10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-26 23:22:18 +02:00

Merge branch 'LCPQ-master'

This commit is contained in:
TApplencourt 2015-10-08 13:11:05 +02:00
commit 1049a62768
58 changed files with 2451 additions and 206 deletions

3
.gitignore vendored
View File

@ -5,4 +5,5 @@ build.ninja
.ninja_deps
bin/
lib/
config/qp_create_ninja.pickle
config/qp_create_ninja.pickle
src/*/.gitignore

View File

@ -20,6 +20,7 @@ For more information, you can visit the [wiki of the project](http://github.com/
* Bash
* Blast/Lapack
* unzip
* g++ (For ninja)
## Standard installation
@ -32,7 +33,7 @@ For example you can type `./configure config/gfortran.cfg --production`
This command have to purpose :
- Download and install all the requirements.
Installing OCaml and the Core library may take somme time (up to 20min on an old machine).
Installing OCaml and the Core library may take some time (up to 20min on an old machine).
- And create the file which contains all the tree dependencies for the binaries.
It's not a Makefile, but a Ninja file (so don't type `make` is hopeless, type `ninja` instead)
@ -173,4 +174,4 @@ You have two or more ezfio configuration file for the same variable. Check in `$
#### Fix
- rm $QP_ROOT/install/EZFIO/config/*
- ninja
- ninja

32
configure vendored
View File

@ -7,15 +7,16 @@ Usage: configure <config_file> (--production | --development)
Options:
config_file A config file with all the information for the compilation
config_file A config file with all the information for compiling.
Example config_files are given in config/
--production You can only compile all the modules with this flag,
but the compilation will be lighting fast
--production You can only compile **all** the modules with this flag,
but it will compile lighting fast.
--development this will create a build.ninja for each directory which
contains a binary. In a second step you may compile them
individually if you like.
--development It will create a build.ninja for each directory
who contains a binary, than you can compile then
individualy if you want
Examples:
@ -163,7 +164,7 @@ def find_path(bin_, l_installed, var_for_qp_root=False):
# | |_| | | (_ |_ | (_) | |
#
def check_output(*popenargs, **kwargs):
"""Run command with arguments and return its output as a byte string.
"""Run command with arguments and return its output as a string.
Backported from Python 2.7 as it's implemented as pure python on stdlib.
@ -189,7 +190,7 @@ def check_output(*popenargs, **kwargs):
def checking(d_dependency):
"""
For each key in d_dependency check if it
it avalabie or not
is avalabie or not
"""
def check_python():
@ -205,8 +206,8 @@ def checking(d_dependency):
def check_availability(binary):
"""
If avalable return the path who can find the
binary else return 0
If avalable return the path where the binary
can be found, else return 0
"""
if binary == "python":
@ -254,7 +255,7 @@ def checking(d_dependency):
"""
print "Checking what you need to install and what is it avalaible"
print "Checking what you need to install and what is avalaible"
print ""
l_installed = dict()
l_needed = []
@ -327,7 +328,7 @@ _|_ | | _> |_ (_| | | (_| |_ | (_) | |
d_print = {
"install_ninja": "Install ninja...",
"build": "Creating build.ninja...",
"install": "Installing the dependency through ninja..."
"install": "Installing the dependencies with Ninja..."
}
length = max(map(len, d_print.values()))
@ -486,7 +487,7 @@ def create_ninja_and_rc(l_installed):
subprocess.check_call(" ".join(l), shell=True,stderr=dnull)
except:
print "[ FAIL ]"
print "Check the valididy of the config file provided ({0})".format(sys.argv[1])
print "Check the validity of the config file provided ({0})".format(sys.argv[1])
print "Exit..."
sys.exit(1)
@ -498,6 +499,11 @@ def recommendation():
path = join(QP_ROOT, "quantum_package.rc")
print "Now :"
print " source {0}".format(path)
print ""
print "Then, install the modules you want to install using :"
print " qp_install_module.py "
print ""
print "Finally :"
print " ninja"
print " make -C ocaml"
print ""

View File

@ -96,3 +96,92 @@ Needed Modules
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/src/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/src/Generators_CAS>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`full_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/cas_sd_selected.irp.f#L1>`_
Undocumented
`h_apply_cas_sd <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L414>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L269>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L2610>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_pt2_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L2118>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_pt2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L2427>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L1872>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_selected_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L1346>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L1675>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_no_skip <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L1128>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cas_sd_selected_no_skip_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L602>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cas_sd_selected_no_skip_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CAS_SD/H_apply.irp.f_shell_22#L931>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.

View File

@ -48,3 +48,44 @@ Needed Modules
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/src/Selectors_full>`_
* `SingleRefMethod <http://github.com/LCPQ/quantum_package/tree/master/src/SingleRefMethod>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `SingleRefMethod <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`cis <http://github.com/LCPQ/quantum_package/tree/master/plugins/CIS/super_ci.irp.f#L1>`_
Undocumented
`h_apply_cis <http://github.com/LCPQ/quantum_package/tree/master/plugins/CIS/H_apply.irp.f_shell_8#L414>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cis_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CIS/H_apply.irp.f_shell_8#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cis_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CIS/H_apply.irp.f_shell_8#L269>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`super_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/CIS/super_ci.irp.f#L9>`_
Undocumented

View File

@ -20,7 +20,6 @@ Pseudo
Selectors_full
SingleRefMethod
Utils
cisd
cisd_lapack
ezfio_interface.irp.f
irpf90.make

View File

@ -42,3 +42,40 @@ Documentation
particles.
Assume N_int is already provided.
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `SingleRefMethod <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`cisd <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD/cisd_lapack.irp.f#L1>`_
Undocumented
`h_apply_cisd <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD/H_apply.irp.f_shell_8#L414>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD/H_apply.irp.f_shell_8#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD/H_apply.irp.f_shell_8#L269>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.

