10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-03 20:54:00 +01:00

new way works for the 1h2p

This commit is contained in:
Emmanuel Giner 2016-09-11 13:13:46 +02:00
parent 8ad7a5c82f
commit 0ebfef5233
3 changed files with 217 additions and 4 deletions

View File

@ -112,8 +112,8 @@ subroutine give_2h1p_contrib(matrix_2h1p)
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a^{\dagger}_a
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a_{b}
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_a
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a_{b}
index_orb_act_mono(idx(jdet),3) = 1
else
! Mono beta
@ -189,4 +189,205 @@ subroutine give_2h1p_contrib(matrix_2h1p)
end
subroutine give_1h2p_contrib(matrix_1h2p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_1h2p(N_det,N_det,*)
integer :: i,v,r,a,b
integer :: iorb, vorb, rorb, aorb, borb
integer :: ispin,jspin
integer :: idet,jdet
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2)
double precision :: perturb_dets_phase(n_act_orb,2,2)
double precision :: perturb_dets_hij(n_act_orb,2,2)
double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states)
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral_schwartz
double precision :: active_int(n_act_orb,2)
double precision :: hij,phase
!matrix_1h2p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do v = 1, n_virt_orb ! First virtual
vorb = list_virt(v)
do r = 1, n_virt_orb ! Second virtual
rorb = list_virt(r)
! take all the integral you will need for i,j,r fixed
do a = 1, n_act_orb
aorb = list_act(a)
active_int(a,1) = get_mo_bielec_integral_schwartz(iorb,aorb,rorb,vorb,mo_integrals_map) ! direct
active_int(a,2) = get_mo_bielec_integral_schwartz(iorb,aorb,vorb,rorb,mo_integrals_map) ! exchange
enddo
integer :: degree(N_det)
integer :: idx(0:N_det)
double precision :: delta_e(n_act_orb,2,N_states)
integer :: istate
integer :: index_orb_act_mono(N_det,3)
do idet = 1, N_det
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
do ispin = 1, 2 ! spin of the couple a-a^dagger (iorb,rorb)
do jspin = 1, 2 ! spin of the couple a-a^dagger (aorb,vorb)
do a = 1, n_act_orb ! First active
aorb = list_act(a)
if(ispin == jspin .and. vorb.le.rorb)cycle ! condition not to double count
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation inactive -- > virtual
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
! Do the excitation active -- > virtual
call clear_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! hole in "aorb" of spin Jspin
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
! Check if the excitation is possible or not on psi_det(idet)
accu_elec= 0
do inint = 1, N_int
accu_elec+= popcnt(det_tmp(inint,jspin))
enddo
if(accu_elec .ne. elec_num_tab_local(jspin))then
perturb_dets_phase(a,jspin,ispin) = 0.0
perturb_dets_hij(a,jspin,ispin) = 0.d0
do istate = 1, N_states
coef_perturb_from_idet(a,jspin,ispin,istate) = 0.d0
enddo
cycle
endif
do inint = 1, N_int
perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1)
perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2)
enddo
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,a,jspin,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,a,jspin,ispin)
enddo
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
perturb_dets_phase(a,jspin,ispin) = phase
do istate = 1, N_states
delta_e(a,jspin,istate) = one_anhil(a,jspin,istate) &
- fock_virt_total_spin_trace(rorb,istate) &
- fock_virt_total_spin_trace(vorb,istate) &
+ fock_core_inactive_total_spin_trace(iorb,istate)
enddo
if(ispin == jspin)then
perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,1) - active_int(a,2) )
else
perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1)
endif
!!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet
!!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin)
do istate = 1, N_states
coef_perturb_from_idet(a,jspin,ispin,istate) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate)
enddo
enddo
enddo
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
do jdet = 1, idx(0)
if(idx(jdet).ne.idet)then
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
index_orb_act_mono(idx(jdet),3) = 1
else
! Mono beta
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
index_orb_act_mono(idx(jdet),3) = 2
endif
else
index_orb_act_mono(idx(jdet),1) = -1
endif
enddo
integer :: kspin
do jdet = 1, idx(0)
if(idx(jdet).ne.idet)then
! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
! are connected by the presence of the perturbers determinants |det_tmp>
aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
! the determinants Idet and Jdet interact throw the following operator
! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
do ispin = 1, 2 ! you loop on all possible spin for the excitation
! a^{\dagger}_r a_{i} (ispin)
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin)
enddo
double precision :: hja
! you determine the interaction between the excited determinant and the other parent | Jdet >
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{borb,kspin} a_{iorb,ispin} | Jdet >
! hja = < det_tmp | H | Jdet >
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
if(kspin == ispin)then
hja = phase * (active_int(borb,1) - active_int(borb,2) )
else
hja = phase * active_int(borb,1)
endif
do istate = 1, N_states
matrix_1h2p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate)
enddo
enddo ! ispin
else
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
!
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
do ispin = 1, 2
do kspin = 1, 2
do a = 1, n_act_orb ! First active
aorb = list_act(a)
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
do istate = 1, N_states
matrix_1h2p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate) * perturb_dets_hij(a,kspin,ispin)
enddo
enddo
enddo
enddo
endif
enddo
enddo
enddo
enddo
enddo
end

View File

@ -8,14 +8,14 @@ BEGIN_PROVIDER [integer(bit_kind), psi_active, (N_int,2,psi_det_size)]
use bitmasks
integer :: i,j,k,l
provide cas_bitmask
print*, 'psi_active '
!print*, 'psi_active '
do i = 1, N_det
do j = 1, N_int
psi_active(j,1,i) = iand(psi_det(j,1,i),cas_bitmask(j,1,1))
psi_active(j,2,i) = iand(psi_det(j,2,i),cas_bitmask(j,1,1))
enddo
call debug_det(psi_active(1,1,i),N_int)
! call debug_det(psi_active(1,1,i),N_int)
enddo
END_PROVIDER

View File

@ -773,6 +773,18 @@ subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble)
else if (exc(0,1,2) == 2) then
! Double beta
print*,'phase hij = ',phase
print*, get_mo_bielec_integral_schwartz( &
exc(1,1,2), &
exc(2,1,2), &
exc(1,2,2), &
exc(2,2,2) ,mo_integrals_map )
print*, get_mo_bielec_integral_schwartz( &
exc(1,1,2), &
exc(2,1,2), &
exc(2,2,2), &
exc(1,2,2) ,mo_integrals_map)
hij = phase*(get_mo_bielec_integral_schwartz( &
exc(1,1,2), &
exc(2,1,2), &