mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-08 20:33:26 +01:00
CISD_SC2_selected works better, new pertrubation sc2, better selection
This commit is contained in:
parent
6d53e77423
commit
04bf05d8ad
@ -8,6 +8,41 @@ Documentation
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. NEEDED_MODULES file.
|
||||
|
||||
`cisd_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/SC2.irp.f#L1>`_
|
||||
CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
|
||||
.br
|
||||
dets_in : bitmasks corresponding to determinants
|
||||
.br
|
||||
u_in : guess coefficients on the various states. Overwritten
|
||||
on exit
|
||||
.br
|
||||
dim_in : leftmost dimension of u_in
|
||||
.br
|
||||
sze : Number of determinants
|
||||
.br
|
||||
N_st : Number of eigenstates
|
||||
.br
|
||||
Initial guess vectors are not necessarily orthonormal
|
||||
|
||||
`repeat_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/SC2.irp.f#L169>`_
|
||||
Undocumented
|
||||
|
||||
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/cisd_SC2.irp.f#L1>`_
|
||||
Undocumented
|
||||
|
||||
`ci_sc2_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/diagonalize_CI_SC2.irp.f#L19>`_
|
||||
Eigenvectors/values of the CI matrix
|
||||
|
||||
`ci_sc2_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/diagonalize_CI_SC2.irp.f#L18>`_
|
||||
Eigenvectors/values of the CI matrix
|
||||
|
||||
`ci_sc2_energy <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/diagonalize_CI_SC2.irp.f#L1>`_
|
||||
N_states lowest eigenvalues of the CI matrix
|
||||
|
||||
`diagonalize_ci_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2/diagonalize_CI_SC2.irp.f#L38>`_
|
||||
Replace the coefficients of the CI states by the coefficients of the
|
||||
eigenstates of the CI matrix
|
||||
|
||||
|
||||
|
||||
Needed Modules
|
||||
|
@ -39,10 +39,10 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
integer :: degree_exc(sze)
|
||||
integer :: i_ok
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
|
||||
if(sze<500)then
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
if(sze.le.1000)then
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),sze))
|
||||
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze))
|
||||
allocate (eigenvalues(sze))
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
H_matrix_tmp(i,j) = H_matrix_all_dets(i,j)
|
||||
@ -119,14 +119,14 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
||||
H_jj_dressed(i) += accu
|
||||
enddo
|
||||
|
||||
if(sze>500)then
|
||||
if(sze>1000)then
|
||||
call davidson_diag_hjj(dets_in,u_in,H_jj_dressed,energies,dim_in,sze,N_st,Nint,output_CISD_SC2)
|
||||
else
|
||||
do i = 1,sze
|
||||
H_matrix_tmp(i,i) = H_jj_dressed(i)
|
||||
enddo
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_tmp,size(H_matrix_all_dets,1),N_det)
|
||||
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
|
||||
do j=1,min(N_states,sze)
|
||||
do i=1,sze
|
||||
u_in(i,j) = eigenvectors(i,j)
|
||||
|
@ -1,20 +1,3 @@
|
||||
BEGIN_PROVIDER [ character*(64), diag_algorithm ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Diagonalization algorithm (Davidson or Lapack)
|
||||
END_DOC
|
||||
if (N_det > 500) then
|
||||
diag_algorithm = "Davidson"
|
||||
else
|
||||
diag_algorithm = "Lapack"
|
||||
endif
|
||||
|
||||
if (N_det < N_states) then
|
||||
diag_algorithm = "Lapack"
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -46,7 +29,6 @@ END_PROVIDER
|
||||
enddo
|
||||
CI_SC2_electronic_energy(j) = CI_electronic_energy(j)
|
||||
enddo
|
||||
print*,'E(CISD) = ',CI_electronic_energy(1)
|
||||
|
||||
|
||||
call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, &
|
||||
|
@ -1,10 +1,11 @@
|
||||
program cisd_sc2_selected
|
||||
implicit none
|
||||
integer :: i,k
|
||||
use bitmasks
|
||||
|
||||
|
||||
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:),E_old(:)
|
||||
integer :: N_st, iter
|
||||
integer :: N_st, iter,degree
|
||||
character*(64) :: perturbation
|
||||
N_st = N_states
|
||||
allocate (pt2(N_st), norm_pert(N_st), H_pert_diag(N_st),E_old(N_st))
|
||||
@ -12,25 +13,53 @@ program cisd_sc2_selected
|
||||
pt2 = 1.d0
|
||||
perturbation = "epstein_nesbet_sc2_projected"
|
||||
E_old(1) = HF_energy
|
||||
do while (maxval(abs(pt2(1:N_st))) > 1.d-9)
|
||||
do while (maxval(abs(pt2(1:N_st))) > 1.d-10)
|
||||
print*,'----'
|
||||
print*,''
|
||||
call H_apply_cisd_selection(perturbation,pt2, norm_pert, H_pert_diag, N_st)
|
||||