View File

@ -14,6 +14,7 @@ program cisd
enddo
call save_wavefunction
call ezfio_set_cisd_energy(CI_energy(1))
! call CISD_SC2(psi_det,psi_coef,eigvalues,size(psi_coef,1),N_det,N_states,N_int)
! do i = 1, N_states
! print*,'eigvalues(i) = ',eigvalues(i)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

After

Width:  |  Height:  |  Size: 87 KiB

View File

@ -0,0 +1,10 @@
[energy]
type: double precision
doc: Variational Selected CISD energy
interface: ezfio
[energy_pt2]
type: double precision
doc: Estimated CISD energy (including PT2)
interface: ezfio

View File

@ -179,3 +179,197 @@ Needed Modules
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation>`_
* `CISD <http://github.com/LCPQ/quantum_package/tree/master/src/CISD>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `CISD <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`cisd <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/cisd_selection.irp.f#L1>`_
Undocumented
`h_apply_cisd <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_8#L414>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_8#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_8#L269>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f#L13>`_
Undocumented
`h_apply_cisd_selection_delta_rho_one_point <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L5931>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_delta_rho_one_point_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L5405>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_delta_rho_one_point_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L5734>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L5159>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L4633>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L4962>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L3615>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L4387>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L3861>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L4190>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L3089>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L3418>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L2843>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L2317>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L2646>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L2071>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L1545>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L1874>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L1299>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L773>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L1102>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L527>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L330>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L6703>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_moller_plesset_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L6177>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_cisd_selection_moller_plesset_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/CISD_selected/H_apply.irp.f_shell_10#L6506>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.

View File

@ -43,4 +43,6 @@ program cisd
call diagonalize_CI
deallocate(pt2,norm_pert,H_pert_diag)
call save_wavefunction
call ezfio_set_cisd_selected_energy(CI_energy)
call ezfio_set_cisd_selected_energy_pt2(CI_energy+pt2)
end

View File

@ -1,23 +1,23 @@
# Automatically created by /home/razoa/quantum_package/scripts/module/module_handler.py
IRPF90_temp
IRPF90_man
irpf90_entities
tags
irpf90.make
Makefile
Makefile.depend
.ninja_log
# Automatically created by $QP_ROOT/scripts/module/module_handler.py
.ninja_deps
ezfio_interface.irp.f
Ezfio_files
.ninja_log
AO_Basis
Bitmask
Determinants
Electrons
Ezfio_files
IRPF90_man
IRPF90_temp
Integrals_Bielec
Integrals_Monoelec
MO_Basis
Utils
Pseudo
Bitmask
AO_Basis
Electrons
Makefile
Makefile.depend
Nuclei
Integrals_Bielec
fcidump
Pseudo
Utils
ezfio_interface.irp.f
fcidump
irpf90.make
irpf90_entities
tags

View File

@ -23,3 +23,22 @@ Needed Modules
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`fcidump <http://github.com/LCPQ/quantum_package/tree/master/plugins/FCIdump/fcidump.irp.f#L1>`_
Undocumented

View File

@ -1,32 +0,0 @@
# Automatically created by $QP_ROOT/scripts/module/module_handler.py
.ninja_deps
.ninja_log
AO_Basis
Bitmask
Determinants
Electrons
Ezfio_files
Generators_full
Hartree_Fock
IRPF90_man
IRPF90_temp
Integrals_Bielec
Integrals_Monoelec
MOGuess
MO_Basis
Makefile
Makefile.depend
Nuclei
Perturbation
Properties
Pseudo
Selectors_full
Utils
ezfio_interface.irp.f
full_ci
full_ci_no_skip
irpf90.make
irpf90_entities
tags
target_pt2
var_pt2_ratio

View File

@ -27,7 +27,7 @@ Documentation
Undocumented
`h_apply_fci <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L521>`_
`h_apply_fci <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L527>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
@ -38,126 +38,126 @@ Documentation
Assume N_int is already provided.
`h_apply_fci_mono <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2720>`_
`h_apply_fci_mono <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2744>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_fci_mono_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2198>`_
`h_apply_fci_mono_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2216>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_mono_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2522>`_
`h_apply_fci_mono_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2545>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L325>`_
`h_apply_fci_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L330>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_no_skip <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1980>`_
`h_apply_fci_no_skip <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1998>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_fci_no_skip_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1460>`_
`h_apply_fci_no_skip_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1472>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_no_skip_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1784>`_
`h_apply_fci_no_skip_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1801>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1253>`_
`h_apply_fci_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1265>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_fci_pt2_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L767>`_
`h_apply_fci_pt2_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L773>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_fci_pt2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1071>`_
`h_apply_fci_pt2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L1082>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_pt2_mono_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4222>`_
`h_apply_pt2_mono_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4258>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_pt2_mono_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3734>`_
`h_apply_pt2_mono_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3764>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_pt2_mono_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4038>`_
`h_apply_pt2_mono_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4073>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_pt2_mono_di_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5681>`_
`h_apply_pt2_mono_di_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5729>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_pt2_mono_di_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5195>`_
`h_apply_pt2_mono_di_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5237>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_pt2_mono_di_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5499>`_
`h_apply_pt2_mono_di_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L5546>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_select_mono_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3488>`_
`h_apply_select_mono_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3518>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_select_mono_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2966>`_
`h_apply_select_mono_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L2990>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_select_mono_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3290>`_
`h_apply_select_mono_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L3319>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_select_mono_di_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4949>`_
`h_apply_select_mono_di_delta_rho <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4991>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_select_mono_di_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4429>`_
`h_apply_select_mono_di_delta_rho_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4465>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_select_mono_di_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4753>`_
`h_apply_select_mono_di_delta_rho_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/H_apply.irp.f_shell_43#L4794>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.

