10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 12:56:14 +01:00

Cleaned Davidson

This commit is contained in:
Anthony Scemama 2016-11-18 22:08:08 +01:00
parent 8c93d3b1a8
commit 1446bf9ace
3 changed files with 380 additions and 171 deletions

View File

@ -640,8 +640,10 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
include 'constants.include.F' include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag > sze) then if (N_st_diag*3 > sze) then
stop 'error in Davidson : N_st_diag > sze' print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1
endif endif
PROVIDE nuclear_repulsion PROVIDE nuclear_repulsion
@ -763,10 +765,11 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
1.d0, U, size(U,1), S, size(S,1), & 1.d0, U, size(U,1), S, size(S,1), &
0.d0, s_, size(s_,1)) 0.d0, s_, size(s_,1))
! Diagonalize S^2 ! ! Diagonalize S^2
! --------------- ! ! ---------------
call lapack_diag(s2,y,s_,size(s_,1),shift2) !
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
! ! Rotate H in the basis of eigenfunctions of s2 ! ! Rotate H in the basis of eigenfunctions of s2
! ! --------------------------------------------- ! ! ---------------------------------------------
! !
@ -823,7 +826,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max) logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.3d0) state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo enddo
else else
state_ok(k) = .True. state_ok(k) = .True.
@ -844,39 +847,43 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
endif endif
enddo enddo
! Compute overlap with U_in if (state_following) then
! -------------------------
integer :: coord(2), order(N_st_diag) ! Compute overlap with U_in
overlap = -1.d0 ! -------------------------
do k=1,shift2
do i=1,shift2 integer :: coord(2), order(N_st_diag)
overlap(k,i) = dabs(y(k,i)) overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo enddo
enddo do k=1,N_st
do k=1,N_st coord = maxloc(overlap)
coord = maxloc(overlap) order( coord(2) ) = coord(1)
order( coord(2) ) = coord(1) overlap(:,coord(2)) = -1.d0
overlap(:,coord(2)) = -1.d0 enddo
enddo overlap = y
overlap = y do k=1,N_st
do k=1,N_st l = order(k)
l = order(k) if (k /= l) then
if (k /= l) then y(1:shift2,k) = overlap(1:shift2,l)
y(1:shift2,k) = overlap(1:shift2,l) endif
endif enddo
enddo do k=1,N_st
do k=1,N_st overlap(k,1) = lambda(k)
overlap(k,1) = lambda(k) overlap(k,2) = s2(k)
overlap(k,2) = s2(k) enddo
enddo do k=1,N_st
do k=1,N_st l = order(k)
l = order(k) if (k /= l) then
if (k /= l) then lambda(k) = overlap(l,1)
lambda(k) = overlap(l,1) s2(k) = overlap(l,2)
s2(k) = overlap(l,2) endif
endif enddo
enddo
endif
! Express eigenvectors of h in the determinant basis ! Express eigenvectors of h in the determinant basis
@ -940,22 +947,18 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
enddo enddo
if (.not.converged) then
iter = itermax-1
endif
! Re-contract to u_in ! Re-contract to u_in
! ----------- ! -----------
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
call dgemm('N','N', sze, N_st_diag, shift2, & call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) 1.d0, U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
enddo enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '===== ' write_buffer = '===== '
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' ================ =========== ===========' write_buffer = trim(write_buffer)//' ================ =========== ==========='
@ -966,7 +969,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
deallocate ( & deallocate ( &
W, residual_norm, & W, residual_norm, &
U, & U, overlap, &
c, S, & c, S, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &

View File

@ -15,3 +15,16 @@ type: Strictly_positive_int
doc: Number of micro-iterations before re-contracting doc: Number of micro-iterations before re-contracting
default: 10 default: 10
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
[state_following]
type: logical
doc: If true, the states are re-ordered to match the input states
default: False
interface: ezfio,provider,ocaml
[disk_based_davidson]
type: logical
doc: If true, disk space is used to store the vectors
default: False
interface: ezfio,provider,ocaml