call diagonalize_CI_SC2
|
||||
print *, 'N_det = ', N_det
|
||||
do i = 1, N_st
|
||||
print*,'state ',i
|
||||
print *, 'PT2(SC2) = ', pt2(i)
|
||||
print *, 'E(SC2) = ', CI_SC2_energy(i)
|
||||
print *, 'E_before(SC2)+PT2(SC2) = ', (E_old(i)+pt2(i))
|
||||
print *, 'E_before(SC2)+PT2(SC2) = ', (E_old(i)+pt2(i))
|
||||
if(i==1)then
|
||||
print *, 'E(SC2)+PT2(projctd)SC2 = ', (E_old(i)+H_pert_diag(i))
|
||||
endif
|
||||
E_old(i) = CI_SC2_energy(i)
|
||||
enddo
|
||||
! print *, 'E corr = ', (E_old(1)) - HF_energy
|
||||
E_old = CI_SC2_energy
|
||||
if (abort_all) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
do i = 1, N_st
|
||||
max = 0.d0
|
||||
|
||||
print*,''
|
||||
print*,'-------------'
|
||||
print*,'for state ',i
|
||||
print*,''
|
||||
do k = 1, N_det
|
||||
if(dabs(psi_coef(k,i)).gt.max)then
|
||||
max = dabs(psi_coef(k,i))
|
||||
imax = k
|
||||
endif
|
||||
enddo
|
||||
double precision :: max
|
||||
integer :: imax
|
||||
print *, 'PT2(SC2) = ', pt2(i)
|
||||
print *, 'E(SC2) = ', CI_SC2_energy(i)
|
||||
print *, 'E_before(SC2)+PT2(SC2) = ', (E_old(i)+pt2(i))
|
||||
if(i==1)then
|
||||
print *, 'E(SC2)+PT2(projctd)SC2 = ', (E_old(i)+H_pert_diag(i))
|
||||
endif
|
||||
|
||||
print*,'greater coeficient of the state : ',dabs(psi_coef(imax,i))
|
||||
call get_excitation_degree(ref_bitmask,psi_det(1,1,imax),degree,N_int)
|
||||
print*,'degree of excitation of such determinant : ',degree
|
||||
|
||||
enddo
|
||||
deallocate(pt2,norm_pert,H_pert_diag)
|
||||
end
|
||||
|
@ -133,33 +133,36 @@ Documentation
|
||||
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L20>`_
|
||||
Number of determinants in the wave function
|
||||
|
||||
`n_det_reference <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L75>`_
|
||||
`n_det_max_jacobi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L38>`_
|
||||
Maximum number of determinants diagonalized my jacobi
|
||||
|
||||
`n_det_reference <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L93>`_
|
||||
Number of determinants in the reference wave function
|
||||
|
||||
`n_states <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L3>`_
|
||||
Number of states to consider
|
||||
|
||||
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L84>`_
|
||||
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L102>`_
|
||||
Contribution of determinants to the state-averaged density
|
||||
|
||||
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L105>`_
|
||||
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L123>`_
|
||||
Wave function sorted by determinants (state-averaged)
|
||||
|
||||
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L47>`_
|
||||
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L65>`_
|
||||
The wave function. Initialized with Hartree-Fock if the EZFIO file
|
||||
is empty
|
||||
|
||||
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L104>`_
|
||||
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L122>`_
|
||||
Wave function sorted by determinants (state-averaged)
|
||||
|
||||
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L46>`_
|
||||
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L64>`_
|
||||
The wave function. Initialized with Hartree-Fock if the EZFIO file
|
||||
is empty
|
||||
|
||||
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L38>`_
|
||||
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L56>`_
|
||||
Size of the psi_det/psi_coef arrays
|
||||
|
||||
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L103>`_
|
||||
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L121>`_
|
||||
Wave function sorted by determinants (state-averaged)
|
||||
|
||||
`double_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L40>`_
|
||||
@ -298,7 +301,7 @@ Documentation
|
||||
Returns <i|H|j> where i and j are determinants
|
||||
|
||||
`i_h_psi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L491>`_
|
||||
<key|H|psi> for the various Nstate
|
||||
<key|H|psi> for the various Nstates
|
||||
|
||||
`i_h_psi_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L527>`_
|
||||
<key|H|psi> for the various Nstate
|
||||
|
@ -6,4 +6,5 @@ determinants
|
||||
psi_coef double precision (determinants_n_det,determinants_n_states)
|
||||
psi_det integer*8 (determinants_N_int*determinants_bit_kind/8,2,determinants_n_det)
|
||||
H_apply_threshold double precision
|
||||
n_det_max_jacobi integer
|
||||
|
||||
|