View File

@ -26,6 +26,9 @@ program var_pt2_ratio_run
soft_touch N_det psi_det psi_coef
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (CI_energy(1)+pt2(1) - HF_energy)
if (N_det > 20000) then
exit
endif
enddo
threshold_selectors = 1.d0

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -49,3 +49,40 @@ Needed Modules
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS/generators.irp.f#L3>`_
Number of generator detetrminants
`psi_coef_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS/generators.irp.f#L35>`_
For Single reference wave functions, the generator is the
Hartree-Fock determinant
`psi_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS/generators.irp.f#L34>`_
For Single reference wave functions, the generator is the
Hartree-Fock determinant
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS/generators.irp.f#L78>`_
Memo to skip useless selectors
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS/generators.irp.f#L70>`_
Size of the select_max array

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

After

Width:  |  Height:  |  Size: 74 KiB

View File

@ -111,18 +111,27 @@ END_PROVIDER
integer*8 :: p,q
double precision :: integral
double precision :: ao_bielec_integral
double precision, allocatable :: ao_bi_elec_integral_alpha_tmp(:,:)
double precision, allocatable :: ao_bi_elec_integral_beta_tmp(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_beta_tmp
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_alpha_tmp
ao_bi_elec_integral_alpha = 0.d0
ao_bi_elec_integral_beta = 0.d0
if (do_direct_integrals) then
ao_bi_elec_integral_alpha = 0.d0
ao_bi_elec_integral_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s)&
!$OMP SHARED(ao_num,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s, &
!$OMP ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)&
!$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_bielec_integral_schwartz, &
!$OMP ao_overlap_abs) &
!$OMP REDUCTION(+:ao_bi_elec_integral_alpha,ao_bi_elec_integral_beta)
!$OMP ao_overlap_abs, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta)
allocate(keys(1), values(1))
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
ao_bi_elec_integral_alpha_tmp = 0.d0
ao_bi_elec_integral_beta_tmp = 0.d0
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(dynamic)
@ -160,15 +169,21 @@ END_PROVIDER
k = kk(k2)
l = ll(k2)
integral = (HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)) * values(1)
ao_bi_elec_integral_alpha(i,j) += integral
ao_bi_elec_integral_beta (i,j) += integral
ao_bi_elec_integral_alpha_tmp(i,j) += integral
ao_bi_elec_integral_beta_tmp (i,j) += integral
integral = values(1)
ao_bi_elec_integral_alpha(l,j) -= HF_density_matrix_ao_alpha(k,i) * integral
ao_bi_elec_integral_beta (l,j) -= HF_density_matrix_ao_beta (k,i) * integral
ao_bi_elec_integral_alpha_tmp(l,j) -= HF_density_matrix_ao_alpha(k,i) * integral
ao_bi_elec_integral_beta_tmp (l,j) -= HF_density_matrix_ao_beta (k,i) * integral
enddo
enddo
!$OMP END DO
deallocate(keys,values)
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_bielec_integrals_in_map
@ -180,16 +195,18 @@ END_PROVIDER
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
ao_bi_elec_integral_alpha = 0.d0
ao_bi_elec_integral_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max,n_elements)&
!$OMP SHARED(ao_num,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
!$OMP ao_integrals_map) &
!$OMP REDUCTION(+:ao_bi_elec_integral_alpha,ao_bi_elec_integral_beta)
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)&
!$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
!$OMP ao_integrals_map, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
ao_bi_elec_integral_alpha_tmp = 0.d0
ao_bi_elec_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(dynamic)
do i8=0_8,ao_integrals_map%map_size
@ -207,16 +224,22 @@ END_PROVIDER
k = kk(k2)
l = ll(k2)
integral = (HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)) * values(k1)
ao_bi_elec_integral_alpha(i,j) += integral
ao_bi_elec_integral_beta (i,j) += integral
ao_bi_elec_integral_alpha_tmp(i,j) += integral
ao_bi_elec_integral_beta_tmp (i,j) += integral
integral = values(k1)
ao_bi_elec_integral_alpha(l,j) -= HF_density_matrix_ao_alpha(k,i) * integral
ao_bi_elec_integral_beta (l,j) -= HF_density_matrix_ao_beta (k,i) * integral
ao_bi_elec_integral_alpha_tmp(l,j) -= HF_density_matrix_ao_alpha(k,i) * integral
ao_bi_elec_integral_beta_tmp (l,j) -= HF_density_matrix_ao_beta (k,i) * integral
enddo
enddo
enddo
!$OMP END DO
deallocate(keys,values)
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
!$OMP END PARALLEL
endif

View File

@ -66,11 +66,11 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L231>`_
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L254>`_
Fock matrix on the MO basis
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L289>`_
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L312>`_
Fock matrix in AO basis set
@ -78,7 +78,7 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L251>`_
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L274>`_
Fock matrix on the MO basis
@ -114,7 +114,7 @@ Documentation
.br
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L332>`_
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L355>`_
Undocumented
@ -134,7 +134,7 @@ Documentation
S^-1 Beta density matrix in the AO basis x S^-1
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L270>`_
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L293>`_
Hartree-Fock energy

View File

@ -30,9 +30,12 @@ subroutine damping_SCF
call write_time(output_hartree_fock)
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), '====','================','================','================', '===='
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), ' N ', 'Energy ', 'Energy diff ', 'Density diff ', 'Save'
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), '====','================','================','================', '===='
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), &
'====','================','================','================', '===='
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), &
' N ', 'Energy ', 'Energy diff ', 'Density diff ', 'Save'
write(output_hartree_fock,'(A4,X,A16, X, A16, X, A16, X, A4 )'), &
'====','================','================','================', '===='
E = HF_energy + 1.d0
E_min = HF_energy

