mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 18:16:12 +01:00
Merge pull request #188 from LCPQ/revert-186-master
Revert "merge with main branch"
This commit is contained in:
commit
040c1b70fd
10
README.md
10
README.md
@ -82,11 +82,11 @@ If you have set the `--developement` flag you can go in any module directory and
|
||||
|
||||
### 4) Compiling the OCaml
|
||||
|
||||
make -C $QP_ROOT/ocaml
|
||||
make -C ocaml
|
||||
|
||||
### 5) Testing if all is ok
|
||||
|
||||
cd tests ; ./run_tests.sh
|
||||
cd tests ; bats bats/qp.bats
|
||||
|
||||
|
||||
|
||||
@ -137,6 +137,10 @@ interface: ezfio
|
||||
|
||||
#FAQ
|
||||
|
||||
### Opam error: cryptokit
|
||||
|
||||
You need to install `gmp-dev`.
|
||||
|
||||
### Error: ezfio_* is already defined.
|
||||
|
||||
#### Why ?
|
||||
@ -162,5 +166,5 @@ It's caused when we call the DGEMM routine of LAPACK.
|
||||
|
||||
##### Fix
|
||||
|
||||
Set `ulimit -s unlimited`, before runing `qp_run`. It seems to fix the problem.
|
||||
Set `ulimit -s unlimited`, before runing `qp_run`. It seem to fix the problem.
|
||||
|
||||
|
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS :
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS :
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
|
@ -35,7 +35,7 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS : -Ofast -march=native
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
|
@ -51,7 +51,7 @@ FCFLAGS : -Ofast
|
||||
# -g : Extra debugging information
|
||||
#
|
||||
[DEBUG]
|
||||
FCFLAGS : -g -msse4.2 -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
|
||||
FCFLAGS : -g -msse4.2
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
|
@ -58,6 +58,6 @@ FCFLAGS : -xSSE2 -C -fpe0
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -openmp
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
||||
|
2
configure
vendored
2
configure
vendored
@ -102,7 +102,7 @@ curl = Info(
|
||||
default_path=join(QP_ROOT_BIN, "curl"))
|
||||
|
||||
zlib = Info(
|
||||
url='http://www.zlib.net/fossils/zlib-1.2.10.tar.gz',
|
||||
url='http://www.zlib.net/zlib-1.2.11.tar.gz',
|
||||
description=' zlib',
|
||||
default_path=join(QP_ROOT_LIB, "libz.a"))
|
||||
|
||||
|
@ -36,11 +36,9 @@ let read_element in_channel at_number element =
|
||||
|
||||
|
||||
|
||||
let to_string_general ~fmt ~atom_sep ?ele_array b =
|
||||
let to_string_general ~fmt ~atom_sep b =
|
||||
let new_nucleus n =
|
||||
match ele_array with
|
||||
| None -> Printf.sprintf "Atom %d" n
|
||||
| Some x -> Printf.sprintf "%s" (Element.to_string x.(n-1))
|
||||
Printf.sprintf "Atom %d" n
|
||||
in
|
||||
let rec do_work accu current_nucleus = function
|
||||
| [] -> List.rev accu
|
||||
@ -58,12 +56,12 @@ let to_string_general ~fmt ~atom_sep ?ele_array b =
|
||||
do_work [new_nucleus 1] 1 b
|
||||
|> String.concat ~sep:"\n"
|
||||
|
||||
let to_string_gamess ?ele_array =
|
||||
to_string_general ?ele_array ~fmt:Gto.Gamess ~atom_sep:""
|
||||
let to_string_gamess =
|
||||
to_string_general ~fmt:Gto.Gamess ~atom_sep:""
|
||||
|
||||
let to_string_gaussian ?ele_array b =
|
||||
let to_string_gaussian b =
|
||||
String.concat ~sep:"\n"
|
||||
[ to_string_general ?ele_array ~fmt:Gto.Gaussian ~atom_sep:"****" b ; "****" ]
|
||||
[ to_string_general ~fmt:Gto.Gaussian ~atom_sep:"****" b ; "****" ]
|
||||
|
||||
let to_string ?(fmt=Gto.Gamess) =
|
||||
match fmt with
|
||||
|
@ -14,7 +14,7 @@ val read_element :
|
||||
in_channel -> Nucl_number.t -> Element.t -> (Gto.t * Nucl_number.t) list
|
||||
|
||||
(** Convert the basis to a string *)
|
||||
val to_string : ?fmt:Gto.fmt -> ?ele_array:Element.t array -> (Gto.t * Nucl_number.t) list -> string
|
||||
val to_string : ?fmt:Gto.fmt -> (Gto.t * Nucl_number.t) list -> string
|
||||
|
||||
(** Convert the basis to an MD5 hash *)
|
||||
val to_md5 : (Gto.t * Nucl_number.t) list -> MD5.t
|
||||
|
@ -7,7 +7,6 @@ module Determinants_by_hand : sig
|
||||
{ n_int : N_int_number.t;
|
||||
bit_kind : Bit_kind.t;
|
||||
n_det : Det_number.t;
|
||||
n_states : States_number.t;
|
||||
expected_s2 : Positive_float.t;
|
||||
psi_coef : Det_coef.t array;
|
||||
psi_det : Determinant.t array;
|
||||
@ -19,14 +18,11 @@ module Determinants_by_hand : sig
|
||||
val to_rst : t -> Rst_string.t
|
||||
val of_rst : Rst_string.t -> t option
|
||||
val read_n_int : unit -> N_int_number.t
|
||||
val update_ndet : Det_number.t -> unit
|
||||
val extract_state : States_number.t -> unit
|
||||
end = struct
|
||||
type t =
|
||||
{ n_int : N_int_number.t;
|
||||
bit_kind : Bit_kind.t;
|
||||
n_det : Det_number.t;
|
||||
n_states : States_number.t;
|
||||
expected_s2 : Positive_float.t;
|
||||
psi_coef : Det_coef.t array;
|
||||
psi_det : Determinant.t array;
|
||||
@ -133,12 +129,12 @@ end = struct
|
||||
|> Array.map ~f:Det_coef.of_float
|
||||
;;
|
||||
|
||||
let write_psi_coef ~n_det ~n_states c =
|
||||
let write_psi_coef ~n_det c =
|
||||
let n_det = Det_number.to_int n_det
|
||||
and c = Array.to_list c
|
||||
|> List.map ~f:Det_coef.to_float
|
||||
and n_states =
|
||||
States_number.to_int n_states
|
||||
read_n_states () |> States_number.to_int
|
||||
in
|
||||
Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| n_det ; n_states |] ~data:c
|
||||
|> Ezfio.set_determinants_psi_coef
|
||||
@ -204,7 +200,6 @@ end = struct
|
||||
expected_s2 = read_expected_s2 () ;
|
||||
psi_coef = read_psi_coef () ;
|
||||
psi_det = read_psi_det () ;
|
||||
n_states = read_n_states () ;
|
||||
}
|
||||
else
|
||||
failwith "No molecular orbitals, so no determinants"
|
||||
@ -227,14 +222,12 @@ end = struct
|
||||
expected_s2 ;
|
||||
psi_coef ;
|
||||
psi_det ;
|
||||
n_states ;
|
||||
} =
|
||||
write_n_int n_int ;
|
||||
write_bit_kind bit_kind;
|
||||
write_n_det n_det;
|
||||
write_n_states n_states;
|
||||
write_expected_s2 expected_s2;
|
||||
write_psi_coef ~n_det:n_det ~n_states:n_states psi_coef ;
|
||||
write_psi_coef ~n_det:n_det psi_coef ;
|
||||
write_psi_det ~n_int:n_int ~n_det:n_det psi_det;
|
||||
;;
|
||||
|
||||
@ -305,7 +298,6 @@ Determinants ::
|
||||
n_int = %s
|
||||
bit_kind = %s
|
||||
n_det = %s
|
||||
n_states = %s
|
||||
expected_s2 = %s
|
||||
psi_coef = %s
|
||||
psi_det = %s
|
||||
@ -313,7 +305,6 @@ psi_det = %s
|
||||
(b.n_int |> N_int_number.to_string)
|
||||
(b.bit_kind |> Bit_kind.to_string)
|
||||
(b.n_det |> Det_number.to_string)
|
||||
(b.n_states |> States_number.to_string)
|
||||
(b.expected_s2 |> Positive_float.to_string)
|
||||
(b.psi_coef |> Array.to_list |> List.map ~f:Det_coef.to_string
|
||||
|> String.concat ~sep:", ")
|
||||
@ -442,83 +433,14 @@ psi_det = %s
|
||||
|> Bit_kind.to_int)
|
||||
and n_int =
|
||||
Printf.sprintf "(n_int %d)" (N_int_number.get_max ())
|
||||
and n_states =
|
||||
Printf.sprintf "(n_states %d)" (States_number.to_int @@ read_n_states ())
|
||||
in
|
||||
let s =
|
||||
String.concat [ header ; bitkind ; n_int ; n_states ; psi_coef ; psi_det]
|
||||
String.concat [ header ; bitkind ; n_int ; psi_coef ; psi_det]
|
||||
in
|
||||
|
||||
|
||||
|
||||
|
||||
Generic_input_of_rst.evaluate_sexp t_of_sexp s
|
||||
;;
|
||||
|
||||
let update_ndet n_det_new =
|
||||
Printf.printf "Reducing n_det to %d\n" (Det_number.to_int n_det_new);
|
||||
let n_det_new =
|
||||
Det_number.to_int n_det_new
|
||||
in
|
||||
let det =
|
||||
read ()
|
||||
in
|
||||
let n_det_old, n_states =
|
||||
Det_number.to_int det.n_det,
|
||||
States_number.to_int det.n_states
|
||||
in
|
||||
if n_det_new = n_det_old then
|
||||
()
|
||||
;
|
||||
if n_det_new > n_det_new then
|
||||