@ -35,6 +35,24 @@ BEGIN_PROVIDER [ integer, N_det ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_det_max_jacobi ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Maximum number of determinants diagonalized my jacobi
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_determinants_n_det_max_jacobi(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_determinants_n_det_max_jacobi(N_det_max_jacobi)
|
||||
else
|
||||
N_det_max_jacobi = 1500
|
||||
call ezfio_set_determinants_n_det_max_jacobi(N_det_max_jacobi)
|
||||
endif
|
||||
ASSERT (N_det_max_jacobi > 0)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, psi_det_size ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -3,7 +3,7 @@ BEGIN_PROVIDER [ character*(64), diag_algorithm ]
|
||||
BEGIN_DOC
|
||||
! Diagonalization algorithm (Davidson or Lapack)
|
||||
END_DOC
|
||||
if (N_det > 500) then
|
||||
if (N_det > N_det_max_jacobi) then
|
||||
diag_algorithm = "Davidson"
|
||||
else
|
||||
diag_algorithm = "Lapack"
|
||||
|
@ -95,110 +95,29 @@ Documentation
|
||||
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L1>`_
|
||||
compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
||||
.br
|
||||
for the various n_st states.
|
||||
for the various N_st states.
|
||||
.br
|
||||
c_pert(i) = <psi(i)|H|det_pert>/( E(i) - <det_pert|H|det_pert> )
|
||||
.br
|
||||
e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
|
||||
.br
|
||||
|
||||
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L38>`_
|
||||
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L40>`_
|
||||
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
|
||||
.br
|
||||
for the various n_st states.
|
||||
for the various N_st states.
|
||||
.br
|
||||
e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
|
||||
.br
|
||||
c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
|
||||
.br
|
||||
|
||||
`pt2_epstein_nesbet_2x2_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L129>`_
|
||||
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
|
||||
.br
|
||||
for the various n_st states.
|
||||
.br
|
||||
but with the correction in the denominator
|
||||
.br
|
||||
comming from the interaction of that determinant with all the others determinants
|
||||
.br
|
||||
that can be repeated by repeating all the double excitations
|
||||
.br
|
||||
: you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
|
||||
.br
|
||||
that could be repeated to this determinant.
|
||||
.br
|
||||
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
|
||||
.br
|
||||
e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
|
||||
.br
|
||||
c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
|
||||
.br
|
||||
|
||||
`pt2_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L75>`_
|
||||
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
||||
.br
|
||||
for the various n_st states,
|
||||
.br
|
||||
but with the correction in the denominator
|
||||
.br
|
||||
comming from the interaction of that determinant with all the others determinants
|
||||
.br
|
||||
that can be repeated by repeating all the double excitations
|
||||
.br
|
||||
: you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
|
||||
.br
|
||||
that could be repeated to this determinant.
|
||||
.br
|
||||
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
|
||||
.br
|
||||
c_pert(i) = <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
|
||||
.br
|
||||
e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - (<det_pert|H|det_pert> ) )
|
||||
.br
|
||||
|
||||
`pt2_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L185>`_
|
||||
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
||||
.br
|
||||
for the various n_st states,
|
||||
.br
|
||||
but with the correction in the denominator
|
||||
.br
|
||||
comming from the interaction of that determinant with all the others determinants
|
||||
.br
|
||||
that can be repeated by repeating all the double excitations
|
||||
.br
|
||||
: you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
|
||||
.br
|
||||
that could be repeated to this determinant.
|
||||
.br
|
||||
BUT on the contrary with ""pt2_epstein_nesbet_SC2"", you compute the energy by projection
|
||||
.br
|
||||
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
|
||||
.br
|
||||
c_pert(1) = 1/c_HF <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
|
||||
.br
|
||||
e_2_pert(1) = <HF|H|det_pert> c_pert(1)
|
||||
.br
|
||||
NOTE :::: if you satisfy Brillouin Theorem, the singles don't contribute !!
