10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 04:43:50 +01:00

Cleaned Davidson

This commit is contained in:
Anthony Scemama 2016-11-18 22:08:08 +01:00
parent 8c93d3b1a8
commit 1446bf9ace
3 changed files with 380 additions and 171 deletions

View File

@ -640,8 +640,10 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
include 'constants.include.F' include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag > sze) then if (N_st_diag*3 > sze) then
stop 'error in Davidson : N_st_diag > sze' print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1
endif endif
PROVIDE nuclear_repulsion PROVIDE nuclear_repulsion
@ -763,10 +765,11 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
1.d0, U, size(U,1), S, size(S,1), & 1.d0, U, size(U,1), S, size(S,1), &
0.d0, s_, size(s_,1)) 0.d0, s_, size(s_,1))
! Diagonalize S^2 ! ! Diagonalize S^2
! --------------- ! ! ---------------
call lapack_diag(s2,y,s_,size(s_,1),shift2) !
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
! ! Rotate H in the basis of eigenfunctions of s2 ! ! Rotate H in the basis of eigenfunctions of s2
! ! --------------------------------------------- ! ! ---------------------------------------------
! !
@ -823,7 +826,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max) logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.3d0) state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo enddo
else else
state_ok(k) = .True. state_ok(k) = .True.
@ -844,6 +847,8 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
endif endif
enddo enddo
if (state_following) then
! Compute overlap with U_in ! Compute overlap with U_in
! ------------------------- ! -------------------------
@ -878,6 +883,8 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
endif endif
enddo enddo
endif
! Express eigenvectors of h in the determinant basis ! Express eigenvectors of h in the determinant basis
! -------------------------------------------------- ! --------------------------------------------------
@ -940,22 +947,18 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
enddo enddo
if (.not.converged) then
iter = itermax-1
endif
! Re-contract to u_in ! Re-contract to u_in
! ----------- ! -----------
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
call dgemm('N','N', sze, N_st_diag, shift2, & call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) 1.d0, U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
enddo enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '===== ' write_buffer = '===== '
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' ================ =========== ===========' write_buffer = trim(write_buffer)//' ================ =========== ==========='
@ -966,7 +969,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
deallocate ( & deallocate ( &
W, residual_norm, & W, residual_norm, &
U, & U, overlap, &
c, S, & c, S, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &

View File

@ -15,3 +15,16 @@ type: Strictly_positive_int
doc: Number of micro-iterations before re-contracting doc: Number of micro-iterations before re-contracting
default: 10 default: 10
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
[state_following]
type: logical
doc: If true, the states are re-ordered to match the input states
default: False
interface: ezfio,provider,ocaml
[disk_based_davidson]
type: logical
doc: If true, disk space is used to store the vectors
default: False
interface: ezfio,provider,ocaml