failwith @@ Printf.sprintf "Requested n_det should be less than %d" n_det_old
|
||||
;
|
||||
for j=0 to (n_states-1) do
|
||||
let ishift_old, ishift_new =
|
||||
j*n_det_old,
|
||||
j*n_det_new
|
||||
in
|
||||
for i=0 to (n_det_new-1) do
|
||||
det.psi_coef.(i+ishift_new) <- det.psi_coef.(i+ishift_old)
|
||||
done
|
||||
done
|
||||
;
|
||||
let new_det =
|
||||
{ det with n_det = (Det_number.of_int n_det_new) }
|
||||
in
|
||||
write new_det
|
||||
;;
|
||||
|
||||
let extract_state istate =
|
||||
Printf.printf "Extracting state %d\n" (States_number.to_int istate);
|
||||
let det =
|
||||
read ()
|
||||
in
|
||||
let n_det, n_states =
|
||||
Det_number.to_int det.n_det,
|
||||
States_number.to_int det.n_states
|
||||
in
|
||||
if (States_number.to_int istate) > n_states then
|
||||
failwith "State to extract should not be greater than n_states"
|
||||
;
|
||||
let j =
|
||||
(States_number.to_int istate) - 1
|
||||
in
|
||||
begin
|
||||
if (j>0) then
|
||||
let ishift =
|
||||
j*n_det
|
||||
in
|
||||
for i=0 to (n_det-1) do
|
||||
det.psi_coef.(i) <- det.psi_coef.(i+ishift)
|
||||
done
|
||||
end;
|
||||
let new_det =
|
||||
{ det with n_states = (States_number.of_int 1) }
|
||||
in
|
||||
write new_det
|
||||
;;
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -13,7 +13,6 @@ LIBS=
|
||||
PKGS=
|
||||
OCAMLCFLAGS="-g -warn-error A"
|
||||
OCAMLBUILD=ocamlbuild -j 0 -syntax camlp4o -cflags $(OCAMLCFLAGS) -lflags $(OCAMLCFLAGS)
|
||||
MLLFILES=$(wildcard *.mll)
|
||||
MLFILES=$(wildcard *.ml) ezfio.ml Qptypes.ml Input_auto_generated.ml qp_edit.ml
|
||||
MLIFILES=$(wildcard *.mli) git
|
||||
ALL_TESTS=$(patsubst %.ml,%.byte,$(wildcard test_*.ml))
|
||||
|
161
ocaml/Message.ml
161
ocaml/Message.ml
@ -110,7 +110,7 @@ module Disconnect_msg : sig
|
||||
{ client_id: Id.Client.t ;
|
||||
state: State.t ;
|
||||
}
|
||||
val create : state:string -> client_id:int -> t
|
||||
val create : state:string -> client_id:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
@ -118,7 +118,7 @@ end = struct
|
||||
state: State.t ;
|
||||
}
|
||||
let create ~state ~client_id =
|
||||
{ client_id = Id.Client.of_int client_id ; state = State.of_string state }
|
||||
{ client_id = Id.Client.of_string client_id ; state = State.of_string state }
|
||||
let to_string x =
|
||||
Printf.sprintf "disconnect %s %d"
|
||||
(State.to_string x.state)
|
||||
@ -150,18 +150,18 @@ end
|
||||
module AddTask_msg : sig
|
||||
type t =
|
||||
{ state: State.t;
|
||||
tasks: string list;
|
||||
task: string;
|
||||
}
|
||||
val create : state:string -> tasks:string list -> t
|
||||
val create : state:string -> task:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
{ state: State.t;
|
||||
tasks: string list;
|
||||
task: string;
|
||||
}
|
||||
let create ~state ~tasks = { state = State.of_string state ; tasks }
|
||||
let create ~state ~task = { state = State.of_string state ; task }
|
||||
let to_string x =
|
||||
Printf.sprintf "add_task %s %s" (State.to_string x.state) (String.concat ~sep:"|" x.tasks)
|
||||
Printf.sprintf "add_task %s %s" (State.to_string x.state) x.task
|
||||
end
|
||||
|
||||
|
||||
@ -182,44 +182,44 @@ end
|
||||
module DelTask_msg : sig
|
||||
type t =
|
||||
{ state: State.t;
|
||||
task_ids: Id.Task.t list
|
||||
task_id: Id.Task.t
|
||||
}
|
||||
val create : state:string -> task_ids:int list -> t
|
||||
val create : state:string -> task_id:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
{ state: State.t;
|
||||
task_ids: Id.Task.t list
|
||||
task_id: Id.Task.t
|
||||
}
|
||||
let create ~state ~task_ids =
|
||||
let create ~state ~task_id =
|
||||
{ state = State.of_string state ;
|
||||
task_ids = List.map ~f:Id.Task.of_int task_ids
|
||||
task_id = Id.Task.of_string task_id
|
||||
}
|
||||
let to_string x =
|
||||
Printf.sprintf "del_task %s %s"
|
||||
Printf.sprintf "del_task %s %d"
|
||||
(State.to_string x.state)
|
||||
(String.concat ~sep:"|" @@ List.map ~f:Id.Task.to_string x.task_ids)
|
||||
(Id.Task.to_int x.task_id)
|
||||
end
|
||||
|
||||
|
||||
(** DelTaskReply : Reply to the DelTask message *)
|
||||
module DelTaskReply_msg : sig
|
||||
type t
|
||||
val create : task_ids:Id.Task.t list -> more:bool -> t
|
||||
val create : task_id:Id.Task.t -> more:bool -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = {
|
||||
task_ids : Id.Task.t list;
|
||||
task_id : Id.Task.t ;
|
||||
more : bool;
|
||||
}
|
||||
let create ~task_ids ~more = { task_ids ; more }
|
||||
let create ~task_id ~more = { task_id ; more }
|
||||
let to_string x =
|
||||
let more =
|
||||
if x.more then "more"
|
||||
else "done"
|
||||
in
|
||||
Printf.sprintf "del_task_reply %s %s"
|
||||
more (String.concat ~sep:"|" @@ List.map ~f:Id.Task.to_string x.task_ids)
|
||||
Printf.sprintf "del_task_reply %s %d"
|
||||
more (Id.Task.to_int x.task_id)
|
||||
end
|
||||
|
||||
|
||||
@ -230,7 +230,7 @@ module GetTask_msg : sig
|
||||
{ client_id: Id.Client.t ;
|
||||
state: State.t ;
|
||||
}
|
||||
val create : state:string -> client_id:int -> t
|
||||
val create : state:string -> client_id:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
@ -238,7 +238,7 @@ end = struct
|
||||
state: State.t ;
|
||||
}
|
||||
let create ~state ~client_id =
|
||||
{ client_id = Id.Client.of_int client_id ; state = State.of_string state }
|
||||
{ client_id = Id.Client.of_string client_id ; state = State.of_string state }
|
||||
let to_string x =
|
||||
Printf.sprintf "get_task %s %d"
|
||||
(State.to_string x.state)
|
||||
@ -269,14 +269,14 @@ module GetPsi_msg : sig
|
||||
type t =
|
||||
{ client_id: Id.Client.t ;
|
||||
}
|
||||
val create : client_id:int -> t
|
||||
val create : client_id:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
{ client_id: Id.Client.t ;
|
||||
}
|
||||
let create ~client_id =
|
||||
{ client_id = Id.Client.of_int client_id }
|
||||
{ client_id = Id.Client.of_string client_id }
|
||||
let to_string x =
|
||||
Printf.sprintf "get_psi %d"
|
||||
(Id.Client.to_int x.client_id)
|
||||
@ -365,14 +365,14 @@ module PutPsi_msg : sig
|
||||
n_det_selectors : Strictly_positive_int.t option;
|
||||
psi : Psi.t option }
|
||||
val create :
|
||||
client_id:int ->
|
||||
n_state:int ->
|
||||
n_det:int ->
|
||||
psi_det_size:int ->
|
||||
client_id:string ->
|
||||
n_state:string ->
|
||||
n_det:string ->
|
||||
psi_det_size:string ->
|
||||
psi_det:string option ->
|
||||
psi_coef:string option ->
|
||||
n_det_generators: int option ->
|
||||
n_det_selectors:int option ->
|
||||
n_det_generators: string option ->
|
||||
n_det_selectors:string option ->
|
||||
energy:string option -> t
|
||||
val to_string_list : t -> string list
|
||||
val to_string : t -> string
|
||||
@ -388,17 +388,20 @@ end = struct
|
||||
let create ~client_id ~n_state ~n_det ~psi_det_size ~psi_det ~psi_coef
|
||||
~n_det_generators ~n_det_selectors ~energy =
|
||||
let n_state, n_det, psi_det_size =
|
||||
Strictly_positive_int.of_int n_state,
|
||||
Strictly_positive_int.of_int n_det,
|
||||
Strictly_positive_int.of_int psi_det_size
|
||||
Int.of_string n_state
|
||||
|> Strictly_positive_int.of_int ,
|
||||
Int.of_string n_det
|
||||
|> Strictly_positive_int.of_int ,
|
||||
Int.of_string psi_det_size
|
||||
|> Strictly_positive_int.of_int
|
||||
in
|
||||
assert (Strictly_positive_int.to_int psi_det_size >=
|
||||
Strictly_positive_int.to_int n_det);
|
||||
let n_det_generators, n_det_selectors =
|
||||
match n_det_generators, n_det_selectors with
|
||||
| Some x, Some y ->
|
||||
Some (Strictly_positive_int.of_int x),
|
||||
Some (Strictly_positive_int.of_int y)
|