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 59 KiB

View File

@ -31,3 +31,30 @@ Documentation
`print_cas_coefs <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_CASSD/mrcc_cassd.irp.f#L11>`_
Undocumented
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `Psiref_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS>`_
* `MRCC_Utils <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_CASSD/mrcc_cassd.irp.f#L1>`_
Undocumented
`print_cas_coefs <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_CASSD/mrcc_cassd.irp.f#L11>`_
Undocumented

View File

@ -166,3 +166,792 @@ Documentation
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/src/MRCC_Utils/mrcc_general.irp.f#L69>`_
Undocumented
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `Psiref_Utils <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`a_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L252>`_
Undocumented
`abort_all <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/abort.irp.f#L1>`_
If True, all the calculation is aborted
`abort_here <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/abort.irp.f#L11>`_
If True, all the calculation is aborted
`add_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L306>`_
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
`add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L334>`_
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
`align_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L48>`_
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L168>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L380>`_
Undocumented
`b_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L257>`_
Undocumented
`binom <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L31>`_
Binomial coefficients
`binom_func <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L1>`_
.. math ::
.br
\frac{i!}{j!(i-j)!}
.br
`binom_transp <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L32>`_
Binomial coefficients
`catch_signal <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/abort.irp.f#L30>`_
What to do on Ctrl-C. If two Ctrl-C are pressed within 1 sec, the calculation if aborted.
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L166>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L167>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L165>`_
Eigenvectors/values of the CI matrix
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L232>`_
N_states lowest eigenvalues of the dressed CI matrix
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L56>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L1>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L138>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L155>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L176>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L210>`_
n!!
`ddfact2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L243>`_
Undocumented
`delta_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L104>`_
Dressing matrix in N_det basis
`delta_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L103>`_
Dressing matrix in N_det basis
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L247>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`dset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L27>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`dset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L94>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L339>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L105>`_
Undocumented
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L408>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
`fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L63>`_
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L125>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L149>`_
Find A.C = B
`find_triples_and_quadruples <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L206>`_
Undocumented
`gammln <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L271>`_
Undocumented
`gammp <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L133>`_
Undocumented
`gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L184>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L226>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gcf <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L211>`_
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L95>`_
Find C = A^-1
`give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L46>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L122>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3)
exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama
.br
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L1>`_
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
`gser <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L167>`_
Undocumented
`h_apply_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/H_apply.irp.f_shell_27#L422>`_
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_mrcc_diexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/H_apply.irp.f_shell_27#L1>`_
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_apply_mrcc_monoexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/H_apply.irp.f_shell_27#L273>`_
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L140>`_
Dressed H with Delta_ij
`h_u_0_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L360>`_
Computes v_0 = H|u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
`heap_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L210>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L273>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L744>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L807>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L566>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L629>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L388>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L451>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L32>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L95>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`hermite <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L540>`_
Hermite polynomial
`i2radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_450#L323>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i2set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L102>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i2set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L271>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L873>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`i8radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_450#L163>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8radix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_450#L643>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L77>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i8set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L212>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L695>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L180>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L61>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L714>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L238>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L536>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L179>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L358>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L120>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L257>`_
1/i
`iradix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_450#L3>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`iradix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_450#L483>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`iset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L52>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`iset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L153>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L517>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L5>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lambda_mrcc_tmp <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L81>`_
Undocumented
`lambda_pert <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L6>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L247>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L310>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L180>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L376>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L93>`_
n!
`mrcc_dress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L15>`_
Undocumented
`mrcc_dress_simple <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L160>`_
Undocumented
`mrcc_iterations <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L7>`_
Undocumented
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L264>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L356>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L283>`_
Number of current OpenMP threads
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L1>`_
Compute C_new=C_old.S^-1/2 canonical orthogonalization.
.br
overlap : overlap matrix
.br
LDA : leftmost dimension of overlap array
.br
N : Overlap matrix is NxN (array is (LDA,N) )
.br
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
.br
LDC : leftmost dimension of C
.br
m : Coefficients matrix is MxN, ( array is (LDC,N) )
.br
`oscillations <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L86>`_
Undocumented
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L35>`_
Undocumented
`overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L1>`_
.. math::
.br
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
.br
`overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L113>`_
.. math::
.br
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
.br
`overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L175>`_
.. math ::
.br
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
.br
`pert_determinants <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1>`_
Undocumented
`progress_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L29>`_
Current status for displaying progress bars. Global variable.
`progress_bar <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L27>`_
Current status for displaying progress bars. Global variable.
`progress_timeout <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L28>`_
Current status for displaying progress bars. Global variable.
`progress_title <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L31>`_
Current status for displaying progress bars. Global variable.
`progress_value <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L30>`_
Current status for displaying progress bars. Global variable.
`psi_ref_lock <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L3>`_
Locks on ref determinants to fill delta_ij
`recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L363>`_
Recenter two polynomials
`rint <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L436>`_
.. math::
.br
\int_0^1 dx \exp(-p x^2) x^n
.br
`rint1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L596>`_
Standard version of rint
`rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L565>`_
Version of rint for large values of n
`rint_sum <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L484>`_
Needed for the calculation of two-electron integrals.
`rinteg <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L47>`_
Undocumented
`rintgauss <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L31>`_
Undocumented
`run_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L1>`_
Undocumented
`run_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L45>`_
Display a progress bar with documentation of what is happening
`sabpartial <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L2>`_
Undocumented
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L69>`_
Undocumented
`set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L2>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_283#L35>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L433>`_
Undocumented
`sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_184#L161>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`start_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L1>`_
Starts the progress bar
`stop_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L19>`_
Stop the progress bar
`trap_signals <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/abort.irp.f#L19>`_
What to do when a signal is caught. Here, trap Ctrl-C and call the control_C subroutine.
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L325>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L299>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L268>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L243>`_
Write the last git commit in file iunit.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 106 KiB