View File

@ -45,8 +45,11 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) if (disk_based_davidson) then
! call davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) call davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
else
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
endif
do i=1,N_st_diag do i=1,N_st_diag
s2_out(i) = S2_jj(i) s2_out(i) = S2_jj(i)
enddo enddo
@ -84,8 +87,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze) double precision, intent(in) :: H_jj(sze)
double precision, intent(inout) :: S2_jj(sze) double precision, intent(inout) :: S2_jj(sze)
integer, intent(in) :: iunit integer, intent(in) :: iunit
double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag) double precision, intent(out) :: energies(N_st_diag)
@ -99,7 +102,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer :: k_pairs, kl integer :: k_pairs, kl
integer :: iter2 integer :: iter2
double precision, allocatable :: W(:,:), U(:,:), S(:,:) double precision, allocatable :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:) double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:) double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
@ -108,13 +111,15 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
double precision :: to_print(3,N_st) double precision :: to_print(3,N_st)
double precision :: cpu, wall double precision :: cpu, wall
integer :: shift, shift2, itermax integer :: shift, shift2, itermax
double precision :: r1, r2
logical :: state_ok(N_st_diag*davidson_sze_max)
include 'constants.include.F' include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag*3 > sze) then if (N_st_diag*3 > sze) then
print *, 'error in Davidson :' print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3 print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1 stop -1
endif endif
PROVIDE nuclear_repulsion expected_s2 PROVIDE nuclear_repulsion expected_s2
@ -137,7 +142,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter' write_buffer = ' Iter'
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual' write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== ' write_buffer = '===== '
@ -146,30 +151,31 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
integer, external :: align_double integer, external :: align_double
sze_8 = align_double(sze) sze_8 = align_double(sze)
itermax = min(davidson_sze_max, sze/N_st_diag) itermax = min(davidson_sze_max, sze/N_st_diag)
allocate( & allocate( &
W(sze_8,N_st_diag*itermax), & W(sze_8,N_st_diag*itermax), &
U(sze_8,N_st_diag*itermax), & U(sze_8,N_st_diag*itermax), &
S(sze_8,N_st_diag*itermax), & S(sze_8,N_st_diag*itermax), &
h(N_st_diag*itermax,N_st_diag*itermax), & h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), & s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), & residual_norm(N_st_diag), &
c(N_st_diag*itermax), & c(N_st_diag*itermax), &
s2(N_st_diag*itermax), & s2(N_st_diag*itermax), &
overlap(N_st_diag*itermax, N_st_diag*itermax), &
lambda(N_st_diag*itermax)) lambda(N_st_diag*itermax))
h = 0.d0 h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0 U = 0.d0
W = 0.d0 W = 0.d0
S = 0.d0 S = 0.d0
y = 0.d0 y = 0.d0
s_ = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0) ASSERT (N_st > 0)
@ -183,15 +189,15 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
converged = .False. converged = .False.
double precision :: r1, r2
do k=N_st+1,N_st_diag do k=N_st+1,N_st_diag
do i=1,sze u_in(k,k) = 10.d0
call random_number(r1) do i=1,sze
call random_number(r2) call random_number(r1)
r1 = dsqrt(-2.d0*dlog(r1)) call random_number(r2)
r2 = dtwo_pi*r2 r1 = dsqrt(-2.d0*dlog(r1))
u_in(i,k) = r1*dcos(r2) r2 = dtwo_pi*r2
enddo u_in(i,k) = r1*dcos(r2)
enddo
enddo enddo
do k=1,N_st_diag do k=1,N_st_diag
call normalize(u_in(1,k),sze) call normalize(u_in(1,k),sze)
@ -233,8 +239,49 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
0.d0, s_, size(s_,1)) 0.d0, s_, size(s_,1))
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
! Diagonalize h ! Diagonalize h
! ------------- ! -------------
call lapack_diag(lambda,y,h,size(h,1),shift2) call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector ! Compute S2 for each eigenvector
@ -255,24 +302,61 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
enddo enddo
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max) do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
state_ok(k) = .True.
endif