||||
Some (Strictly_positive_int.of_int @@ Int.of_string x),
|
||||
Some (Strictly_positive_int.of_int @@ Int.of_string y)
|
||||
| _ -> None, None
|
||||
in
|
||||
let psi =
|
||||
@ -408,7 +411,7 @@ end = struct
|
||||
~psi_coef ~n_det_generators ~n_det_selectors ~energy)
|
||||
| _ -> None
|
||||
in
|
||||
{ client_id = Id.Client.of_int client_id ;
|
||||
{ client_id = Id.Client.of_string client_id ;
|
||||
n_state ; n_det ; psi_det_size ; n_det_generators ;
|
||||
n_det_selectors ; psi }
|
||||
|
||||
@ -460,48 +463,48 @@ module TaskDone_msg : sig
|
||||
type t =
|
||||
{ client_id: Id.Client.t ;
|
||||
state: State.t ;
|
||||
task_ids: Id.Task.t list ;
|
||||
task_id: Id.Task.t ;
|
||||
}
|
||||
val create : state:string -> client_id:int -> task_ids:int list -> t
|
||||
val create : state:string -> client_id:string -> task_id:string -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t =
|
||||
{ client_id: Id.Client.t ;
|
||||
state: State.t ;
|
||||
task_ids: Id.Task.t list;
|
||||
task_id: Id.Task.t;
|
||||
}
|
||||
let create ~state ~client_id ~task_ids =
|
||||
{ client_id = Id.Client.of_int client_id ;
|
||||
let create ~state ~client_id ~task_id =
|
||||
{ client_id = Id.Client.of_string client_id ;
|
||||
state = State.of_string state ;
|
||||
task_ids = List.map ~f:Id.Task.of_int task_ids;
|
||||
task_id = Id.Task.of_string task_id;
|
||||
}
|
||||
|
||||
let to_string x =
|
||||
Printf.sprintf "task_done %s %d %s"
|
||||
Printf.sprintf "task_done %s %d %d"
|
||||
(State.to_string x.state)
|
||||
(Id.Client.to_int x.client_id)
|
||||
(String.concat ~sep:"|" @@ List.map ~f:Id.Task.to_string x.task_ids)
|
||||
(Id.Task.to_int x.task_id)
|
||||
end
|
||||
|
||||
(** Terminate *)
|
||||
module Terminate_msg : sig
|
||||
type t
|
||||
val create : t
|
||||
val create : unit -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = Terminate
|
||||
let create = Terminate
|
||||
let create () = Terminate
|
||||
let to_string x = "terminate"
|
||||
end
|
||||
|
||||
(** OK *)
|
||||
module Ok_msg : sig
|
||||
type t
|
||||
val create : t
|
||||
val create : unit -> t
|
||||
val to_string : t -> string
|
||||
end = struct
|
||||
type t = Ok
|
||||
let create = Ok
|
||||
let create () = Ok
|
||||
let to_string x = "ok"
|
||||
end
|
||||
|
||||
@ -548,45 +551,45 @@ type t =
|
||||
|
||||
|
||||
let of_string s =
|
||||
let open Message_lexer in
|
||||
match parse s with
|
||||
| AddTask_ { state ; tasks } ->
|
||||
AddTask (AddTask_msg.create ~state ~tasks)
|
||||
| DelTask_ { state ; task_ids } ->
|
||||
DelTask (DelTask_msg.create ~state ~task_ids)
|
||||
| GetTask_ { state ; client_id } ->
|
||||
let l =
|
||||
String.split ~on:' ' s
|
||||
|> List.filter ~f:(fun x -> (String.strip x) <> "")
|
||||
|> List.map ~f:String.lowercase
|
||||
in
|
||||
match l with
|
||||
| "add_task" :: state :: task ->
|
||||
AddTask (AddTask_msg.create ~state ~task:(String.concat ~sep:" " task) )
|
||||
| "del_task" :: state :: task_id :: [] ->
|
||||
DelTask (DelTask_msg.create ~state ~task_id)
|
||||
| "get_task" :: state :: client_id :: [] ->
|
||||
GetTask (GetTask_msg.create ~state ~client_id)
|
||||
| TaskDone_ { state ; task_ids ; client_id } ->
|
||||
TaskDone (TaskDone_msg.create ~state ~client_id ~task_ids)
|
||||
| Disconnect_ { state ; client_id } ->
|
||||
| "task_done" :: state :: client_id :: task_id :: [] ->
|
||||
TaskDone (TaskDone_msg.create ~state ~client_id ~task_id)
|
||||
| "disconnect" :: state :: client_id :: [] ->
|
||||
Disconnect (Disconnect_msg.create ~state ~client_id)
|
||||
| Connect_ socket ->
|
||||
Connect (Connect_msg.create socket)
|
||||
| NewJob_ { state ; push_address_tcp ; push_address_inproc } ->
|
||||
| "connect" :: t :: [] ->
|
||||
Connect (Connect_msg.create t)
|
||||
| "new_job" :: state :: push_address_tcp :: push_address_inproc :: [] ->
|
||||
Newjob (Newjob_msg.create push_address_tcp push_address_inproc state)
|
||||
| EndJob_ state ->
|
||||
| "end_job" :: state :: [] ->
|
||||
Endjob (Endjob_msg.create state)
|
||||
| GetPsi_ client_id ->
|
||||
| "terminate" :: [] ->
|
||||
Terminate (Terminate_msg.create () )
|
||||
| "get_psi" :: client_id :: [] ->
|
||||
GetPsi (GetPsi_msg.create ~client_id)
|
||||
| PutPsi_ { client_id ; n_state ; n_det ; psi_det_size ; n_det_generators ; n_det_selectors } ->
|
||||
begin
|
||||
match n_det_selectors, n_det_generators with
|
||||
| Some s, Some g ->
|
||||
| "put_psi" :: client_id :: n_state :: n_det :: psi_det_size :: n_det_generators :: n_det_selectors :: [] ->
|
||||
PutPsi (PutPsi_msg.create ~client_id ~n_state ~n_det ~psi_det_size
|
||||
~n_det_generators:(Some g) ~n_det_selectors:(Some s)
|
||||
~n_det_generators:(Some n_det_generators) ~n_det_selectors:(Some n_det_selectors)
|
||||
~psi_det:None ~psi_coef:None ~energy:None )
|
||||
| _ ->
|
||||
PutPsi (PutPsi_msg.create ~client_id ~n_state ~n_det ~psi_det_size
|
||||
~n_det_generators:None ~n_det_selectors:None
|
||||
~psi_det:None ~psi_coef:None ~energy:None )
|
||||
end
|
||||
| Terminate_ -> Terminate (Terminate_msg.create )
|
||||
| SetWaiting_ -> SetWaiting
|
||||
| SetStopped_ -> SetStopped
|
||||
| SetRunning_ -> SetRunning
|
||||
| Ok_ -> Ok (Ok_msg.create)
|
||||
| Error_ m -> Error (Error_msg.create m)
|
||||
|
||||
| "put_psi" :: client_id :: n_state :: n_det :: psi_det_size :: [] ->
|
||||
PutPsi (PutPsi_msg.create ~client_id ~n_state ~n_det ~psi_det_size ~n_det_generators:None
|
||||
~n_det_selectors:None ~psi_det:None ~psi_coef:None ~energy:None)
|
||||
| "ok" :: [] -> Ok (Ok_msg.create ())
|
||||
| "error" :: rest -> Error (Error_msg.create (String.concat ~sep:" " rest))
|
||||
| "set_stopped" :: [] -> SetStopped
|
||||
| "set_running" :: [] -> SetRunning
|
||||
| "set_waiting" :: [] -> SetWaiting
|
||||
| _ -> failwith "Message not understood"
|
||||
|
||||
|
||||
let to_string = function
|
||||
|
@ -1,265 +0,0 @@
|
||||
{
|
||||
|
||||
type kw_type =
|
||||
| TEXT of string
|
||||
| WORD of string
|
||||
| INTEGER of int
|
||||
| FLOAT of float
|
||||
| NONE
|
||||
| ADD_TASK
|
||||
| DEL_TASK
|
||||
| GET_TASK
|
||||
| TASK_DONE
|
||||
| DISCONNECT
|
||||
| CONNECT
|
||||
| NEW_JOB
|
||||
| END_JOB
|
||||
| TERMINATE
|
||||
| GET_PSI
|
||||
| PUT_PSI
|
||||
| OK
|
||||
| ERROR
|
||||
| SET_STOPPED
|
||||
| SET_RUNNING
|
||||
| SET_WAITING
|
||||
|
||||
type state_tasks = { state : string ; tasks : string list ; }
|
||||
type state_taskids = { state : string ; task_ids : int list ; }
|
||||
type state_taskids_clientid = { state : string ; task_ids : int list ; client_id : int ; }
|
||||
type state_clientid = { state : string ; client_id : int ; }
|
||||
type state_tcp_inproc = { state : string ; push_address_tcp : string ; push_address_inproc : string ; }
|
||||
type psi = { client_id: int ; n_state: int ; n_det: int ; psi_det_size: int ;
|
||||
n_det_generators: int option ; n_det_selectors: int option }
|
||||
|
||||
type msg =
|
||||
| AddTask_ of state_tasks
|
||||
| DelTask_ of state_taskids
|
||||
| GetTask_ of state_clientid
|
||||
| TaskDone_ of state_taskids_clientid
|
||||
| Disconnect_ of state_clientid
|
||||
| Connect_ of string
|
||||
| NewJob_ of state_tcp_inproc
|
||||
| EndJob_ of string
|
||||
| Terminate_
|
||||
| GetPsi_ of int
|
||||
| PutPsi_ of psi
|
||||
| Ok_
|
||||
| Error_ of string
|
||||
| SetStopped_
|
||||
| SetRunning_
|
||||
| SetWaiting_
|
||||
}
|
||||
|
||||
let word = [^' ' '\t' '\n']+
|
||||
let text = [^ ' ' '|']+[^ '|']+
|
||||
let integer = ['0'-'9']+
|
||||
let real = '-'? integer '.' integer (['e' 'E'] '-'? integer)?