After

Width:  |  Height:  |  Size: 110 KiB

View File

@ -112,42 +112,42 @@ Documentation
routine.
`perturb_buffer_by_mono_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L896>`_
`perturb_buffer_by_mono_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L56>`_
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L686>`_
`perturb_buffer_by_mono_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L266>`_
Applly pertubration ``epstein_nesbet`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L791>`_
`perturb_buffer_by_mono_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L371>`_
Applly pertubration ``epstein_nesbet_2x2`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L581>`_
`perturb_buffer_by_mono_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L896>`_
Applly pertubration ``epstein_nesbet_sc2`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L476>`_
`perturb_buffer_by_mono_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L791>`_
Applly pertubration ``epstein_nesbet_sc2_no_projected`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L371>`_
`perturb_buffer_by_mono_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L686>`_
Applly pertubration ``epstein_nesbet_sc2_projected`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_h_core <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L266>`_
`perturb_buffer_by_mono_h_core <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L476>`_
Applly pertubration ``h_core`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_by_mono_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L56>`_
`perturb_buffer_by_mono_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L581>`_
Applly pertubration ``moller_plesset`` to the buffer of determinants generated in the H_apply
routine.
@ -157,42 +157,42 @@ Documentation
routine.
`perturb_buffer_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L845>`_
`perturb_buffer_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L5>`_
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L635>`_
`perturb_buffer_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L215>`_
Applly pertubration ``epstein_nesbet`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L740>`_
`perturb_buffer_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L320>`_
Applly pertubration ``epstein_nesbet_2x2`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L530>`_
`perturb_buffer_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L845>`_
Applly pertubration ``epstein_nesbet_sc2`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L425>`_
`perturb_buffer_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L740>`_
Applly pertubration ``epstein_nesbet_sc2_no_projected`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L320>`_
`perturb_buffer_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L635>`_
Applly pertubration ``epstein_nesbet_sc2_projected`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_h_core <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L215>`_
`perturb_buffer_h_core <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L425>`_
Applly pertubration ``h_core`` to the buffer of determinants generated in the H_apply
routine.
`perturb_buffer_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L5>`_
`perturb_buffer_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/perturbation.irp.f_shell_13#L530>`_
Applly pertubration ``moller_plesset`` to the buffer of determinants generated in the H_apply
routine.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 62 KiB

View File

@ -49,3 +49,46 @@ Needed Modules
* `Psiref_Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Psiref_Utils>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Psiref_Utils <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`idx_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L5>`_
CAS wave function, defined from the application of the CAS bitmask on the
determinants. idx_cas gives the indice of the CAS determinant in psi_det.
`n_det_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L6>`_
CAS wave function, defined from the application of the CAS bitmask on the
determinants. idx_cas gives the indice of the CAS determinant in psi_det.
`psi_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L3>`_
CAS wave function, defined from the application of the CAS bitmask on the
determinants. idx_cas gives the indice of the CAS determinant in psi_det.
`psi_ref_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L4>`_
CAS wave function, defined from the application of the CAS bitmask on the
determinants. idx_cas gives the indice of the CAS determinant in psi_det.
`psi_ref_coef_restart <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L30>`_
Projection of the CAS wave function on the restart wave function.
`psi_ref_restart <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS/psi_ref.irp.f#L29>`_
Projection of the CAS wave function on the restart wave function.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.4 KiB

