mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-03 20:54:00 +01:00
new way works for the 1h2p
This commit is contained in:
parent
8ad7a5c82f
commit
0ebfef5233
@ -112,8 +112,8 @@ subroutine give_2h1p_contrib(matrix_2h1p)
|
||||
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a^{\dagger}_a
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a_{b}
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_a
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a_{b}
|
||||
index_orb_act_mono(idx(jdet),3) = 1
|
||||
else
|
||||
! Mono beta
|
||||
@ -189,4 +189,205 @@ subroutine give_2h1p_contrib(matrix_2h1p)
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine give_1h2p_contrib(matrix_1h2p)
|
||||
use bitmasks
|
||||
implicit none
|
||||
double precision , intent(inout) :: matrix_1h2p(N_det,N_det,*)
|
||||
integer :: i,v,r,a,b
|
||||
integer :: iorb, vorb, rorb, aorb, borb
|
||||
integer :: ispin,jspin
|
||||
integer :: idet,jdet
|
||||
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2)
|
||||
double precision :: perturb_dets_phase(n_act_orb,2,2)
|
||||
double precision :: perturb_dets_hij(n_act_orb,2,2)
|
||||
double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states)
|
||||
integer :: inint
|
||||
integer :: elec_num_tab_local(2),acu_elec
|
||||
integer(bit_kind) :: det_tmp(N_int,2)
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: accu_elec
|
||||
double precision :: get_mo_bielec_integral_schwartz
|
||||
double precision :: active_int(n_act_orb,2)
|
||||
double precision :: hij,phase
|
||||
!matrix_1h2p = 0.d0
|
||||
|
||||
elec_num_tab_local = 0
|
||||
do inint = 1, N_int
|
||||
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
||||
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
||||
enddo
|
||||
do i = 1, n_inact_orb ! First inactive
|
||||
iorb = list_inact(i)
|
||||
do v = 1, n_virt_orb ! First virtual
|
||||
vorb = list_virt(v)
|
||||
do r = 1, n_virt_orb ! Second virtual
|
||||
rorb = list_virt(r)
|
||||
! take all the integral you will need for i,j,r fixed
|
||||
do a = 1, n_act_orb
|
||||
aorb = list_act(a)
|
||||
active_int(a,1) = get_mo_bielec_integral_schwartz(iorb,aorb,rorb,vorb,mo_integrals_map) ! direct
|
||||
active_int(a,2) = get_mo_bielec_integral_schwartz(iorb,aorb,vorb,rorb,mo_integrals_map) ! exchange
|
||||
enddo
|
||||
|
||||
integer :: degree(N_det)
|
||||
integer :: idx(0:N_det)
|
||||
double precision :: delta_e(n_act_orb,2,N_states)
|
||||
integer :: istate
|
||||
integer :: index_orb_act_mono(N_det,3)
|
||||
|
||||
do idet = 1, N_det
|
||||
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
||||
do ispin = 1, 2 ! spin of the couple a-a^dagger (iorb,rorb)
|
||||
do jspin = 1, 2 ! spin of the couple a-a^dagger (aorb,vorb)
|
||||
do a = 1, n_act_orb ! First active
|
||||
aorb = list_act(a)
|
||||
if(ispin == jspin .and. vorb.le.rorb)cycle ! condition not to double count
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = psi_det(inint,1,idet)
|
||||
det_tmp(inint,2) = psi_det(inint,2,idet)
|
||||
enddo
|
||||
! Do the excitation inactive -- > virtual
|
||||
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
||||
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
||||
|
||||
! Do the excitation active -- > virtual
|
||||
call clear_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! hole in "aorb" of spin Jspin
|
||||
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
|
||||
|
||||
! Check if the excitation is possible or not on psi_det(idet)
|
||||
accu_elec= 0
|
||||
do inint = 1, N_int
|
||||
accu_elec+= popcnt(det_tmp(inint,jspin))
|
||||
enddo
|
||||
if(accu_elec .ne. elec_num_tab_local(jspin))then
|
||||
perturb_dets_phase(a,jspin,ispin) = 0.0
|
||||
perturb_dets_hij(a,jspin,ispin) = 0.d0
|
||||
do istate = 1, N_states
|
||||
coef_perturb_from_idet(a,jspin,ispin,istate) = 0.d0
|
||||
enddo
|
||||
cycle
|
||||
endif
|
||||
do inint = 1, N_int
|
||||
perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1)
|
||||
perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2)
|
||||
enddo
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,a,jspin,ispin)
|
||||
det_tmp(inint,2) = perturb_dets(inint,2,a,jspin,ispin)
|
||||
enddo
|
||||
|
||||
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
||||
perturb_dets_phase(a,jspin,ispin) = phase
|
||||
do istate = 1, N_states
|
||||
delta_e(a,jspin,istate) = one_anhil(a,jspin,istate) &
|
||||