|
||||
|
||||
let white = [' ' '\t']+
|
||||
|
||||
|
||||
rule get_text = parse
|
||||
| text as t { TEXT t }
|
||||
| eof { TERMINATE }
|
||||
| _ { NONE }
|
||||
|
||||
and get_int = parse
|
||||
| integer as i { INTEGER (int_of_string i) }
|
||||
| eof { TERMINATE }
|
||||
| _ { NONE }
|
||||
|
||||
and get_word = parse
|
||||
| word as w { WORD w }
|
||||
| eof { TERMINATE }
|
||||
| _ { NONE }
|
||||
|
||||
and kw = parse
|
||||
| "add_task" { ADD_TASK }
|
||||
| "del_task" { DEL_TASK }
|
||||
| "get_task" { GET_TASK }
|
||||
| "task_done" { TASK_DONE }
|
||||
| "disconnect" { DISCONNECT }
|
||||
| "connect" { CONNECT }
|
||||
| "new_job" { NEW_JOB }
|
||||
| "end_job" { END_JOB }
|
||||
| "terminate" { TERMINATE }
|
||||
| "get_psi" { GET_PSI }
|
||||
| "put_psi" { PUT_PSI }
|
||||
| "ok" { OK }
|
||||
| "error" { ERROR }
|
||||
| "set_stopped" { SET_STOPPED }
|
||||
| "set_running" { SET_RUNNING }
|
||||
| "set_waiting" { SET_WAITING }
|
||||
| _ { NONE }
|
||||
|
||||
|
||||
{
|
||||
let rec read_text ?(accu=[]) lexbuf =
|
||||
let token =
|
||||
get_text lexbuf
|
||||
in
|
||||
match token with
|
||||
| TEXT t -> read_text ~accu:(t::accu) lexbuf
|
||||
| TERMINATE -> List.rev accu
|
||||
| NONE -> read_text ~accu lexbuf
|
||||
| _ -> failwith "Error in MessageLexer (2)"
|
||||
|
||||
and read_word lexbuf =
|
||||
let token =
|
||||
get_word lexbuf
|
||||
in
|
||||
match token with
|
||||
| WORD w -> w
|
||||
| NONE -> read_word lexbuf
|
||||
| _ -> failwith "Error in MessageLexer (3)"
|
||||
|
||||
and read_int lexbuf =
|
||||
let token =
|
||||
get_int lexbuf
|
||||
in
|
||||
match token with
|
||||
| INTEGER i -> i
|
||||
| NONE -> read_int lexbuf
|
||||
| _ -> failwith "Error in MessageLexer (4)"
|
||||
|
||||
and read_ints ?(accu=[]) lexbuf =
|
||||
let token =
|
||||
get_int lexbuf
|
||||
in
|
||||
match token with
|
||||
| INTEGER i -> read_ints ~accu:(i::accu) lexbuf
|
||||
| TERMINATE -> List.rev accu
|
||||
| NONE -> read_ints ~accu lexbuf
|
||||
| _ -> failwith "Error in MessageLexer (4)"
|
||||
|
||||
and parse_rec lexbuf =
|
||||
let token =
|
||||
kw lexbuf
|
||||
in
|
||||
match token with
|
||||
| ADD_TASK ->
|
||||
let state = read_word lexbuf in
|
||||
let tasks = read_text lexbuf in
|
||||
AddTask_ { state ; tasks }
|
||||
|
||||
| DEL_TASK ->
|
||||
let state = read_word lexbuf in
|
||||
let task_ids = read_ints lexbuf in
|
||||
DelTask_ { state ; task_ids }
|
||||
|
||||
| GET_TASK ->
|
||||
let state = read_word lexbuf in
|
||||
let client_id = read_int lexbuf in
|
||||
GetTask_ { state ; client_id }
|
||||
|
||||
| TASK_DONE ->
|
||||
let state = read_word lexbuf in
|
||||
let client_id = read_int lexbuf in
|
||||
let task_ids = read_ints lexbuf in
|
||||
TaskDone_ { state ; task_ids ; client_id }
|
||||
|
||||
| DISCONNECT ->
|
||||
let state = read_word lexbuf in
|
||||
let client_id = read_int lexbuf in
|
||||
Disconnect_ { state ; client_id }
|
||||
|
||||
| GET_PSI ->
|
||||
let client_id = read_int lexbuf in
|
||||
GetPsi_ client_id
|
||||
|
||||
| PUT_PSI ->
|
||||
let client_id = read_int lexbuf in
|
||||
let n_state = read_int lexbuf in
|
||||
let n_det = read_int lexbuf in
|
||||
let psi_det_size = read_int lexbuf in
|
||||
let n_det_generators, n_det_selectors =
|
||||
try
|
||||
(Some (read_int lexbuf), Some (read_int lexbuf))
|
||||
with (Failure _) -> (None, None)
|
||||
in
|
||||
PutPsi_ { client_id ; n_state ; n_det ; psi_det_size ; n_det_generators ; n_det_selectors }
|
||||
|
||||
| CONNECT ->
|
||||
let socket = read_word lexbuf in
|
||||
Connect_ socket
|
||||
|
||||
| NEW_JOB ->
|
||||
let state = read_word lexbuf in
|
||||
let push_address_tcp = read_word lexbuf in
|
||||
let push_address_inproc = read_word lexbuf in
|
||||
NewJob_ { state ; push_address_tcp ; push_address_inproc }
|
||||
|
||||
| END_JOB ->
|
||||
let state = read_word lexbuf in
|
||||
EndJob_ state
|
||||
|
||||
| ERROR ->
|
||||
let message = List.hd (read_text lexbuf) in
|
||||
Error_ message
|
||||
|
||||
| OK -> Ok_
|
||||
| SET_WAITING -> SetWaiting_
|
||||
| SET_RUNNING -> SetRunning_
|
||||
| SET_STOPPED -> SetStopped_
|
||||
| TERMINATE -> Terminate_
|
||||
| NONE -> parse_rec lexbuf
|
||||
| _ -> failwith "Error in MessageLexer"
|
||||
|
||||
let parse message =
|
||||
let lexbuf =
|
||||
Lexing.from_string message
|
||||
in
|
||||
parse_rec lexbuf
|
||||
|
||||
|
||||
let debug () =
|
||||
let l = [
|
||||
"add_task state_pouet Task pouet zob" ;
|
||||
"add_task state_pouet Task pouet zob |Task2 zob | Task3 prout" ;
|
||||
"del_task state_pouet 12345" ;
|
||||
"del_task state_pouet 12345 | 6789 | 10 | 11" ;
|
||||
"get_task state_pouet 12" ;
|
||||
"task_done state_pouet 12 12345";
|
||||
"task_done state_pouet 12 12345 | 678 | 91011";
|
||||
"connect tcp";
|
||||
"disconnect state_pouet 12";
|
||||
"new_job state_pouet tcp://test.com:12345 ipc:///dev/shm/x.socket";
|
||||
"end_job state_pouet";
|
||||
"terminate" ;
|
||||
"set_running" ;
|
||||
"set_stopped" ;
|
||||
"set_waiting" ;
|
||||
"ok" ;
|
||||
"error my_error" ;
|
||||
"get_psi 12" ;
|
||||
"put_psi 12 2 1000 10000 800 900" ;
|
||||
"put_psi 12 2 1000 10000"
|
||||
]
|
||||
|> List.map parse
|
||||
in
|
||||
List.map (function
|
||||
| AddTask_ { state ; tasks } -> Printf.sprintf "ADD_TASK state:\"%s\" tasks:{\"%s\"}" state (String.concat "\"}|{\"" tasks)
|
||||
| DelTask_ { state ; task_ids } -> Printf.sprintf "DEL_TASK state:\"%s\" task_ids:{%s}" state (String.concat "|" @@ List.map string_of_int task_ids)
|
||||
| GetTask_ { state ; client_id } -> Printf.sprintf "GET_TASK state:\"%s\" task_id:%d" state client_id
|
||||
| TaskDone_ { state ; task_ids ; client_id } -> Printf.sprintf "TASK_DONE state:\"%s\" task_ids:{%s} client_id:%d" state (String.concat "|" @@ List.map string_of_int task_ids) client_id
|
||||
| Disconnect_ { state ; client_id } -> Printf.sprintf "DISCONNECT state:\"%s\" client_id:%d" state client_id
|
||||
| Connect_ socket -> Printf.sprintf "CONNECT socket:\"%s\"" socket
|
||||
| NewJob_ { state ; push_address_tcp ; push_address_inproc } -> Printf.sprintf "NEW_JOB state:\"%s\" tcp:\"%s\" inproc:\"%s\"" state push_address_tcp push_address_inproc
|
||||
| EndJob_ state -> Printf.sprintf "END_JOB state:\"%s\"" state
|
||||
| GetPsi_ client_id -> Printf.sprintf "GET_PSI client_id:%d" client_id
|
||||
| PutPsi_ { client_id ; n_state ; n_det ; psi_det_size ; n_det_generators ; n_det_selectors } ->
|
||||
begin
|
||||
match n_det_selectors, n_det_generators with
|
||||
| Some s, Some g -> Printf.sprintf "PUT_PSI client_id:%d n_state:%d n_det:%d psi_det_size:%d n_det_generators:%d n_det_selectors:%d" client_id n_state n_det psi_det_size g s
|
||||
| _ -> Printf.sprintf "PUT_PSI client_id:%d n_state:%d n_det:%d psi_det_size:%d" client_id n_state n_det psi_det_size
|
||||
end
|
||||
| Terminate_ -> "TERMINATE"
|
||||
| SetWaiting_ -> "SET_WAITING"
|
||||
| SetStopped_ -> "SET_STOPPED"
|
||||
| SetRunning_ -> "SET_RUNNING"
|
||||
| Ok_ -> "OK"
|
||||
| Error_ s -> Printf.sprintf "ERROR: \"%s\"" s
|
||||
) l
|
||||
|> List.iter print_endline
|
||||
|
||||
}
|
@ -85,7 +85,7 @@ module Xyz = struct
|
||||
let of_string s =
|
||||
let flush state accu number =
|
||||
let n =
|
||||
if (number = "") then 1
|
||||
if (number = "") then 0
|
||||
else (Int.of_string number)
|
||||
in
|
||||
match state with
|
||||
|
@ -47,14 +47,6 @@ let debug str =
|
||||
let zmq_context =
|
||||
ZMQ.Context.create ()
|
||||
|
||||
let () =
|
||||
let nproc =
|
||||
match Sys.getenv "OMP_NUM_THREADS" with
|
||||
| Some m -> int_of_string m
|
||||
| None -> 2
|
||||
in
|
||||
ZMQ.Context.set_io_threads zmq_context nproc
|
||||
|
||||
|
||||
let bind_socket ~socket_type ~socket ~port =
|
||||
let rec loop = function
|
||||
@ -70,15 +62,7 @@ let bind_socket ~socket_type ~socket ~port =
|
||||
| Unix.Unix_error _ -> (Time.pause @@ Time.Span.of_float 1. ; loop (i-1) )
|
||||
| other_exception -> raise other_exception
|
||||
in loop 60;
|
||||
let filename =
|
||||
Printf.sprintf "/tmp/qp_run:%d" port
|
||||
in
|
||||
begin
|
||||
match Sys.file_exists filename with
|
||||
| `Yes -> Sys.remove filename
|
||||
| _ -> ()
|
||||
end;
|
||||
ZMQ.Socket.bind socket ("ipc://"^filename)
|
||||
ZMQ.Socket.bind socket @@ Printf.sprintf "ipc:///tmp/qp_run:%d" port
|
||||
|
||||
|
||||
let hostname = lazy (
|
||||