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
endif
enddo
if (state_following) then
integer :: coord(2), order(N_st_diag)
overlap = -1.d0
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0) do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo enddo
do k=1,shift2 do k=1,N_st
if (.not. state_ok(k)) then coord = maxloc(overlap)
do l=k+1,shift2 order( coord(2) ) = coord(1)
if (state_ok(l)) then overlap(:,coord(2)) = -1.d0
call dswap(shift2, y(1,k), 1, y(1,l), 1) enddo
call dswap(1, s2(k), 1, s2(l), 1) overlap = y
call dswap(1, lambda(k), 1, lambda(l), 1) do k=1,N_st
state_ok(k) = .True. l = order(k)
state_ok(l) = .False. if (k /= l) then
exit y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
endif endif
enddo enddo
do k=1,N_st
overlap(k,1) = lambda(k)
overlap(k,2) = s2(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
s2(k) = overlap(l,2)
endif
enddo
endif endif
@ -290,11 +374,31 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
! ----------------------------------------- ! -----------------------------------------
do k=1,N_st_diag do k=1,N_st_diag
do i=1,sze if (state_ok(k)) then
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & do i=1,sze
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz & U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
)/max(H_jj(i) - lambda (k),1.d-2) * (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
enddo )/max(H_jj(i) - lambda (k),1.d-2)
enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
if (k <= N_st) then if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze) residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion to_print(1,k) = lambda(k) + nuclear_repulsion
@ -339,7 +443,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
deallocate ( & deallocate ( &
W, residual_norm, & W, residual_norm, &
U, & U, overlap, &
c, S, & c, S, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &
@ -378,8 +482,8 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze) double precision, intent(in) :: H_jj(sze)
double precision, intent(inout) :: S2_jj(sze) double precision, intent(inout) :: S2_jj(sze)
integer, intent(in) :: iunit integer, intent(in) :: iunit
double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag) double precision, intent(out) :: energies(N_st_diag)
@ -393,7 +497,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
integer :: k_pairs, kl integer :: k_pairs, kl
integer :: iter2 integer :: iter2
double precision, pointer :: W(:,:), U(:,:), S(:,:) double precision, pointer :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:) double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:) double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
@ -401,14 +505,15 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
character*(16384) :: write_buffer character*(16384) :: write_buffer
double precision :: to_print(3,N_st) double precision :: to_print(3,N_st)
double precision :: cpu, wall double precision :: cpu, wall
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: shift, shift2, itermax integer :: shift, shift2, itermax
include 'constants.include.F' include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag*3 > sze) then if (N_st_diag*3 > sze) then
print *, 'error in Davidson :' print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3 print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1 stop -1
endif endif
PROVIDE nuclear_repulsion expected_s2 PROVIDE nuclear_repulsion expected_s2
@ -431,7 +536,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter' write_buffer = ' Iter'
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual' write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== ' write_buffer = '===== '
@ -440,48 +545,49 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
integer, external :: align_double integer, external :: align_double
integer :: fd(3) integer :: fd(3)
type(c_ptr) :: c_pointer(3) type(c_ptr) :: c_pointer(3)
sze_8 = align_double(sze) sze_8 = align_double(sze)
itermax = min(davidson_sze_max, sze/N_st_diag) itermax = min(davidson_sze_max, sze/N_st_diag)
call mmap( & call mmap( &
trim(ezfio_work_dir)//'U', & trim(ezfio_work_dir)//'U', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), & (/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(1), .False., c_pointer(1)) 8, fd(1), .False., c_pointer(1))
call c_f_pointer(c_pointer(1), W, (/ sze_8,N_st_diag*itermax /) ) call c_f_pointer(c_pointer(1), W, (/ sze_8,N_st_diag*itermax /) )
