10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-04 05:03:54 +01:00

Bug in diagonalize CI

This commit is contained in:
Anthony Scemama 2016-06-16 00:14:02 +02:00
parent 5502f94503
commit 149c69b161

View File

@ -36,225 +36,223 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ]
BEGIN_DOC BEGIN_DOC
! Eigenvectors/values of the CI matrix ! Eigenvectors/values of the CI matrix
END_DOC END_DOC
implicit none implicit none
double precision :: ovrlp,u_dot_v double precision :: ovrlp,u_dot_v
integer :: i_good_state integer :: i_good_state
integer, allocatable :: index_good_state_array(:) integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:) logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:) double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
integer :: i_state integer :: i_state
double precision :: s2,e_0 double precision :: s2,e_0
integer :: i,j,k integer :: i,j,k
double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:) double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:) integer, allocatable :: iorder(:)
! Guess values for the "N_states_diag" states of the CI_eigenvectors ! Guess values for the "N_states_diag" states of the CI_eigenvectors
do j=1,min(N_states_diag,N_det) do j=1,min(N_states_diag,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = psi_coef(i,j) CI_eigenvectors(i,j) = psi_coef(i,j)
enddo enddo
enddo enddo
do j=N_det+1,N_states_diag do j=N_det+1,N_states_diag
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = 0.d0 CI_eigenvectors(i,j) = 0.d0
enddo enddo
enddo enddo
if (diag_algorithm == "Davidson") then if (diag_algorithm == "Davidson") then
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,&
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
do j=1,N_states_diag do j=1,N_states_diag
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j)) call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
enddo enddo
else if (diag_algorithm == "Lapack") then else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det)) allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0
if (s2_eig) then if (s2_eig) then
i_state = 0 i_state = 0
allocate (s2_eigvalues(N_det)) allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False. good_state_array = .False.
do j=1,N_det do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
s2_eigvalues(j) = s2 s2_eigvalues(j) = s2
! Select at least n_states states with S^2 values closed to "expected_s2" ! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2-expected_s2).le.0.3d0)then if(dabs(s2-expected_s2).le.0.3d0)then
i_state +=1 i_state +=1
index_good_state_array(i_state) = j index_good_state_array(i_state) = j
good_state_array(j) = .True. good_state_array(j) = .True.
endif endif
if(i_state.eq.N_states) then if(i_state.eq.N_states) then
exit exit
endif endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo enddo
i_other_state = 0 if(i_state .ne.0)then
do j = 1, N_det ! Fill the first "i_state" states that have a correct S^2 value
if(good_state_array(j))cycle do j = 1, i_state
i_other_state +=1 do i=1,N_det
if(i_state+i_other_state.gt.n_states_diag)then CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
exit enddo
endif CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
do i=1,N_det enddo
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) i_other_state = 0
enddo do j = 1, N_det
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) if(good_state_array(j))cycle
CI_eigenvectors_s2(i_state+i_other_state) = s2 i_other_state +=1
enddo if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array) deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else else
print*,'' ! Select the "N_states_diag" states of lowest energy
print*,'!!!!!!!! WARNING !!!!!!!!!' do j=1,min(N_det,N_states_diag)
print*,' Within the ',N_det,'determinants selected' call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j) CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo enddo
CI_electronic_energy(j) = eigenvalues(j) CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j) CI_eigenvectors_s2(j) = s2
enddo enddo
endif
deallocate(s2_eigvalues)
else
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
do j = 1, N_states_diag
do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors(i,j)
enddo
enddo
if(s2_eig)then
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
i_state = 0
do j = 1, N_states_diag
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
good_state_array(j) = .True.
i_state +=1
index_good_state_array(i_state) = j
endif endif
enddo deallocate(eigenvectors,eigenvalues)
! Sorting the i_state good states by energy
allocate(e_array(i_state),iorder(i_state))
do j = 1, i_state
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
CI_electronic_energy(j) = e_0
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,i_state)
do j = 1, i_state
CI_electronic_energy(j) = e_array(j)
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
enddo
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
! print*,'e = ',CI_electronic_energy(j)
! print*,'<e> = ',e_0
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
! print*,'s^2 = ',CI_eigenvectors_s2(j)
! print*,'<s^2>= ',s2
enddo
deallocate(e_array,iorder)
! Then setting the other states without any specific energy order
i_other_state = 0
do j = 1, N_states_diag
if(good_state_array(j))cycle
i_other_state +=1
do i = 1, N_det
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
enddo
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
CI_electronic_energy(i_state + i_other_state) = e_0
enddo
deallocate(index_good_state_array,good_state_array)
else
! Sorting the N_states_diag by energy, whatever the S^2 value is
allocate(e_array(n_states_diag),iorder(n_states_diag))
do j = 1, N_states_diag
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,n_states_diag)
do j = 1, N_states_diag
CI_electronic_energy(j) = e_array(j)
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
enddo
deallocate(e_array,iorder)
endif endif
deallocate(s2_eigvalues)
endif if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
do j = 1, N_states_diag
do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors(i,j)
enddo
enddo
if(s2_eig)then
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
i_state = 0
do j = 1, N_states_diag
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
good_state_array(j) = .True.
i_state +=1
index_good_state_array(i_state) = j
endif
enddo
! Sorting the i_state good states by energy
allocate(e_array(i_state),iorder(i_state))
do j = 1, i_state
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
CI_electronic_energy(j) = e_0
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,i_state)
do j = 1, i_state
CI_electronic_energy(j) = e_array(j)
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
enddo
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
! print*,'e = ',CI_electronic_energy(j)
! print*,'<e> = ',e_0
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
! print*,'s^2 = ',CI_eigenvectors_s2(j)
! print*,'<s^2>= ',s2
enddo
deallocate(e_array,iorder)
! Then setting the other states without any specific energy order
i_other_state = 0
do j = 1, N_states_diag
if(good_state_array(j))cycle
i_other_state +=1
do i = 1, N_det
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
enddo
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
CI_electronic_energy(i_state + i_other_state) = e_0
enddo
else
! Sorting the N_states_diag by energy, whatever the S^2 value is
allocate(e_array(n_states_diag),iorder(n_states_diag))
do j = 1, N_states_diag
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,n_states_diag)
do j = 1, N_states_diag
CI_electronic_energy(j) = e_array(j)
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
enddo
deallocate(e_array,iorder)
endif
deallocate(s2_eigvalues)
deallocate(index_good_state_array,good_state_array)
endif
END_PROVIDER END_PROVIDER
subroutine diagonalize_CI subroutine diagonalize_CI
implicit none implicit none
BEGIN_DOC BEGIN_DOC