@ -115,7 +99,7 @@ let ip_address = lazy (
|
||||
|
||||
|
||||
let reply_ok rep_socket =
|
||||
Message.Ok_msg.create
|
||||
Message.Ok_msg.create ()
|
||||
|> Message.Ok_msg.to_string
|
||||
|> ZMQ.Socket.send rep_socket
|
||||
|
||||
@ -137,7 +121,7 @@ let stop ~port =
|
||||
ZMQ.Socket.set_linger_period req_socket 1_000_000;
|
||||
ZMQ.Socket.connect req_socket address;
|
||||
|
||||
Message.Terminate (Message.Terminate_msg.create)
|
||||
Message.Terminate (Message.Terminate_msg.create ())
|
||||
|> Message.to_string
|
||||
|> ZMQ.Socket.send req_socket ;
|
||||
|
||||
@ -305,9 +289,9 @@ let disconnect msg program_state rep_socket =
|
||||
|
||||
let del_task msg program_state rep_socket =
|
||||
|
||||
let state, task_ids =
|
||||
let state, task_id =
|
||||
msg.Message.DelTask_msg.state,
|
||||
msg.Message.DelTask_msg.task_ids
|
||||
msg.Message.DelTask_msg.task_id
|
||||
in
|
||||
|
||||
let failure () =
|
||||
@ -318,14 +302,13 @@ let del_task msg program_state rep_socket =
|
||||
|
||||
let new_program_state =
|
||||
{ program_state with
|
||||
queue = List.fold ~f:(fun queue task_id -> Queuing_system.del_task ~task_id queue)
|
||||
~init:program_state.queue task_ids
|
||||
queue = Queuing_system.del_task ~task_id program_state.queue
|
||||
}
|
||||
in
|
||||
let more =
|
||||
(Queuing_system.number_of_tasks new_program_state.queue > 0)
|
||||
in
|
||||
Message.DelTaskReply (Message.DelTaskReply_msg.create ~task_ids ~more)
|
||||
Message.DelTaskReply (Message.DelTaskReply_msg.create ~task_id ~more)
|
||||
|> Message.to_string
|
||||
|> ZMQ.Socket.send ~block:true rep_socket ; (** /!\ Has to be blocking *)
|
||||
new_program_state
|
||||
@ -346,9 +329,9 @@ let del_task msg program_state rep_socket =
|
||||
|
||||
let add_task msg program_state rep_socket =
|
||||
|
||||
let state, tasks =
|
||||
let state, task =
|
||||
msg.Message.AddTask_msg.state,
|
||||
msg.Message.AddTask_msg.tasks
|
||||
msg.Message.AddTask_msg.task
|
||||
in
|
||||
|
||||
let increment_progress_bar = function
|
||||
@ -356,18 +339,60 @@ let add_task msg program_state rep_socket =
|
||||
| None -> None
|
||||
in
|
||||
|
||||
let result =
|
||||
let new_queue, new_bar =
|
||||
List.fold ~f:(fun (queue, bar) task ->
|
||||
Queuing_system.add_task ~task queue,
|
||||
increment_progress_bar bar)
|
||||
~init:(program_state.queue, program_state.progress_bar) tasks
|
||||
let rec add_task_triangle program_state imax = function
|
||||
| 0 -> program_state
|
||||
| i ->
|
||||
let task =
|
||||
Printf.sprintf "%d %d" i imax
|
||||
in
|
||||
let new_program_state =
|
||||
{ program_state with
|
||||
queue = new_queue;
|
||||
progress_bar = new_bar
|
||||
queue = Queuing_system.add_task ~task program_state.queue ;
|
||||
progress_bar = increment_progress_bar program_state.progress_bar ;
|
||||
}
|
||||
in
|
||||
add_task_triangle new_program_state imax (i-1)
|
||||
in
|
||||
|
||||
let rec add_task_range program_state i = function
|
||||
| j when (j < i) -> program_state
|
||||
| j ->
|
||||
let task =
|
||||
Printf.sprintf "%d" j
|
||||
in
|
||||
let new_program_state =
|
||||
{ program_state with
|
||||
queue = Queuing_system.add_task ~task program_state.queue ;
|
||||
progress_bar = increment_progress_bar program_state.progress_bar ;
|
||||
}
|
||||
in
|
||||
add_task_range new_program_state i (j-1)
|
||||
in
|
||||
|
||||
let new_program_state = function
|
||||
| "triangle" :: i_str :: [] ->
|
||||
let imax =
|
||||
Int.of_string i_str
|
||||
in
|
||||
add_task_triangle program_state imax imax
|
||||
| "range" :: i_str :: j_str :: [] ->
|
||||
let i, j =
|
||||
Int.of_string i_str,
|
||||
Int.of_string j_str
|
||||
in
|
||||
add_task_range program_state i j
|
||||
| _ ->
|
||||
{ program_state with
|
||||
queue = Queuing_system.add_task ~task program_state.queue ;
|
||||
progress_bar = increment_progress_bar program_state.progress_bar ;
|
||||
}
|
||||
in
|
||||
|
||||
let result =
|
||||
String.split ~on:' ' task
|
||||
|> List.filter ~f:(fun x -> x <> "")
|
||||
|> new_program_state
|
||||
in
|
||||
reply_ok rep_socket;
|
||||
result
|
||||
|
||||
@ -423,10 +448,10 @@ let get_task msg program_state rep_socket pair_socket =
|
||||
|
||||
let task_done msg program_state rep_socket =
|
||||
|
||||
let state, client_id, task_ids =
|
||||
let state, client_id, task_id =
|
||||
msg.Message.TaskDone_msg.state,
|
||||
msg.Message.TaskDone_msg.client_id,
|
||||
msg.Message.TaskDone_msg.task_ids
|
||||
msg.Message.TaskDone_msg.task_id
|
||||
in
|
||||
|
||||
let increment_progress_bar = function
|
||||
@ -439,16 +464,10 @@ let task_done msg program_state rep_socket =
|
||||
program_state
|
||||
|
||||
and success () =
|
||||
let new_queue, new_bar =
|
||||
List.fold ~f:(fun (queue, bar) task_id ->
|
||||
Queuing_system.end_task ~task_id ~client_id queue,
|
||||
increment_progress_bar bar)
|
||||
~init:(program_state.queue, program_state.progress_bar) task_ids
|
||||
in
|
||||
let result =
|
||||
{ program_state with
|
||||
queue = new_queue;
|
||||
progress_bar = new_bar
|
||||
queue = Queuing_system.end_task ~task_id ~client_id program_state.queue ;
|
||||
progress_bar = increment_progress_bar program_state.progress_bar ;
|
||||
}
|
||||
in
|
||||
reply_ok rep_socket;
|
||||
|
@ -21,9 +21,6 @@ let spec =
|
||||
~doc:" Compute AOs in the Cartesian basis set (6d, 10f, ...)"
|
||||
+> anon ("(xyz_file|zmt_file)" %: file )
|
||||
|
||||
type element =
|
||||
| Element of Element.t
|
||||
| Int_elem of (Nucl_number.t * Element.t)
|
||||
|
||||
(** Handle dummy atoms placed on bonds *)
|
||||
let dummy_centers ~threshold ~molecule ~nuclei =
|
||||
@ -118,14 +115,17 @@ let run ?o b c d m p cart xyz_file =
|
||||
(* Open basis set channels *)
|
||||
let basis_channel element =
|
||||
let key =
|
||||
match element with
|
||||
| Element e -> Element.to_string e
|
||||
| Int_elem (i,e) -> Printf.sprintf "%d,%s" (Nucl_number.to_int i) (Element.to_string e)
|
||||
Element.to_string element
|
||||
in
|
||||
match Hashtbl.find basis_table key with
|
||||
| Some in_channel ->
|
||||
in_channel
|
||||
| None -> raise Not_found
|
||||
| None ->
|
||||
let msg =
|
||||
Printf.sprintf "%s is not defined in basis %s.%!"
|
||||
(Element.to_long_string element) b ;
|
||||
in
|
||||
failwith msg
|
||||
in
|
||||
|
||||
let temp_filename =
|
||||
@ -189,21 +189,12 @@ let run ?o b c d m p cart xyz_file =
|
||||
| Some (key, basis) -> (*Aux basis *)
|
||||
begin
|
||||
let elem =
|
||||
try
|
||||
Element (Element.of_string key)
|
||||
with Element.ElementError _ ->
|
||||
let result =
|
||||
match (String.split ~on:',' key) with
|
||||
| i :: k :: [] -> (Nucl_number.of_int @@ int_of_string i, Element.of_string k)
|
||||
| _ -> failwith "Expected format is int,Element:basis"
|
||||
in Int_elem result
|
||||
Element.of_string key
|
||||
and basis =
|
||||
String.lowercase basis
|
||||
in
|
||||
let key =
|
||||
match elem with
|
||||
| Element e -> Element.to_string e
|
||||
| Int_elem (i,e) -> Printf.sprintf "%d,%s" (Nucl_number.to_int i) (Element.to_string e)
|
||||
Element.to_string elem
|
||||
in
|
||||
let new_channel =
|
||||
fetch_channel basis
|
||||
@ -211,13 +202,7 @@ let run ?o b c d m p cart xyz_file =
|
||||
begin
|
||||
match Hashtbl.add basis_table ~key:key ~data:new_channel with
|
||||
| `Ok -> ()
|
||||
| `Duplicate ->
|
||||
let e =
|
||||
match elem with
|
||||
| Element e -> e
|
||||
| Int_elem (_,e) -> e
|
||||
in
|
||||
failwith ("Duplicate definition of basis for "^(Element.to_long_string e))
|
||||
| `Duplicate -> failwith ("Duplicate definition of basis for "^(Element.to_long_string elem))
|
||||
end
|
||||
end
|
||||
end;
|
||||
@ -552,20 +537,7 @@ let run ?o b c d m p cart xyz_file =
|
||||
| Element.X -> Element.H
|
||||
| e -> e
|
||||
in
|
||||
let key =
|
||||
Int_elem (i,x.Atom.element)
|
||||
in
|
||||
try
|
||||
Basis.read_element (basis_channel key) i e
|
||||
with Not_found ->
|
||||
let key =
|
||||
Element x.Atom.element
|
||||
in
|
||||
try
|
||||
Basis.read_element (basis_channel key) i e
|
||||
with Not_found ->
|
||||
failwith (Printf.sprintf "Basis not found for atom %d (%s)" (Nucl_number.to_int i)
|
||||
(Element.to_string x.Atom.element) )
|
||||
Basis.read_element (basis_channel x.Atom.element) i e
|
||||
with
|
||||
| End_of_file -> failwith
|
||||
("Element "^(Element.to_string x.Atom.element)^" not found in basis set.")