View File

@ -45,8 +45,11 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
if (disk_based_davidson) then
call davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
else
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
! call davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) endif
do i=1,N_st_diag do i=1,N_st_diag
s2_out(i) = S2_jj(i) s2_out(i) = S2_jj(i)
enddo enddo
@ -99,7 +102,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer :: k_pairs, kl integer :: k_pairs, kl
integer :: iter2 integer :: iter2
double precision, allocatable :: W(:,:), U(:,:), S(:,:) double precision, allocatable :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:) double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:) double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
@ -108,6 +111,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
double precision :: to_print(3,N_st) double precision :: to_print(3,N_st)
double precision :: cpu, wall double precision :: cpu, wall
integer :: shift, shift2, itermax integer :: shift, shift2, itermax
double precision :: r1, r2
logical :: state_ok(N_st_diag*davidson_sze_max)
include 'constants.include.F' include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
@ -137,7 +142,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter' write_buffer = ' Iter'
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual' write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== ' write_buffer = '===== '
@ -161,15 +166,16 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
residual_norm(N_st_diag), & residual_norm(N_st_diag), &
c(N_st_diag*itermax), & c(N_st_diag*itermax), &
s2(N_st_diag*itermax), & s2(N_st_diag*itermax), &
overlap(N_st_diag*itermax, N_st_diag*itermax), &
lambda(N_st_diag*itermax)) lambda(N_st_diag*itermax))
h = 0.d0 h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0 U = 0.d0
W = 0.d0 W = 0.d0
S = 0.d0 S = 0.d0
y = 0.d0 y = 0.d0
s_ = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0) ASSERT (N_st > 0)
@ -183,8 +189,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
converged = .False. converged = .False.
double precision :: r1, r2
do k=N_st+1,N_st_diag do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze do i=1,sze
call random_number(r1) call random_number(r1)
call random_number(r2) call random_number(r2)
@ -233,8 +239,49 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
0.d0, s_, size(s_,1)) 0.d0, s_, size(s_,1))
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
! Diagonalize h ! Diagonalize h
! ------------- ! -------------
call lapack_diag(lambda,y,h,size(h,1),shift2) call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector ! Compute S2 for each eigenvector
@ -255,10 +302,13 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
enddo enddo
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0) state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo enddo
else
state_ok(k) = .True.
endif
do k=1,shift2 do k=1,shift2
if (.not. state_ok(k)) then if (.not. state_ok(k)) then
do l=k+1,shift2 do l=k+1,shift2
@ -273,6 +323,40 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
enddo enddo
endif endif
enddo enddo
if (state_following) then
integer :: coord(2), order(N_st_diag)
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
coord = maxloc(overlap)
order( coord(2) ) = coord(1)
overlap(:,coord(2)) = -1.d0
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
overlap(k,2) = s2(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
s2(k) = overlap(l,2)
endif
enddo
endif endif
@ -290,11 +374,31 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
! ----------------------------------------- ! -----------------------------------------
do k=1,N_st_diag do k=1,N_st_diag
if (state_ok(k)) then
do i=1,sze do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz & * (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2) )/max(H_jj(i) - lambda (k),1.d-2)
enddo enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
if (k <= N_st) then if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze) residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion to_print(1,k) = lambda(k) + nuclear_repulsion
@ -339,7 +443,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
deallocate ( & deallocate ( &
W, residual_norm, & W, residual_norm, &
U, & U, overlap, &
c, S, & c, S, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &
@ -393,7 +497,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
integer :: k_pairs, kl integer :: k_pairs, kl
integer :: iter2 integer :: iter2
double precision, pointer :: W(:,:), U(:,:), S(:,:) double precision, pointer :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:) double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:) double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
@ -401,6 +505,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
character*(16384) :: write_buffer character*(16384) :: write_buffer
double precision :: to_print(3,N_st) double precision :: to_print(3,N_st)
double precision :: cpu, wall double precision :: cpu, wall
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: shift, shift2, itermax integer :: shift, shift2, itermax
include 'constants.include.F' include 'constants.include.F'
@ -431,7 +536,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter' write_buffer = ' Iter'
do i=1,N_st do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual' write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo enddo
write(iunit,'(A)') trim(write_buffer) write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== ' write_buffer = '===== '
@ -470,18 +575,19 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
y(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), & s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
overlap(N_st_diag*itermax, N_st_diag*itermax), &
residual_norm(N_st_diag), & residual_norm(N_st_diag), &
c(N_st_diag*itermax), & c(N_st_diag*itermax), &
s2(N_st_diag*itermax), & s2(N_st_diag*itermax), &
lambda(N_st_diag*itermax)) lambda(N_st_diag*itermax))
h = 0.d0 h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0 U = 0.d0
W = 0.d0 W = 0.d0
S = 0.d0 S = 0.d0
y = 0.d0 y = 0.d0
s_ = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0) ASSERT (N_st > 0)
@ -497,6 +603,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
double precision :: r1, r2 double precision :: r1, r2
do k=N_st+1,N_st_diag do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze do i=1,sze
call random_number(r1) call random_number(r1)
r1 = dsqrt(-2.d0*dlog(r1)) r1 = dsqrt(-2.d0*dlog(r1))
@ -546,6 +653,45 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
0.d0, s_(shift+1,1), size(s_,1)) 0.d0, s_(shift+1,1), size(s_,1))
enddo enddo
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
! Diagonalize h ! Diagonalize h
! ------------- ! -------------
@ -568,11 +714,15 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
s2(k) = s_(k,k) + S_z2_Sz s2(k) = s_(k,k) + S_z2_Sz
enddo enddo
if (s2_eig) then if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2 do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0) state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo enddo
else
state_ok(k) = .True.
endif
do k=1,shift2 do k=1,shift2
if (.not. state_ok(k)) then if (.not. state_ok(k)) then
do l=k+1,shift2 do l=k+1,shift2
@ -587,17 +737,40 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
enddo enddo
endif endif
enddo enddo
! Randomize components with bad <S2>
if (.not. state_ok(k)) then if (state_following) then
integer :: coord(2), order(N_st_diag)
overlap = -1.d0
do k=1,shift2
do i=1,shift2 do i=1,shift2
call random_number(r1) overlap(k,i) = dabs(y(k,i))
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
y(i,k) = r1*dcos(r2)
lambda(k) = 1.d0
enddo enddo
enddo
do k=1,N_st
coord = maxloc(overlap)
order( coord(2) ) = coord(1)
overlap(:,coord(2)) = -1.d0
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
overlap(k,2) = s2(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
s2(k) = overlap(l,2)
endif
enddo
endif endif
@ -615,11 +788,31 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! ----------------------------------------- ! -----------------------------------------
do k=1,N_st_diag do k=1,N_st_diag
if (state_ok(k)) then
do i=1,sze do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz & * (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2) )/max(H_jj(i) - lambda (k),1.d-2)
enddo enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
if (k <= N_st) then if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze) residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion to_print(1,k) = lambda(k) + nuclear_repulsion
@ -676,7 +869,7 @@ subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
deallocate ( & deallocate ( &
residual_norm, & residual_norm, &
c, & c, overlap, &
h, & h, &
y, s_, s_tmp, & y, s_, s_tmp, &
lambda & lambda &