mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-03 20:54:00 +01:00
New way pt2 is ok for 2h1p
This commit is contained in:
parent
9a152ca037
commit
156cbbdb27
192
plugins/MRPT_Utils/new_way.irp.f
Normal file
192
plugins/MRPT_Utils/new_way.irp.f
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
subroutine give_2h1p_contrib(matrix_2h1p)
|
||||||
|
use bitmasks
|
||||||
|
implicit none
|
||||||
|
double precision , intent(inout) :: matrix_2h1p(N_det,N_det,*)
|
||||||
|
integer :: i,j,r,a,b
|
||||||
|
integer :: iorb, jorb, rorb, aorb, borb
|
||||||
|
integer :: ispin,jspin
|
||||||
|
integer :: idet,jdet
|
||||||
|
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2)
|
||||||
|
double precision :: perturb_dets_phase(n_act_orb,2,2)
|
||||||
|
double precision :: perturb_dets_hij(n_act_orb,2,2)
|
||||||
|
double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states)
|
||||||
|
integer :: inint
|
||||||
|
integer :: elec_num_tab_local(2),acu_elec
|
||||||
|
integer(bit_kind) :: det_tmp(N_int,2)
|
||||||
|
integer :: exc(0:2,2,2)
|
||||||
|
integer :: accu_elec
|
||||||
|
double precision :: get_mo_bielec_integral_schwartz
|
||||||
|
double precision :: active_int(n_act_orb,2)
|
||||||
|
double precision :: hij,phase
|
||||||
|
!matrix_2h1p = 0.d0
|
||||||
|
|
||||||
|
elec_num_tab_local = 0
|
||||||
|
do inint = 1, N_int
|
||||||
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
||||||
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
||||||
|
enddo
|
||||||
|
do i = 1, n_inact_orb ! First inactive
|
||||||
|
iorb = list_inact(i)
|
||||||
|
do j = 1, n_inact_orb ! Second inactive
|
||||||
|
jorb = list_inact(j)
|
||||||
|
do r = 1, n_virt_orb ! First virtual
|
||||||
|
rorb = list_virt(r)
|
||||||
|
! take all the integral you will need for i,j,r fixed
|
||||||
|
do a = 1, n_act_orb
|
||||||
|
aorb = list_act(a)
|
||||||
|
active_int(a,1) = get_mo_bielec_integral_schwartz(iorb,jorb,rorb,aorb,mo_integrals_map) ! direct
|
||||||
|
active_int(a,2) = get_mo_bielec_integral_schwartz(iorb,jorb,aorb,rorb,mo_integrals_map) ! exchange
|
||||||
|
enddo
|
||||||
|
|
||||||
|
integer :: degree(N_det)
|
||||||
|
integer :: idx(0:N_det)
|
||||||
|
double precision :: delta_e(n_act_orb,2,N_states)
|
||||||
|
integer :: istate
|
||||||
|
integer :: index_orb_act_mono(N_det,3)
|
||||||
|
|
||||||
|
do idet = 1, N_det
|
||||||
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
||||||
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
||||||
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
||||||
|
do jspin = 1, 2 ! spin of the couple z-a^dagger (j,a)
|
||||||
|
if(ispin == jspin .and. iorb.le.jorb)cycle ! condition not to double count
|
||||||
|
do a = 1, n_act_orb ! First active
|
||||||
|
aorb = list_act(a)
|
||||||
|
do inint = 1, N_int
|
||||||
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
||||||
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
||||||
|
enddo
|
||||||
|
! Do the excitation inactive -- > virtual
|
||||||
|
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
||||||
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
||||||
|
|
||||||
|
! Do the excitation inactive -- > active
|
||||||
|
call clear_bit_to_integer(jorb,det_tmp(1,jspin),N_int) ! hole in "jorb" of spin Jspin
|
||||||
|
call set_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! particle in "aorb" of spin Jspin
|
||||||
|
|
||||||
|
! Check if the excitation is possible or not on psi_det(idet)
|
||||||
|
accu_elec= 0
|
||||||
|
do inint = 1, N_int
|
||||||
|
accu_elec+= popcnt(det_tmp(inint,jspin))
|
||||||
|
enddo
|
||||||
|
if(accu_elec .ne. elec_num_tab_local(jspin))then
|
||||||
|
perturb_dets_phase(a,jspin,ispin) = 0.0
|
||||||
|
perturb_dets_hij(a,jspin,ispin) = 0.d0
|
||||||
|
do istate = 1, N_states
|
||||||
|
coef_perturb_from_idet(a,jspin,ispin,istate) = 0.d0
|
||||||
|
enddo
|
||||||
|
cycle