|
||||
@ -675,7 +647,6 @@ atoms are taken from the same basis set, otherwise specific elements can be
|
||||
defined as follows:
|
||||
|
||||
-b \"cc-pcvdz | H:cc-pvdz | C:6-31g\"
|
||||
-b \"cc-pvtz | 1,H:sto-3g | 3,H:6-31g\"
|
||||
|
||||
If a file with the same name as the basis set exists, this file will be read.
|
||||
Otherwise, the basis set is obtained from the database.
|
||||
|
@ -42,8 +42,8 @@ let input_data = "
|
||||
|
||||
* Det_number_max : int
|
||||
assert (x > 0) ;
|
||||
if (x > 10000000000) then
|
||||
warning \"More than 10 billion determinants\";
|
||||
if (x > 100000000) then
|
||||
warning \"More than 100 million determinants\";
|
||||
|
||||
* States_number : int
|
||||
assert (x > 0) ;
|
||||
@ -140,8 +140,8 @@ let input_ezfio = "
|
||||
|
||||
* Det_number : int
|
||||
determinants_n_det
|
||||
1 : 10000000000
|
||||
More than 10 billion of determinants
|
||||
1 : 100000000
|
||||
More than 100 million of determinants
|
||||
|
||||
"
|
||||
;;
|
||||
|
@ -1,15 +1,10 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated CAS-SD energy
|
||||
doc: "Calculated CAS-SD energy"
|
||||
interface: ezfio
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated selected CAS-SD energy with PT2 correction
|
||||
doc: "Calculated selected CAS-SD energy with PT2 correction"
|
||||
interface: ezfio
|
||||
|
||||
[do_ddci]
|
||||
type: logical
|
||||
doc: If true, remove purely inactive double excitations
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
@ -132,3 +132,124 @@ program fci_zmq
|
||||
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine ZMQ_selection(N_in, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
character*(512) :: task
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: N_in
|
||||
type(selection_buffer) :: b
|
||||
integer :: i, N
|
||||
integer, external :: omp_get_thread_num
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
|
||||
|
||||
if (.True.) then
|
||||
PROVIDE pt2_e0_denominator
|
||||
N = max(N_in,1)
|
||||
provide nproc
|
||||
call new_parallel_job(zmq_to_qp_run_socket,"selection")
|
||||
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
endif
|
||||
|
||||
integer :: i_generator, i_generator_start, i_generator_max, step
|
||||
! step = int(max(1.,10*elec_num/mo_tot_num)
|
||||
|
||||
step = int(5000000.d0 / dble(N_int * N_states * elec_num * elec_num * mo_tot_num * mo_tot_num ))
|
||||
step = max(1,step)
|
||||
do i= 1, N_det_generators,step
|
||||
i_generator_start = i
|
||||
i_generator_max = min(i+step-1,N_det_generators)
|
||||
write(task,*) i_generator_start, i_generator_max, 1, N
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
end do
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call selection_collector(b, pt2)
|
||||
else
|
||||
call selection_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
|
||||
if (N_in > 0) then
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
endif
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine selection_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine selection_collector(b, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
double precision :: pt2_mwen(N_states)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, N, ntask
|
||||
double precision, allocatable :: val(:)
|
||||
integer(bit_kind), allocatable :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
integer :: done
|
||||
real :: time, time0
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
|
||||
done = 0
|
||||
more = 1
|
||||
pt2(:) = 0d0
|
||||
call CPU_TIME(time0)
|
||||
do while (more == 1)
|
||||
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
|
||||
pt2 += pt2_mwen
|
||||
do i=1, N
|
||||
call add_to_selection_buffer(b, det(1,1,i), val(i))
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
|
||||
end do
|
||||
done += ntask
|
||||
call CPU_TIME(time)
|
||||
! print *, "DONE" , done, time - time0
|
||||
end do
|
||||
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
call sort_selection_buffer(b)
|
||||
end subroutine
|
||||
|
||||
|
4
plugins/CAS_SD_ZMQ/ezfio_interface.irp.f
Normal file
4
plugins/CAS_SD_ZMQ/ezfio_interface.irp.f
Normal file
@ -0,0 +1,4 @@
|
||||
! DO NOT MODIFY BY HAND
|
||||
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
|
||||
! from file /home/scemama/quantum_package/src/CAS_SD_ZMQ/EZFIO.cfg
|
||||
|
@ -41,8 +41,8 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
if (done) then
|
||||
ctask = ctask - 1
|
||||
else
|
||||
integer :: i_generator, N
|
||||
read (task,*) i_generator, N
|
||||
integer :: i_generator, i_generator_start, i_generator_max, step, N
|
||||
read (task,*) i_generator_start, i_generator_max, step, N
|
||||
if(buf%N == 0) then
|
||||
! Only first time
|
||||
call create_selection_buffer(N, N*2, buf)
|
||||
@ -50,7 +50,11 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
else
|
||||
if(N /= buf%N) stop "N changed... wtf man??"
|
||||
end if
|
||||
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
|
||||
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
|
||||
do i_generator=i_generator_start,i_generator_max,step
|
||||
call select_connected(i_generator,energy,pt2,buf)
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(done .or. ctask == size(task_id)) then
|
||||
@ -111,7 +115,7 @@ subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
|
||||
if(rc /= 4*ntask) stop "push"
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
end subroutine
|
||||
|
||||
|
||||
@ -145,7 +149,7 @@ subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, nt
|
||||
if(rc /= 4*ntask) stop "pull"
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
end subroutine
|
||||
|
||||
|
||||
|
@ -112,7 +112,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2)
|
||||
|
||||
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1_1
|
||||
get_phase_bi = res(iand(np,1_1))
|
||||
end subroutine
|
||||
end function
|
||||
|
||||
|
||||
|
||||
@ -671,13 +671,10 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
if(mat(1, p1, p2) == 0d0) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
logical, external :: is_in_wavefunction
|
||||
|
||||
if (do_ddci) then
|
||||
logical, external :: is_a_two_holes_two_particles
|
||||
if (is_a_two_holes_two_particles(det)) then
|
||||
if (is_in_wavefunction(det,N_int)) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
max_e_pert = 0d0
|
||||
@ -1208,129 +1205,3 @@ subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
|
||||
end do genl
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine ZMQ_selection(N_in, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: N_in
|
||||
type(selection_buffer) :: b
|
||||
integer :: i, N
|
||||
integer, external :: omp_get_thread_num
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
integer, parameter :: maxtasks=10000
|
||||
|
||||
|
||||
N = max(N_in,1)
|
||||
if (.True.) then
|
||||
PROVIDE pt2_e0_denominator
|
||||
provide nproc
|
||||
call new_parallel_job(zmq_to_qp_run_socket,"selection")
|
||||
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
endif
|
||||
|
||||
character*(20*maxtasks) :: task
|
||||
task = ' '
|
||||
|
||||
integer :: k
|
||||
k=0
|
||||
do i= 1, N_det_generators
|
||||
k = k+1
|
||||
write(task(20*(k-1)+1:20*k),'(I9,1X,I9,''|'')') i, N
|
||||
k = k+20
|
||||
if (k>20*maxtasks) then
|
||||
k=0
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
endif
|
||||
enddo
|
||||
if (k > 0) then
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
endif
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call selection_collector(b, pt2)
|
||||
else
|
||||
call selection_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
|
||||
if (N_in > 0) then
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
call save_wavefunction
|
||||
endif
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine selection_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine selection_collector(b, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
double precision :: pt2_mwen(N_states)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, N, ntask
|
||||
double precision, allocatable :: val(:)
|
||||
integer(bit_kind), allocatable :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
integer :: done
|
||||
real :: time, time0
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
|
||||
done = 0
|
||||
more = 1
|
||||
pt2(:) = 0d0
|
||||
call CPU_TIME(time0)
|
||||
do while (more == 1)
|
||||
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
|
||||
pt2 += pt2_mwen
|
||||
do i=1, N
|
||||
call add_to_selection_buffer(b, det(1,1,i), val(i))
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
|
||||
end do
|
||||
done += ntask
|
||||
call CPU_TIME(time)
|
||||
! print *, "DONE" , done, time - time0
|
||||
end do
|
||||
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
call sort_selection_buffer(b)
|
||||
end subroutine
|
||||
|
||||
|
||||
|
@ -1,109 +0,0 @@
|
||||
program fci_zmq
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref
|
||||
|
||||
double precision, allocatable :: psi_coef_ref(:,:)
|
||||
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
|
||||
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
! Stopping criterion is the PT2max
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = 2
|
||||
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
|
||||
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