After

Width:  |  Height:  |  Size: 7.6 KiB

View File

@ -119,3 +119,740 @@ Documentation
Reference determinants sorted to accelerate the search of a random determinant in the wave
function.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`a_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L252>`_
Undocumented
`abort_all <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/abort.irp.f#L1>`_
If True, all the calculation is aborted
`abort_here <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/abort.irp.f#L11>`_
If True, all the calculation is aborted
`add_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L306>`_
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
`add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L334>`_
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
`align_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L48>`_
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L168>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L380>`_
Undocumented
`b_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L257>`_
Undocumented
`binom <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L31>`_
Binomial coefficients
`binom_func <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L1>`_
.. math ::
.br
\frac{i!}{j!(i-j)!}
.br
`binom_transp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L32>`_
Binomial coefficients
`catch_signal <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/abort.irp.f#L30>`_
What to do on Ctrl-C. If two Ctrl-C are pressed within 1 sec, the calculation if aborted.
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L138>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L155>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L176>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L210>`_
n!!
`ddfact2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L243>`_
Undocumented
`dset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_216#L27>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`dset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L94>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L339>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L105>`_
Undocumented
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L408>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
`fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L63>`_
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L125>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L149>`_
Find A.C = B
`gammln <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L271>`_
Undocumented
`gammp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L133>`_
Undocumented
`gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L184>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L226>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gcf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L211>`_
Undocumented
`get_index_in_psi_ref_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L182>`_
Returns the index of the determinant in the ``psi_ref_sorted_bit`` array
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L95>`_
Find C = A^-1
`give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L46>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L122>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3)
exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama
.br
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L1>`_
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
`gser <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L167>`_
Undocumented
`h_matrix_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L116>`_
Undocumented
`heap_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L210>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L273>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L744>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L807>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L566>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L629>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L388>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L451>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L32>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L95>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`hermite <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L540>`_
Hermite polynomial
`holes_operators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_excitations_operators.irp.f#L3>`_
holes_operators represents an array of integers where all the holes have
been done going from psi_ref to psi_non_ref
particles_operators represents an array of integers where all the particles have
been done going from psi_ref to psi_non_ref
`i2radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_450#L323>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i2set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_216#L102>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i2set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L271>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L873>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`i8radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_450#L163>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8radix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_450#L643>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_216#L77>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i8set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L212>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L695>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`idx_non_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L20>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
idx_non_ref_rev gives the reverse.
`idx_non_ref_rev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L21>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
idx_non_ref_rev gives the reverse.
`insertion_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L180>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L61>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L714>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L238>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L536>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L179>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L358>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L120>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L257>`_
1/i
`iradix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_450#L3>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`iradix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_450#L483>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`is_in_psi_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L168>`_
True if the determinant ``det`` is in the wave function
`iset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_216#L52>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`iset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L153>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L517>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L247>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L310>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L180>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L376>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L93>`_
n!
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L264>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
`n_det_non_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L22>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
idx_non_ref_rev gives the reverse.
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L356>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L283>`_
Number of current OpenMP threads
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L1>`_
Compute C_new=C_old.S^-1/2 canonical orthogonalization.
.br
overlap : overlap matrix
.br
LDA : leftmost dimension of overlap array
.br
N : Overlap matrix is NxN (array is (LDA,N) )
.br
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
.br
LDC : leftmost dimension of C
.br
m : Coefficients matrix is MxN, ( array is (LDC,N) )
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/one_e_integration.irp.f#L35>`_
Undocumented
`overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/one_e_integration.irp.f#L1>`_
.. math::
.br
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
.br
`overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/one_e_integration.irp.f#L113>`_
.. math::
.br
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
.br
`overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/one_e_integration.irp.f#L175>`_
.. math ::
.br
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
.br
`particles_operators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_excitations_operators.irp.f#L4>`_
holes_operators represents an array of integers where all the holes have
been done going from psi_ref to psi_non_ref
particles_operators represents an array of integers where all the particles have
been done going from psi_ref to psi_non_ref
`progress_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L29>`_
Current status for displaying progress bars. Global variable.
`progress_bar <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L27>`_
Current status for displaying progress bars. Global variable.
`progress_timeout <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L28>`_
Current status for displaying progress bars. Global variable.
`progress_title <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L31>`_
Current status for displaying progress bars. Global variable.
`progress_value <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L30>`_
Current status for displaying progress bars. Global variable.
`psi_coef_ref_diagonalized <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L128>`_
Undocumented
`psi_non_ref <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L18>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
idx_non_ref_rev gives the reverse.
`psi_non_ref_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L19>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
idx_non_ref_rev gives the reverse.
`psi_non_ref_coef_restart <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L62>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
But this is with respect to the restart wave function.
`psi_non_ref_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L104>`_
Reference determinants sorted to accelerate the search of a random determinant in the wave
function.
`psi_non_ref_restart <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L61>`_
Set of determinants which are not part of the reference, defined from the application
of the reference bitmask on the determinants.
idx_non_ref gives the indice of the determinant in psi_det.
But this is with respect to the restart wave function.
`psi_non_ref_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L103>`_
Reference determinants sorted to accelerate the search of a random determinant in the wave
function.
`psi_ref_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L5>`_
Reference determinants sorted to accelerate the search of a random determinant in the wave
function.
`psi_ref_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L147>`_
Undocumented
`psi_ref_energy_diagonalized <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L129>`_
Undocumented
`psi_ref_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/psi_ref_utils.irp.f#L4>`_
Reference determinants sorted to accelerate the search of a random determinant in the wave
function.
`recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L363>`_
Recenter two polynomials
`rint <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L436>`_
.. math::
.br
\int_0^1 dx \exp(-p x^2) x^n
.br
`rint1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L596>`_
Standard version of rint
`rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L565>`_
Version of rint for large values of n
`rint_sum <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L484>`_
Needed for the calculation of two-electron integrals.
`rinteg <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L47>`_
Undocumented
`rintgauss <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L31>`_
Undocumented
`run_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L45>`_
Display a progress bar with documentation of what is happening
`sabpartial <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L2>`_
Undocumented
`set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_216#L2>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_283#L35>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L433>`_
Undocumented
`sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/sort.irp.f_template_184#L161>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`start_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L1>`_
Starts the progress bar
`stop_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/progress.irp.f#L19>`_
Stop the progress bar
`trap_signals <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/abort.irp.f#L19>`_
What to do when a signal is caught. Here, trap Ctrl-C and call the control_C subroutine.
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L325>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L299>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L268>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L243>`_
Write the last git commit in file iunit.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.4 KiB

After

Width:  |  Height:  |  Size: 3.5 KiB

View File

@ -43,3 +43,44 @@ Needed Modules
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`ao_pseudo_grid <http://github.com/LCPQ/quantum_package/tree/master/plugins/QmcChem/pot_ao_pseudo_ints.irp.f#L2>`_
Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C
.br
<img src="http://latex.codecogs.com/gif.latex?f(|r-r_A|)&space;=&space;\int&space;Y_{lm}^{C}&space;(|r-r_C|,&space;\Omega_C)&space;\chi_i^{A}&space;(r-r_A)&space;d\Omega_C"
title="f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C" />
`mo_pseudo_grid <http://github.com/LCPQ/quantum_package/tree/master/plugins/QmcChem/pot_ao_pseudo_ints.irp.f#L56>`_
Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \phi_i^{A} (r-r_A) d\Omega_C
.br
<img src="http://latex.codecogs.com/gif.latex?f(|r-r_A|)&space;=&space;\int&space;Y_{lm}^{C}&space;(|r-r_C|,&space;\Omega_C)&space;\chi_i^{A}&space;(r-r_A)&space;d\Omega_C"
title="f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C" />
`save_for_qmc <http://github.com/LCPQ/quantum_package/tree/master/plugins/QmcChem/save_for_qmcchem.irp.f#L1>`_
Undocumented
`test_pseudo_grid_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/QmcChem/pot_ao_pseudo_ints.irp.f#L111>`_
Undocumented
`write_pseudopotential <http://github.com/LCPQ/quantum_package/tree/master/plugins/QmcChem/pseudo.irp.f#L1>`_
Write the pseudo_potential into the EZFIO file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