|
||||||
|
endif
|
||||||
|
do inint = 1, N_int
|
||||||
|
perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1)
|
||||||
|
perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2)
|
||||||
|
enddo
|
||||||
|
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
||||||
|
perturb_dets_phase(a,jspin,ispin) = phase
|
||||||
|
do istate = 1, N_states
|
||||||
|
delta_e(a,jspin,istate) = one_creat(a,jspin,istate) &
|
||||||
|
- fock_virt_total_spin_trace(rorb,istate) &
|
||||||
|
+ fock_core_inactive_total_spin_trace(iorb,istate) &
|
||||||
|
+ fock_core_inactive_total_spin_trace(jorb,istate)
|
||||||
|
enddo
|
||||||
|
if(ispin == jspin)then
|
||||||
|
perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,2) - active_int(a,1) )
|
||||||
|
else
|
||||||
|
perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1)
|
||||||
|
endif
|
||||||
|
!!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet
|
||||||
|
!!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin)
|
||||||
|
do istate = 1, N_states
|
||||||
|
coef_perturb_from_idet(a,jspin,ispin,istate) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
||||||
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
||||||
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a_{b} a^{\dagger}_a | Idet>
|
||||||
|
do jdet = 1, idx(0)
|
||||||
|
if(idx(jdet).ne.idet)then
|
||||||
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
||||||
|
if (exc(0,1,1) == 1) then
|
||||||
|
! Mono alpha
|
||||||
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a^{\dagger}_a
|
||||||
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a_{b}
|
||||||
|
index_orb_act_mono(idx(jdet),3) = 1
|
||||||
|
else
|
||||||
|
! Mono beta
|
||||||
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_a
|
||||||
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,2)) !!! a_{b}
|
||||||
|
index_orb_act_mono(idx(jdet),3) = 2
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
index_orb_act_mono(idx(jdet),1) = -1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
integer :: kspin
|
||||||
|
do jdet = 1, idx(0)
|
||||||
|
if(idx(jdet).ne.idet)then
|
||||||
|
! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
||||||
|
! are connected by the presence of the perturbers determinants |det_tmp>
|
||||||
|
aorb = index_orb_act_mono(idx(jdet),1) ! a^{\dagger}_{aorb}
|
||||||
|
borb = index_orb_act_mono(idx(jdet),2) ! a_{borb}
|
||||||
|
kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
||||||
|
! the determinants Idet and Jdet interact throw the following operator
|
||||||
|
! | Jdet > = a_{borb,kspin} a^{\dagger}_{aorb, kspin} | Idet >
|
||||||
|
|
||||||
|
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
||||||
|
! a^{\dagger}_r a_{i} (ispin)
|
||||||
|
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
|
||||||
|
|
||||||
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet >
|
||||||
|
do inint = 1, N_int
|
||||||
|
det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin)
|
||||||
|
det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin)
|
||||||
|
enddo
|
||||||
|
double precision :: hja
|
||||||
|
! you determine the interaction between the excited determinant and the other parent | Jdet >
|
||||||
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{borb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Jdet >
|
||||||
|
! hja = < det_tmp | H | Jdet >
|
||||||
|
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
||||||
|
if(kspin == ispin)then
|
||||||
|
hja = phase * (active_int(borb,2) - active_int(borb,1) )
|
||||||
|
else
|
||||||
|
hja = phase * active_int(borb,1)
|
||||||
|
endif
|
||||||
|
|
||||||
|
do istate = 1, N_states
|
||||||
|
matrix_2h1p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate)
|
||||||
|
enddo
|
||||||
|
enddo ! ispin
|
||||||
|
|
||||||
|
else
|
||||||
|
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
|
||||||
|
!