|
||||
.br
|
||||
|
||||
`fill_h_apply_buffer_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L2>`_
|
||||
`fill_h_apply_buffer_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L1>`_
|
||||
Fill the H_apply buffer with determiants for the selection
|
||||
|
||||
`n_det_selectors <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L120>`_
|
||||
Undocumented
|
||||
|
||||
`psi_selectors <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L125>`_
|
||||
On what we apply <i|H|psi> for perturbation. If selection, it may be 0.9 of the norm.
|
||||
|
||||
`psi_selectors_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L126>`_
|
||||
On what we apply <i|H|psi> for perturbation. If selection, it may be 0.9 of the norm.
|
||||
|
||||
`psi_selectors_size <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L116>`_
|
||||
Undocumented
|
||||
|
||||
`remove_small_contributions <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L81>`_
|
||||
Remove determinants with small contributions
|
||||
Remove determinants with small contributions. N_states is assumed to be
|
||||
provided.
|
||||
|
||||
`selection_criterion <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L68>`_
|
||||
Threshold to select determinants. Set by selection routines.
|
||||
|
@ -24,7 +24,10 @@ subroutine pt2_epstein_nesbet(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_s
|
||||
call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
||||
h = diag_H_mat_elem(det_pert,Nint)
|
||||
do i =1,N_st
|
||||
if (dabs(CI_electronic_energy(i) - h) > 1.d-6) then
|
||||
if(CI_electronic_energy(i)>h.and.CI_electronic_energy(i).ne.0.d0)then
|
||||
c_pert(i) = -1.d0
|
||||
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
|
||||
else if (dabs(CI_electronic_energy(i) - h) > 1.d-6) then
|
||||
c_pert(i) = i_H_psi_array(i) / (CI_electronic_energy(i) - h)
|
||||
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
||||
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
|
||||
|
@ -34,7 +34,7 @@ subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag
|
||||
|
||||
integer :: i,j,degree
|
||||
double precision :: diag_H_mat_elem,accu_e_corr,hij,h0j,h,delta_E
|
||||
double precision :: repeat_all_e_corr,accu_e_corr_tmp
|
||||
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
|
||||
ASSERT (Nint == N_int)
|
||||
ASSERT (Nint > 0)
|
||||
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
|
||||
@ -51,9 +51,14 @@ subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag
|
||||
c_pert(1) = i_H_psi_array(1) * delta_E
|
||||
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
|
||||
H_pert_diag(1) = c_pert(1) * h0j/coef_hf_selector
|
||||
e_2_pert_fonda = H_pert_diag(1)
|
||||
|
||||
do i =2,N_st
|
||||
H_pert_diag(i) = h
|
||||
if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
|
||||
if(CI_SC2_electronic_energy(i)>h.and.CI_SC2_electronic_energy(i).ne.0.d0)then
|
||||
c_pert(i) = -1.d0
|
||||
e_2_pert(i) = -2.d0
|
||||
else if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
|
||||
c_pert(i) = i_H_psi_array(i) / (CI_SC2_electronic_energy(i) - h)
|
||||
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
|
||||
else
|
||||
@ -61,6 +66,16 @@ subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag
|
||||
e_2_pert(i) = -dabs(i_H_psi_array(i))
|
||||
endif
|
||||
enddo
|
||||
|
||||
call get_excitation_degree(ref_bitmask,det_pert,degree,Nint)
|
||||
if(degree==2)then
|
||||
! <psi|delta_H|psi>
|
||||
do i = 1, N_st
|
||||
do j = 1, idx_repeat(0)
|
||||
e_2_pert(i) += e_2_pert_fonda * psi_selectors_coef(idx_repeat(j),i) * psi_selectors_coef(idx_repeat(j),i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -72,7 +72,7 @@ end
|
||||
BEGIN_DOC
|
||||
! Threshold to select determinants. Set by selection routines.
|
||||
END_DOC
|
||||
selection_criterion = 1.d0
|
||||
selection_criterion = 10.d0
|
||||
selection_criterion_factor = 0.01d0
|
||||
selection_criterion_min = selection_criterion
|
||||
|
||||
|
@ -201,6 +201,8 @@ subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
|
||||
integer :: lwork, info, i,j,l,k, liwork
|
||||
|
||||
allocate(A(nmax,n),eigenvalues(n))
|
||||
! print*,'Diagonalization by jacobi'
|
||||
! print*,'n = ',n
|
||||
|
||||
A=H
|
||||
lwork = 2*n*n + 6*n+ 1
|
||||
|
Loading…
Reference in New Issue
Block a user