|
||||
psi_coef_ref = psi_coef_sorted
|
||||
psi_det_ref = psi_det_sorted
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
do while (Nmax-Nmin > 1)
|
||||
psi_coef = psi_coef_ref
|
||||
psi_det = psi_det_ref
|
||||
TOUCH psi_det psi_coef
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
if (ratio < var_pt2_ratio) then
|
||||
Nmin = N_det
|
||||
else
|
||||
Nmax = N_det
|
||||
psi_coef_ref = psi_coef
|
||||
psi_det_ref = psi_det
|
||||
TOUCH psi_det psi_coef
|
||||
endif
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
call save_wavefunction
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@ -1 +1 @@
|
||||
Perturbation Selectors_full Generators_CAS Davidson Psiref_CAS
|
||||
Perturbation Selectors_full Generators_CAS Davidson
|
||||
|
@ -5,7 +5,7 @@ program ddci
|
||||
|
||||
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:),E_before(:)
|
||||
integer :: N_st, degree
|
||||
N_st = N_states
|
||||
N_st = N_states_diag
|
||||
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
|
||||
character*(64) :: perturbation
|
||||
|
||||
|
4
plugins/DFT_Utils/EZFIO.cfg
Normal file
4
plugins/DFT_Utils/EZFIO.cfg
Normal file
@ -0,0 +1,4 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated energy
|
||||
interface: ezfio
|
File diff suppressed because it is too large
Load Diff
@ -1,54 +0,0 @@
|
||||
subroutine ex_lda(rho_a,rho_b,ex,vx_a,vx_b)
|
||||
include 'constants.include.F'
|
||||
implicit none
|
||||
double precision, intent(in) :: rho_a,rho_b
|
||||
double precision, intent(out) :: ex,vx_a,vx_b
|
||||
double precision :: tmp_a,tmp_b
|
||||
tmp_a = rho_a**(c_1_3)
|
||||
tmp_b = rho_b**(c_1_3)
|
||||
ex = cst_lda * (tmp_a*tmp_a*tmp_a*tmp_a + tmp_b*tmp_b*tmp_b*tmp_b)
|
||||
vx_a = cst_lda * c_4_3 * tmp_a
|
||||
vx_b = cst_lda * c_4_3 * tmp_b
|
||||
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [double precision, lda_exchange, (N_states)]
|
||||
&BEGIN_PROVIDER [double precision, lda_ex_potential_alpha_ao,(ao_num_align,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, lda_ex_potential_beta_ao,(ao_num_align,ao_num,N_states)]
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
integer :: m,n
|
||||
double precision :: aos_array(ao_num)
|
||||
double precision :: r(3)
|
||||
lda_ex_potential_alpha_ao = 0.d0
|
||||
lda_ex_potential_beta_ao = 0.d0
|
||||
do l = 1, N_states
|
||||
lda_exchange(l) = 0.d0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid
|
||||
do k = 1, n_points_integration_angular
|
||||
double precision :: rho_a,rho_b,ex
|
||||
double precision :: vx_a,vx_b
|
||||
rho_a = one_body_dm_mo_alpha_at_grid_points(k,i,j,l)
|
||||
rho_b = one_body_dm_mo_beta_at_grid_points(k,i,j,l)
|
||||
call ex_lda(rho_a,rho_b,ex,vx_a,vx_b)
|
||||
lda_exchange(l) += final_weight_functions_at_grid_points(k,i,j) * ex
|
||||
r(1) = grid_points_per_atom(1,k,i,j)
|
||||
r(2) = grid_points_per_atom(2,k,i,j)
|
||||
r(3) = grid_points_per_atom(3,k,i,j)
|
||||
call give_all_aos_at_r(r,aos_array)
|
||||
do m = 1, ao_num
|
||||
! lda_ex_potential_ao(m,m,l) += (vx_a + vx_b) * aos_array(m)*aos_array(m)
|
||||
do n = 1, ao_num
|
||||
lda_ex_potential_alpha_ao(m,n,l) += (vx_a ) * aos_array(m)*aos_array(n) * final_weight_functions_at_grid_points(k,i,j)
|
||||
lda_ex_potential_beta_ao(m,n,l) += (vx_b) * aos_array(m)*aos_array(n) * final_weight_functions_at_grid_points(k,i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,60 +1,42 @@
|
||||
BEGIN_PROVIDER [integer, n_points_integration_angular]
|
||||
BEGIN_PROVIDER [integer, n_points_angular_grid]
|
||||
implicit none
|
||||
n_points_integration_angular = 110
|
||||
n_points_angular_grid = 50
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_radial_grid]
|
||||
implicit none
|
||||
n_points_radial_grid = 100
|
||||
n_points_radial_grid = 10000
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ]
|
||||
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)]
|
||||
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_angular_grid,3) ]
|
||||
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_angular_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! weights and grid points for the integration on the angular variables on
|
||||
! the unit sphere centered on (0,0,0)
|
||||
! According to the LEBEDEV scheme
|
||||
END_DOC
|
||||
angular_quadrature_points = 0.d0
|
||||
weights_angular_points = 0.d0
|
||||
!call cal_quad(n_points_integration_angular, angular_quadrature_points,weights_angular_points)
|
||||
call cal_quad(n_points_angular_grid, angular_quadrature_points,weights_angular_points)
|
||||
include 'constants.include.F'
|
||||
integer :: i,n
|
||||
integer :: i
|
||||
double precision :: accu
|
||||
double precision :: degre_rad
|
||||
degre_rad = pi/180.d0
|
||||
accu = 0.d0
|
||||
double precision :: x(n_points_integration_angular),y(n_points_integration_angular),z(n_points_integration_angular),w(n_points_integration_angular)
|
||||
call LD0110(X,Y,Z,W,N)
|
||||
do i = 1, n_points_integration_angular
|
||||
angular_quadrature_points(i,1) = x(i)
|
||||
angular_quadrature_points(i,2) = y(i)
|
||||
angular_quadrature_points(i,3) = z(i)
|
||||
weights_angular_points(i) = w(i) * 4.d0 * pi
|
||||
accu += w(i)
|
||||
enddo
|
||||
!do i = 1, n_points_integration_angular
|
||||
!degre_rad = 180.d0/pi
|
||||
!accu = 0.d0
|
||||
!do i = 1, n_points_integration_angular_lebedev
|
||||
! accu += weights_angular_integration_lebedev(i)
|
||||
! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 4.d0 * pi
|
||||
! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 2.d0 * pi
|
||||
! angular_quadrature_points(i,1) = dcos ( degre_rad * theta_angular_integration_lebedev(i)) &
|
||||
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
|
||||
! angular_quadrature_points(i,2) = dsin ( degre_rad * theta_angular_integration_lebedev(i)) &
|
||||
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
|
||||
! angular_quadrature_points(i,3) = dcos ( degre_rad * phi_angular_integration_lebedev(i))
|
||||
|
||||
!!weights_angular_points(i) = weights_angular_integration_lebedev(i)
|
||||
!!angular_quadrature_points(i,1) = dcos ( degre_rad * phi_angular_integration_lebedev(i)) &
|
||||
!! * dsin ( degre_rad * theta_angular_integration_lebedev(i))
|
||||
!!angular_quadrature_points(i,2) = dsin ( degre_rad * phi_angular_integration_lebedev(i)) &
|
||||
!! * dsin ( degre_rad * theta_angular_integration_lebedev(i))
|
||||
!!angular_quadrature_points(i,3) = dcos ( degre_rad * theta_angular_integration_lebedev(i))
|
||||
!enddo
|
||||
print*,'ANGULAR'
|
||||
print*,''
|
||||
print*,'accu = ',accu
|
||||
ASSERT( dabs(accu - 1.D0) < 1.d-10)
|
||||
!print*,'ANGULAR'
|
||||
!print*,''
|
||||
!print*,'accu = ',accu
|
||||
!ASSERT( dabs(accu - 1.D0) < 1.d-10)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -81,7 +63,7 @@ END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular,n_points_radial_grid,nucl_num)]
|
||||
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid,n_points_radial_grid,nucl_num)]
|
||||
BEGIN_DOC
|
||||
! points for integration over space
|
||||
END_DOC
|
||||
@ -97,7 +79,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
|
||||
double precision :: x,r
|
||||
x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration
|
||||
do k = 1, n_points_integration_angular ! explicit values of the grid points centered around each atom
|
||||
do k = 1, n_points_angular_grid ! explicit values of the grid points centered around each atom
|
||||
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
|
||||
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
|
||||
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
|
||||
@ -106,7 +88,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
|
||||
BEGIN_DOC
|
||||
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
|
||||
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
|
||||
@ -120,7 +102,7 @@ BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_int
|
||||
! run over all points in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do k = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
do l = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
do l = 1, n_points_angular_grid ! for each angular point attached to the "jth" atom
|
||||
r(1) = grid_points_per_atom(1,l,k,j)
|
||||
r(2) = grid_points_per_atom(2,l,k,j)
|
||||
r(3) = grid_points_per_atom(3,l,k,j)
|
||||
@ -133,6 +115,7 @@ BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_int
|
||||
enddo
|
||||
accu = 1.d0/accu
|
||||
weight_functions_at_grid_points(l,k,j) = tmp_array(j) * accu
|
||||
! print*,weight_functions_at_grid_points(l,k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -140,65 +123,43 @@ BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_int
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_weight_functions_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
BEGIN_DOC
|
||||
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
|
||||
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
|
||||
! and the points are labelled by the other dimensions
|
||||
END_DOC
|
||||
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
|
||||
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision :: contrib_integration,x
|
||||
double precision :: derivative_knowles_function,knowles_function
|
||||
! run over all points in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
|