|
||||||
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet >
|
||||||
|
do ispin = 1, 2
|
||||||
|
do kspin = 1, 2
|
||||||
|
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
|
||||||
|
do a = 1, n_act_orb ! First active
|
||||||
|
do istate = 1, N_states
|
||||||
|
matrix_2h1p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate) * perturb_dets_hij(a,kspin,ispin)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end
|
@ -1237,6 +1237,97 @@ subroutine i_H_psi_SC2_verbose(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_a
|
|||||||
print*,'------'
|
print*,'------'
|
||||||
end
|
end
|
||||||
|
|
||||||
|
subroutine get_excitation_degree_vector_mono(key1,key2,degree,Nint,sze,idx)
|
||||||
|
use bitmasks
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Applies get_excitation_degree to an array of determinants and return only the mono excitations
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: Nint, sze
|
||||||
|
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
|
||||||
|
integer(bit_kind), intent(in) :: key2(Nint,2)
|
||||||
|
integer, intent(out) :: degree(sze)
|
||||||
|
integer, intent(out) :: idx(0:sze)
|
||||||
|
|
||||||
|
integer :: i,l,d,m
|
||||||
|
|
||||||
|
ASSERT (Nint > 0)
|
||||||
|
ASSERT (sze > 0)
|
||||||
|
|
||||||
|
l=1
|
||||||
|
if (Nint==1) then
|
||||||
|
|
||||||
|
!DIR$ LOOP COUNT (1000)
|
||||||
|
do i=1,sze
|
||||||
|
d = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
||||||
|
popcnt(xor( key1(1,2,i), key2(1,2)))
|
||||||
|
if (d > 2) then
|
||||||
|
cycle
|
||||||
|
else
|
||||||
|
degree(l) = ishft(d,-1)
|
||||||
|
idx(l) = i
|
||||||
|
l = l+1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
else if (Nint==2) then
|
||||||
|
|
||||||
|
!DIR$ LOOP COUNT (1000)
|
||||||
|
do i=1,sze
|
||||||
|
d = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
||||||
|
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
||||||
|
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
||||||
|
popcnt(xor( key1(2,2,i), key2(2,2)))
|
||||||
|
if (d > 2) then
|
||||||
|
cycle
|
||||||
|
else
|
||||||
|
degree(l) = ishft(d,-1)
|
||||||
|
idx(l) = i
|
||||||
|
l = l+1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
else if (Nint==3) then
|
||||||
|
|
||||||
|
!DIR$ LOOP COUNT (1000)
|
||||||
|
do i=1,sze
|
||||||
|
d = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
||||||
|
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
||||||
|
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
||||||
|
popcnt(xor( key1(2,2,i), key2(2,2))) + &
|
||||||
|
popcnt(xor( key1(3,1,i), key2(3,1))) + &
|
||||||
|
popcnt(xor( key1(3,2,i), key2(3,2)))
|
||||||
|
if (d > 2) then
|
||||||
|
cycle
|
||||||
|
else
|
||||||
|
degree(l) = ishft(d,-1)
|
||||||
|
idx(l) = i
|
||||||
|
l = l+1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
!DIR$ LOOP COUNT (1000)
|
||||||
|
do i=1,sze
|
||||||
|
d = 0
|
||||||
|
!DIR$ LOOP COUNT MIN(4)
|
||||||
|
do m=1,Nint
|
||||||
|
d = d + popcnt(xor( key1(m,1,i), key2(m,1))) &
|
||||||
|
+ popcnt(xor( key1(m,2,i), key2(m,2)))
|
||||||
|
enddo
|
||||||
|
if (d > 2) then
|
||||||
|
cycle
|
||||||
|
else
|
||||||
|
degree(l) = ishft(d,-1)
|
||||||
|
idx(l) = i
|
||||||
|
l = l+1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
endif
|
||||||
|
idx(0) = l-1
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)
|
subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)
|
||||||
|
Loading…
Reference in New Issue
Block a user