mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-23 04:43:50 +01:00
Bug in diagonalize CI
This commit is contained in:
parent
5502f94503
commit
149c69b161
@ -36,225 +36,223 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ]
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: s2,e_0
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
! Guess values for the "N_states_diag" states of the CI_eigenvectors
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=N_det+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, &
|
||||
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
|
||||
do j=1,N_states_diag
|
||||
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
|
||||
enddo
|
||||
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
do j=1,N_det
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
|
||||
s2_eigvalues(j) = s2
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2-expected_s2).le.0.3d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: s2,e_0
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
! Guess values for the "N_states_diag" states of the CI_eigenvectors
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=N_det+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,&
|
||||
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
|
||||
do j=1,N_states_diag
|
||||
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
|
||||
enddo
|
||||
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
do j=1,N_det
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
|
||||
s2_eigvalues(j) = s2
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2-expected_s2).le.0.3d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(i_state+i_other_state) = s2
|
||||
enddo
|
||||
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(i_state+i_other_state) = s2
|
||||
enddo
|
||||
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(j)
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(j) = s2
|
||||
enddo
|
||||
endif
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2(j) = s2
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
|
||||
! Diagonalizing S^2 within the "n_states_diag" states found
|
||||
allocate(s2_eigvalues(N_states_diag))
|
||||
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
|
||||
|
||||
do j = 1, N_states_diag
|
||||
do i = 1, N_det
|
||||
psi_coef(i,j) = CI_eigenvectors(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if(s2_eig)then
|
||||
|
||||
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
|
||||
! closer to the "expected_s2" set as input
|
||||
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
i_state = 0
|
||||
do j = 1, N_states_diag
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
|
||||
good_state_array(j) = .True.
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
endif
|
||||
enddo
|
||||
! Sorting the i_state good states by energy
|
||||
allocate(e_array(i_state),iorder(i_state))
|
||||
do j = 1, i_state
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
CI_electronic_energy(j) = e_0
|
||||
e_array(j) = e_0
|
||||
iorder(j) = j
|
||||
enddo
|
||||
call dsort(e_array,iorder,i_state)
|
||||
do j = 1, i_state
|
||||
CI_electronic_energy(j) = e_array(j)
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
|
||||
enddo
|
||||
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
! print*,'e = ',CI_electronic_energy(j)
|
||||
! print*,'<e> = ',e_0
|
||||
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
|
||||
! print*,'s^2 = ',CI_eigenvectors_s2(j)
|
||||
! print*,'<s^2>= ',s2
|
||||
enddo
|
||||
deallocate(e_array,iorder)
|
||||
|
||||
! Then setting the other states without any specific energy order
|
||||
i_other_state = 0
|
||||
do j = 1, N_states_diag
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
|
||||
enddo
|
||||
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
|
||||
CI_electronic_energy(i_state + i_other_state) = e_0
|
||||
enddo
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
|
||||
|
||||
else
|
||||
|
||||
! Sorting the N_states_diag by energy, whatever the S^2 value is
|
||||
|
||||
allocate(e_array(n_states_diag),iorder(n_states_diag))
|
||||
do j = 1, N_states_diag
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
e_array(j) = e_0
|
||||
iorder(j) = j
|
||||
enddo
|
||||
call dsort(e_array,iorder,n_states_diag)
|
||||
do j = 1, N_states_diag
|
||||
CI_electronic_energy(j) = e_array(j)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
|
||||
enddo
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
|
||||
enddo
|
||||
deallocate(e_array,iorder)
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
deallocate(s2_eigvalues)
|
||||
endif
|
||||
|
||||
|
||||
|
||||
if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
|
||||
! Diagonalizing S^2 within the "n_states_diag" states found
|
||||
allocate(s2_eigvalues(N_states_diag))
|
||||
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
|
||||
|
||||
do j = 1, N_states_diag
|
||||
do i = 1, N_det
|
||||
psi_coef(i,j) = CI_eigenvectors(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if(s2_eig)then
|
||||
|
||||
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
|
||||
! closer to the "expected_s2" set as input
|
||||
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
i_state = 0
|
||||
do j = 1, N_states_diag
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
|
||||
good_state_array(j) = .True.
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
endif
|
||||
enddo
|
||||
! Sorting the i_state good states by energy
|
||||
allocate(e_array(i_state),iorder(i_state))
|
||||
do j = 1, i_state
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
CI_electronic_energy(j) = e_0
|
||||
e_array(j) = e_0
|
||||
iorder(j) = j
|
||||
enddo
|
||||
call dsort(e_array,iorder,i_state)
|
||||
do j = 1, i_state
|
||||
CI_electronic_energy(j) = e_array(j)
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
|
||||
enddo
|
||||
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
! print*,'e = ',CI_electronic_energy(j)
|
||||
! print*,'<e> = ',e_0
|
||||
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
|
||||
! print*,'s^2 = ',CI_eigenvectors_s2(j)
|
||||
! print*,'<s^2>= ',s2
|
||||
enddo
|
||||
deallocate(e_array,iorder)
|
||||
|
||||
! Then setting the other states without any specific energy order
|
||||
i_other_state = 0
|
||||
do j = 1, N_states_diag
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
|
||||
enddo
|
||||
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
|
||||
CI_electronic_energy(i_state + i_other_state) = e_0
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
! Sorting the N_states_diag by energy, whatever the S^2 value is
|
||||
|
||||
allocate(e_array(n_states_diag),iorder(n_states_diag))
|
||||
do j = 1, N_states_diag
|
||||
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
|
||||
e_array(j) = e_0
|
||||
iorder(j) = j
|
||||
enddo
|
||||
call dsort(e_array,iorder,n_states_diag)
|
||||
do j = 1, N_states_diag
|
||||
CI_electronic_energy(j) = e_array(j)
|
||||
do i = 1, N_det
|
||||
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
|
||||
enddo
|
||||
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
|
||||
enddo
|
||||
deallocate(e_array,iorder)
|
||||
endif
|
||||
deallocate(s2_eigvalues)
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine diagonalize_CI
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
Loading…
Reference in New Issue
Block a user