After

Width:  |  Height:  |  Size: 74 KiB

View File

@ -43,3 +43,41 @@ Needed Modules
* `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod/generators.irp.f#L3>`_
For Single reference wave functions, the number of generators is 1 : the
Hartree-Fock determinant
`psi_coef_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod/generators.irp.f#L13>`_
For Single reference wave functions, the generator is the
Hartree-Fock determinant
`psi_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod/generators.irp.f#L12>`_
For Single reference wave functions, the generator is the
Hartree-Fock determinant
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod/generators.irp.f#L41>`_
Memo to skip useless selectors
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/SingleRefMethod/generators.irp.f#L49>`_
Size of select_max

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 33 KiB

View File

@ -8,6 +8,8 @@
# Prints in stdout the name of a temporary file containing the basis set.
#
if [[ -z ${QP_ROOT} ]]
then
print "The QP_ROOT environment variable is not set."
@ -15,6 +17,7 @@ then
exit -1
fi
export EMSL_API_ROOT="${QP_ROOT}"/install/emsl
tmpfile="$1"

View File

@ -6,11 +6,9 @@ Usage:
qp_module.py download -n <name> [<path_folder>...]
qp_module.py install <name>...
qp_module.py list (--installed | --available-local)
qp_module.py uninstall <name>...
qp_module.py uninstall <name>
Options:
list: List all the module available
list: List all the modules available
create: Create a new module
"""
@ -25,8 +23,8 @@ try:
from qp_update_readme import D_KEY
from qp_path import QP_SRC, QP_PLUGINS, QP_ROOT
except ImportError:
print "Please check if you have sourced the .quantum_package.rc"
print "(`source .quantum_package.rc`)"
print "Please check if you have sourced the ${QP_ROOT}/quantum_package.rc"
print "(`source ${QP_ROOT}/quantum_package.rc`)"
print sys.exit(1)
@ -39,7 +37,7 @@ def save_new_module(path, l_child):
try:
os.makedirs(path)
except OSError:
print "The module ({0}) already exist...".format(path)
print "The module ({0}) already exists...".format(path)
sys.exit(1)
with open(os.path.join(path, "NEEDED_CHILDREN_MODULES"), "w") as f:
@ -78,39 +76,41 @@ if __name__ == '__main__':
elif arguments["create"]:
m_instance = ModuleHandler([QP_SRC])
l_children = arguments["<children_module>"]
l_children = arguments["<children_modules>"]
name = arguments["<name>"][0]
path = os.path.join(QP_PLUGINS, name)
print "You will create the module:"
print path
print "Created module:"
print path, '\n'
for children in l_children:
if children not in m_instance.dict_descendant:
print "This module ({0}) is not a valide module.".format(children)
print "Run `list` flag for the list of module available"
print "Maybe you need to install some module first"
print "This module ({0}) is not a valid module.".format(children)
print "Run `list` for the list of available modules."
print "Maybe you need to install some other module first."
print "Aborting..."
sys.exit(1)
print "You ask for this submodule:"
print l_children
print "Needed module:"
print l_children, '\n'
print "You can use all the routine in this module"
print l_children + m_instance.l_descendant_unique(l_children)
print "This corresponds to using the following modules:"
print l_children + m_instance.l_descendant_unique(l_children), '\n'
print "This can be reduce to:"
print "Which is reduced to:"
l_child_reduce = m_instance.l_reduce_tree(l_children)
print l_child_reduce
print l_child_reduce, '\n'
print "Installation",
save_new_module(path, l_child_reduce)
print " [ OK ]"
print "You can now install it normaly. Type:"
print "` {0} install {1} `".format(os.path.basename(__file__), name)
print "And don't forgot to add this to the git if you want"
print "Your module is created in the `plugins` directory."
print "You need to create some `.irp.f` to be able to install it."
# print "` {0} install {1} `".format(os.path.basename(__file__), name)
print ""
elif arguments["download"]:
pass
@ -203,4 +203,5 @@ if __name__ == '__main__':
try:
os.unlink(os.path.join(QP_SRC, module))
except OSError:
print "%s is a core module which can not be renmoved" % module
print "%s is a core module which can't be removed" % module

View File

@ -4,6 +4,7 @@
# directory, where xxx is the corresponding mo_label.
# Wed Apr 2 14:35:15 CEST 2014
if [[ -z ${QP_ROOT} ]]
then
print "The QP_ROOT environment variable is not set."
@ -11,40 +12,40 @@ then
exit -1
fi
EZFIO=$1
EZFIO="$1"
if [[ -z ${EZFIO} ]]
if [[ -z "${EZFIO}" ]]
then
echo "Error in $0"
exit 1
fi
if [[ ! -f ${EZFIO}/mo_basis/mo_label ]]
if [[ ! -f "${EZFIO}/mo_basis/mo_label" ]]
then
LABEL='no_label'
else
LABEL=$(head -1 ${EZFIO}/mo_basis/mo_label)
LABEL=$(head -1 "${EZFIO}/mo_basis/mo_label")
fi
DESTINATION="save/mo_basis/${LABEL}"
cd ${EZFIO}
cd "${EZFIO}"
if [[ ! -d save/mo_basis ]]
then
mkdir -p save/mo_basis
fi
BACKUP=${DESTINATION}.old
if [[ -d ${BACKUP} ]]
BACKUP="${DESTINATION}.old"
if [[ -d "${BACKUP}" ]]
then
rm -rf ${BACKUP}
rm -rf "${BACKUP}"
fi
if [[ -d ${DESTINATION} ]]
if [[ -d "${DESTINATION}" ]]
then
mv ${DESTINATION} ${BACKUP}
mv "${DESTINATION}" "${BACKUP}"
fi
cp -r mo_basis ${DESTINATION}
cp -r mo_basis "${DESTINATION}"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -1,27 +0,0 @@
# Automatically created by $QP_ROOT/scripts/module/module_handler.py
.ninja_deps
.ninja_log
AO_Basis
Bitmask
Electrons
Ezfio_files
IRPF90_man
IRPF90_temp
Integrals_Bielec
Integrals_Monoelec
MO_Basis
Makefile
Makefile.depend
Nuclei
Pseudo
Utils
ezfio_interface.irp.f
guess_doublet
guess_singlet
guess_triplet
irpf90.make
irpf90_entities
program_initial_determinants
save_natorb
tags
truncate_wf