- fock_virt_total_spin_trace(rorb,istate) &
|
||||
- fock_virt_total_spin_trace(vorb,istate) &
|
||||
+ fock_core_inactive_total_spin_trace(iorb,istate)
|
||||
enddo
|
||||
if(ispin == jspin)then
|
||||
perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,1) - active_int(a,2) )
|
||||
else
|
||||
perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1)
|
||||
endif
|
||||
!!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet
|
||||
!!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin)
|
||||
do istate = 1, N_states
|
||||
coef_perturb_from_idet(a,jspin,ispin,istate) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
|
||||
do jdet = 1, idx(0)
|
||||
if(idx(jdet).ne.idet)then
|
||||
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
|
||||
index_orb_act_mono(idx(jdet),3) = 1
|
||||
else
|
||||
! Mono beta
|
||||
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a
|
||||
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
|
||||
index_orb_act_mono(idx(jdet),3) = 2
|
||||
endif
|
||||
else
|
||||
index_orb_act_mono(idx(jdet),1) = -1
|
||||
endif
|
||||
enddo
|
||||
|
||||
integer :: kspin
|
||||
do jdet = 1, idx(0)
|
||||
if(idx(jdet).ne.idet)then
|
||||
! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
||||
! are connected by the presence of the perturbers determinants |det_tmp>
|
||||
aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
|
||||
borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
|
||||
kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
||||
! the determinants Idet and Jdet interact throw the following operator
|
||||
! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
|
||||
|
||||
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
||||
! a^{\dagger}_r a_{i} (ispin)
|
||||
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
|
||||
|
||||
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
|
||||
do inint = 1, N_int
|
||||
det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin)
|
||||
det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin)
|
||||
enddo
|
||||
double precision :: hja
|
||||
! you determine the interaction between the excited determinant and the other parent | Jdet >
|
||||
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{borb,kspin} a_{iorb,ispin} | Jdet >
|
||||
! hja = < det_tmp | H | Jdet >
|
||||
|
||||
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
||||
if(kspin == ispin)then
|
||||
hja = phase * (active_int(borb,1) - active_int(borb,2) )
|
||||
else
|
||||
hja = phase * active_int(borb,1)
|
||||
endif
|
||||
|
||||
do istate = 1, N_states
|
||||
matrix_1h2p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate)
|
||||
enddo
|
||||
enddo ! ispin
|
||||
|
||||
else
|
||||
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
|
||||
!
|
||||
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
|
||||
do ispin = 1, 2
|
||||
do kspin = 1, 2
|
||||
do a = 1, n_act_orb ! First active
|
||||
aorb = list_act(a)
|
||||
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
|
||||
do istate = 1, N_states
|
||||
matrix_1h2p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate) * perturb_dets_hij(a,kspin,ispin)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
@ -8,14 +8,14 @@ BEGIN_PROVIDER [integer(bit_kind), psi_active, (N_int,2,psi_det_size)]
|
||||
use bitmasks
|
||||
integer :: i,j,k,l
|
||||
provide cas_bitmask
|
||||
print*, 'psi_active '
|
||||
!print*, 'psi_active '
|
||||
do i = 1, N_det
|
||||
do j = 1, N_int
|
||||
psi_active(j,1,i) = iand(psi_det(j,1,i),cas_bitmask(j,1,1))
|
||||
psi_active(j,2,i) = iand(psi_det(j,2,i),cas_bitmask(j,1,1))
|
||||
enddo
|
||||
|
||||
call debug_det(psi_active(1,1,i),N_int)
|
||||
! call debug_det(psi_active(1,1,i),N_int)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -773,6 +773,18 @@ subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble)
|
||||
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
print*,'phase hij = ',phase
|
||||
print*, get_mo_bielec_integral_schwartz( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(1,2,2), &
|
||||
exc(2,2,2) ,mo_integrals_map )
|
||||
print*, get_mo_bielec_integral_schwartz( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
exc(2,2,2), &
|
||||
exc(1,2,2) ,mo_integrals_map)
|
||||
|
||||
hij = phase*(get_mo_bielec_integral_schwartz( &
|
||||
exc(1,1,2), &
|
||||
exc(2,1,2), &
|
||||
|
Loading…
Reference in New Issue
Block a user