call mmap( & call mmap( &
trim(ezfio_work_dir)//'W', & trim(ezfio_work_dir)//'W', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), & (/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(2), .False., c_pointer(2)) 8, fd(2), .False., c_pointer(2))
call c_f_pointer(c_pointer(2), U, (/ sze_8,N_st_diag*itermax /) ) call c_f_pointer(c_pointer(2), U, (/ sze_8,N_st_diag*itermax /) )
call mmap( & call mmap( &
trim(ezfio_work_dir)//'S', & trim(ezfio_work_dir)//'S', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), & (/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(3), .False., c_pointer(3)) 8, fd(3), .False., c_pointer(3))
call c_f_pointer(c_pointer(3), S, (/ sze_8,N_st_diag*itermax /) ) call c_f_pointer(c_pointer(3), S, (/ sze_8,N_st_diag*itermax /) )
allocate( & allocate( &
h(N_st_diag*itermax,N_st_diag*itermax), & h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), & s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
overlap(N_st_diag*itermax, N_st_diag*itermax), &
residual_norm(N_st_diag), & residual_norm(N_st_diag), &
c(N_st_diag*itermax), & c(N_st_diag*itermax), &
s2(N_st_diag*itermax), & s2(N_st_diag*itermax), &
lambda(N_st_diag*itermax)) lambda(N_st_diag*itermax))
h = 0.d0 h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0 U = 0.d0
W = 0.d0 W = 0.d0
S = 0.d0 S = 0.d0
y = 0.d0 y = 0.d0
s_ = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0) ASSERT (N_st > 0)
@ -497,6 +603,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
double precision :: r1, r2 double precision :: r1, r2
do k=N_st+1,N_st_diag do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze do i=1,sze
call random_number(r1) call random_number(r1)
r1 = dsqrt(-2.d0*dlog(r1)) r1 = dsqrt(-2.d0*dlog(r1))
@ -546,6 +653,45 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
0.d0, s_(shift+1,1), size(s_,1)) 0.d0, s_(shift+1,1), size(s_,1))
enddo enddo
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
! Diagonalize h ! Diagonalize h
! ------------- ! -------------
@ -568,36 +714,63 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
s2(k) = s_(k,k) + S_z2_Sz s2(k) = s_(k,k) + S_z2_Sz
enddo enddo
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max) do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
state_ok(k) = .True.
endif
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
endif
enddo
if (state_following) then
integer :: coord(2), order(N_st_diag)
overlap = -1.d0
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0) do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo enddo
do k=1,shift2 do k=1,N_st
if (.not. state_ok(k)) then coord = maxloc(overlap)
do l=k+1,shift2 order( coord(2) ) = coord(1)
if (state_ok(l)) then overlap(:,coord(2)) = -1.d0
call dswap(shift2, y(1,k), 1, y(1,l), 1) enddo
call dswap(1, s2(k), 1, s2(l), 1) overlap = y
call dswap(1, lambda(k), 1, lambda(l), 1) do k=1,N_st
state_ok(k) = .True. l = order(k)
state_ok(l) = .False. if (k /= l) then
exit y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
endif endif
enddo enddo
! Randomize components with bad <S2> do k=1,N_st
if (.not. state_ok(k)) then overlap(k,1) = lambda(k)
do i=1,shift2 overlap(k,2) = s2(k)
call random_number(r1) enddo
call random_number(r2) do k=1,N_st
r1 = dsqrt(-2.d0*dlog(r1)) l = order(k)
r2 = dtwo_pi*r2 if (k /= l) then
y(i,k) = r1*dcos(r2) lambda(k) = overlap(l,1)
lambda(k) = 1.d0 s2(k) = overlap(l,2)
enddo endif
endif enddo
endif endif
@ -615,11 +788,31 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! ----------------------------------------- ! -----------------------------------------
do k=1,N_st_diag do k=1,N_st_diag
do i=1,sze if (state_ok(k)) then
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & do i=1,sze
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz & U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
)/max(H_jj(i) - lambda (k),1.d-2) * (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
enddo )/max(H_jj(i) - lambda (k),1.d-2)
enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
if (k <= N_st) then if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze) residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion to_print(1,k) = lambda(k) + nuclear_repulsion
@ -676,7 +869,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
deallocate ( & deallocate ( &
residual_norm, & residual_norm, &
c, & c, overlap, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &
lambda & lambda &