
integer :: n
double precision :: dble_fact_peer, dble_fact_odd
dble_fact = 1.d0
if(n.lt.0) return
if(iand(n,1).eq.0)then
dble_fact = dble_fact_peer(n)
else
dble_fact= dble_fact_odd(n)
endif
end function
double precision function dble_fact_peer(n) result(fact2)
implicit none
BEGIN_DOC
! n!!
END_DOC
integer :: n,k
double precision, save :: memo(1:100)
integer, save :: memomax = 2
double precision :: prod
ASSERT (iand(n,1) /= 1)
prod=1.d0
do k=2,n,2
prod=prod*dfloat(k)
enddo
fact2=prod
return
end function
double precision function dble_fact_odd(n) result(fact2)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! n!! ! n!!