View File

@ -54,7 +54,11 @@ Documentation
.. by the `update_README.py` script.
`a_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1108>`_
Needed for diag_H_mat_elem
`abs_psi_coef_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L451>`_
Max and min values of the coefficients

View File

@ -960,7 +960,7 @@ subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)
integer, intent(out) :: degree(sze)
integer, intent(out) :: idx(0:sze)
integer :: i,l,d
integer :: i,l,d,m
ASSERT (Nint > 0)
ASSERT (sze > 0)
@ -1023,9 +1023,9 @@ subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)
do i=1,sze
d = 0
!DEC$ LOOP COUNT MIN(4)
do l=1,Nint
d = d + popcnt(xor( key1(l,1,i), key2(l,1))) &
+ popcnt(xor( key1(l,2,i), key2(l,2)))
do m=1,Nint
d = d + popcnt(xor( key1(m,1,i), key2(m,1))) &
+ popcnt(xor( key1(m,2,i), key2(m,2)))
enddo
if (d > 4) then
cycle

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.0 KiB

After

Width:  |  Height:  |  Size: 7.1 KiB

View File

@ -170,3 +170,151 @@ Documentation
Write a time stamp in the output for chronological reconstruction
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`ezfio_filename <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/ezfio.irp.f#L1>`_
Name of EZFIO file. It is obtained from the QPACKAGE_INPUT environment
variable if it is set, or as the 1st argument of the command line.
`getunitandopen <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/get_unit_and_open.irp.f#L1>`_
:f:
file name
.br
:mode:
'R' : READ, UNFORMATTED
'W' : WRITE, UNFORMATTED
'r' : READ, FORMATTED
'w' : WRITE, FORMATTED
'a' : APPEND, FORMATTED
'x' : READ/WRITE, FORMATTED
.br
`output_ao_basis <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L1>`_
Output file for AO_Basis
`output_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L21>`_
Output file for Bitmask
`output_cisd <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L41>`_
Output file for CISD
`output_cpu_time_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L2>`_
Initial CPU and wall times when printing in the output files
`output_determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L61>`_
Output file for Determinants
`output_electrons <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L81>`_
Output file for Electrons
`output_ezfio_files <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L101>`_
Output file for Ezfio_files
`output_full_ci <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L121>`_
Output file for Full_CI
`output_generators_full <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L141>`_
Output file for Generators_full
`output_hartree_fock <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L161>`_
Output file for Hartree_Fock
`output_integrals_bielec <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L181>`_
Output file for Integrals_Bielec
`output_integrals_monoelec <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L201>`_
Output file for Integrals_Monoelec
`output_mo_basis <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L221>`_
Output file for MO_Basis
`output_moguess <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L241>`_
Output file for MOGuess
`output_mrcc_cassd <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L261>`_
Output file for MRCC_CASSD
`output_mrcc_utils <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L281>`_
Output file for MRCC_Utils
`output_myhartreefock <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L301>`_
Output file for MyHartreeFock
`output_nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L321>`_
Output file for Nuclei
`output_perturbation <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L341>`_
Output file for Perturbation
`output_properties <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L361>`_
Output file for Properties
`output_pseudo <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L381>`_
Output file for Pseudo
`output_psiref_cas <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L401>`_
Output file for Psiref_CAS
`output_psiref_utils <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L421>`_
Output file for Psiref_Utils
`output_selectors_full <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L441>`_
Output file for Selectors_full
`output_singlerefmethod <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L461>`_
Output file for SingleRefMethod
`output_utils <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f_shell_40#L481>`_
Output file for Utils
`output_wall_time_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L1>`_
Initial CPU and wall times when printing in the output files
`write_bool <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L88>`_
Write an logical value in output
`write_double <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L58>`_
Write a double precision value in output
`write_int <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L73>`_
Write an integer value in output
`write_time <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files/output.irp.f#L42>`_
Write a time stamp in the output for chronological reconstruction

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

After

Width:  |  Height:  |  Size: 3.4 KiB

View File

@ -20,7 +20,13 @@ implicit none
read_ao_integrals = .False.
write_ao_integrals = .False.
else if (disk_access_mo_integrals.EQ.'Read') then
else
print *, 'bielec_integrals/disk_access_ao_integrals has a wrong type'
stop 1
endif
if (disk_access_mo_integrals.EQ.'Read') then
read_mo_integrals = .True.
write_mo_integrals = .False.
@ -33,8 +39,8 @@ implicit none
write_mo_integrals = .False.
else
print *, 'bielec_integrals/disk_acces not of a the good type'
stop "1"
print *, 'bielec_integrals/disk_access_mo_integrals has a wrong type'
stop 1
endif

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.3 KiB

After

Width:  |  Height:  |  Size: 2.4 KiB