||||
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
|
||||
final_weight_functions_at_grid_points(k,i,j) = weights_angular_points(k) * weight_functions_at_grid_points(k,i,j) * contrib_integration * dr_radial_integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
|
||||
implicit none
|
||||
integer :: i,j,k,l,m,i_state
|
||||
double precision :: contrib
|
||||
double precision :: r(3)
|
||||
double precision :: aos_array(ao_num),mos_array(mo_tot_num)
|
||||
do i_state = 1, N_states
|
||||
do j = 1, nucl_num
|
||||
do k = 1, n_points_radial_grid
|
||||
do l = 1, n_points_integration_angular
|
||||
one_body_dm_mo_alpha_at_grid_points(l,k,j,i_state) = 0.d0
|
||||
one_body_dm_mo_beta_at_grid_points(l,k,j,i_state) = 0.d0
|
||||
do k = 1, n_points_radial_grid -1
|
||||
do l = 1, n_points_angular_grid
|
||||
one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0
|
||||
one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0
|
||||
r(1) = grid_points_per_atom(1,l,k,j)
|
||||
r(2) = grid_points_per_atom(2,l,k,j)
|
||||
r(3) = grid_points_per_atom(3,l,k,j)
|
||||
|
||||
! call give_all_aos_at_r(r,aos_array)
|
||||
! do i = 1, ao_num
|
||||
! do m = 1, ao_num
|
||||
! contrib = aos_array(i) * aos_array(m)
|
||||
! one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_ao_alpha(i,m) * contrib
|
||||
! one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_ao_beta(i,m) * contrib
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
call give_all_mos_at_r(r,mos_array)
|
||||
do m = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
if(dabs(one_body_dm_mo_alpha(i,m,i_state)).lt.1.d-10)cycle
|
||||
do m = 1, mo_tot_num
|
||||
contrib = mos_array(i) * mos_array(m)
|
||||
one_body_dm_mo_alpha_at_grid_points(l,k,j,i_state) += one_body_dm_mo_alpha(i,m,i_state) * contrib
|
||||
one_body_dm_mo_beta_at_grid_points(l,k,j,i_state) += one_body_dm_mo_beta(i,m,i_state) * contrib
|
||||
one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha(i,m) * contrib
|
||||
one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta(i,m) * contrib
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -4,11 +4,18 @@ double precision function step_function_becke(x)
|
||||
double precision :: f_function_becke
|
||||
integer :: i,n_max_becke
|
||||
|
||||
!if(x.lt.-1.d0)then
|
||||
! step_function_becke = 0.d0
|
||||
!else if (x .gt.1)then
|
||||
! step_function_becke = 0.d0
|
||||
!else
|
||||
step_function_becke = f_function_becke(x)
|
||||
do i = 1,5
|
||||
!!n_max_becke = 1
|
||||
do i = 1, 4
|
||||
step_function_becke = f_function_becke(step_function_becke)
|
||||
enddo
|
||||
step_function_becke = 0.5d0*(1.d0 - step_function_becke)
|
||||
!endif
|
||||
end
|
||||
|
||||
double precision function f_function_becke(x)
|
||||
|
@ -4,7 +4,7 @@
|
||||
double precision :: accu
|
||||
integer :: i,j,k,l
|
||||
double precision :: x
|
||||
double precision :: integrand(n_points_integration_angular), weights(n_points_integration_angular)
|
||||
double precision :: integrand(n_points_angular_grid), weights(n_points_angular_grid)
|
||||
double precision :: f_average_angular_alpha,f_average_angular_beta
|
||||
double precision :: derivative_knowles_function,knowles_function
|
||||
|
||||
@ -12,7 +12,7 @@
|
||||
! according ot equation (6) of the paper of Becke (JCP, (88), 1988)
|
||||
! Here the m index is referred to the w_m(r) weight functions of equation (22)
|
||||
! Run over all points of integrations : there are
|
||||
! n_points_radial_grid (i) * n_points_integration_angular (k)
|
||||
! n_points_radial_grid (i) * n_points_angular_grid (k)
|
||||
do j = 1, nucl_num
|
||||
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
|
||||
integral_density_beta_knowles_becke_per_atom(j) = 0.d0
|
||||
@ -20,13 +20,14 @@
|
||||
! Angular integration over the solid angle Omega for a FIXED angular coordinate "r"
|
||||
f_average_angular_alpha = 0.d0
|
||||
f_average_angular_beta = 0.d0
|
||||
do k = 1, n_points_integration_angular
|
||||
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j,1) * weight_functions_at_grid_points(k,i,j)
|
||||
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j,1) * weight_functions_at_grid_points(k,i,j)
|
||||
do k = 1, n_points_angular_grid
|
||||
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
||||
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
||||
enddo
|
||||
!
|
||||
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
double precision :: contrib_integration
|
||||
! print*,m_knowles
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
|
||||
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
|
||||
integral_density_alpha_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_alpha
|
||||
|
@ -4,55 +4,13 @@ program pouet
|
||||
touch read_wf
|
||||
print*,'m_knowles = ',m_knowles
|
||||
call routine
|
||||
call routine3
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine routine3
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: accu
|
||||
accu = 0.d0
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
accu += final_weight_functions_at_grid_points(k,i,j) * one_body_dm_mo_alpha_at_grid_points(k,i,j,1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, accu
|
||||
print*, 'lda_exchange',lda_exchange
|
||||
|
||||
end
|
||||
subroutine routine2
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: x,y,z
|
||||
double precision :: r
|
||||
double precision :: accu
|
||||
accu = 0.d0
|
||||
r = 1.d0
|
||||
do k = 1, n_points_integration_angular
|
||||
x = angular_quadrature_points(k,1) * r
|
||||
y = angular_quadrature_points(k,2) * r
|
||||
z = angular_quadrature_points(k,3) * r
|
||||
accu += weights_angular_points(k) * (x**2 + y**2 + z**2)
|
||||
enddo
|
||||
print*, accu
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: accu(2)
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
call debug_det(psi_det(1,1,i),N_int)
|
||||
enddo
|
||||
do i = 1, nucl_num
|
||||
accu(1) += integral_density_alpha_knowles_becke_per_atom(i)
|
||||
accu(2) += integral_density_beta_knowles_becke_per_atom(i)
|
||||
@ -62,17 +20,5 @@ subroutine routine
|
||||
print*,'accu(2) = ',accu(2)
|
||||
print*,'Nalpha = ',elec_beta_num
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_tot_num
|
||||
accu(1) += one_body_dm_mo_alpha_average(i,i)
|
||||
accu(2) += one_body_dm_mo_beta_average(i,i)
|
||||
enddo
|
||||
|
||||
|
||||
print*,' '
|
||||
print*,' '
|
||||
print*,'accu(1) = ',accu(1)
|
||||
print*,'accu(2) = ',accu(2)
|
||||
|
||||
|
||||
end
|
||||
|
@ -1 +1 @@
|
||||
Determinants Davidson core_integrals
|
||||
Determinants Davidson
|
||||
|
@ -1,25 +1,21 @@
|
||||
program fcidump
|
||||
implicit none
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.FCIDUMP'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
|
||||
integer :: i,j,k,l
|
||||
integer :: i1,j1,k1,l1
|
||||
integer :: i2,j2,k2,l2
|
||||
integer :: ii(8), jj(8), kk(8),ll(8)
|
||||
integer*8 :: m
|
||||
character*(2), allocatable :: A(:)
|
||||
|
||||
write(i_unit_output,*) '&FCI NORB=', n_act_orb, ', NELEC=', elec_num-n_core_orb*2, &
|
||||
print *, '&FCI NORB=', mo_tot_num, ', NELEC=', elec_num, &
|
||||
', MS2=', (elec_alpha_num-elec_beta_num), ','
|
||||
allocate (A(n_act_orb))
|
||||
allocate (A(mo_tot_num))
|
||||
A = '1,'
|
||||
write(i_unit_output,*) 'ORBSYM=', (A(i), i=1,n_act_orb)
|
||||
write(i_unit_output,*) 'ISYM=0,'
|
||||
write(i_unit_output,*) '/'
|
||||
print *, 'ORBSYM=', (A(i), i=1,mo_tot_num)
|
||||
print *,'ISYM=0,'
|
||||
print *,'/'
|
||||
deallocate(A)
|
||||
|
||||
integer*8 :: i8, k1
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
integer(cache_map_size_kind) :: n_elements, n_elements_max
|
||||
@ -27,18 +23,14 @@ program fcidump
|
||||
|
||||
double precision :: get_mo_bielec_integral, integral
|
||||
|
||||
do l=1,n_act_orb
|
||||
l1 = list_act(l)
|
||||
do k=1,n_act_orb
|
||||
k1 = list_act(k)
|
||||
do j=l,n_act_orb
|
||||
j1 = list_act(j)
|
||||
do i=k,n_act_orb
|
||||
i1 = list_act(i)
|
||||
if (i1>=j1) then
|
||||
integral = get_mo_bielec_integral(i1,j1,k1,l1,mo_integrals_map)
|
||||
do l=1,mo_tot_num
|
||||
do k=1,mo_tot_num
|
||||
do j=l,mo_tot_num
|
||||
do i=k,mo_tot_num
|
||||
if (i>=j) then
|
||||
integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
if (dabs(integral) > mo_integrals_threshold) then
|
||||
write(i_unit_output,*) integral, i,k,j,l
|
||||
print *, integral, i,k,j,l
|
||||
endif
|
||||
end if
|
||||
enddo
|
||||
@ -46,15 +38,13 @@ program fcidump
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=1,n_act_orb
|
||||
j1 = list_act(j)
|
||||
do i=j,n_act_orb
|
||||
i1 = list_act(i)
|
||||
integral = mo_mono_elec_integral(i1,j1) + core_fock_operator(i1,j1)
|
||||
do j=1,mo_tot_num
|
||||
do i=j,mo_tot_num
|
||||
integral = mo_mono_elec_integral(i,j)
|
||||
if (dabs(integral) > mo_integrals_threshold) then
|
||||
write(i_unit_output,*) integral, i,j,0,0
|
||||
print *, integral, i,j,0,0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
write(i_unit_output,*) core_energy, 0, 0, 0, 0
|
||||
print *, 0.d0, 0, 0, 0, 0
|
||||
end
|
||||
|
@ -1 +1 @@
|
||||
Perturbation Selectors_no_sorted SCF_density Davidson CISD
|
||||
Perturbation Selectors_no_sorted Hartree_Fock Davidson CISD
|
||||
|
@ -356,7 +356,7 @@ subroutine dressing_1h1p_by_2h2p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Ni
|
||||
c_ref = 1.d0/u_in(index_hf,1)
|
||||
do k = 1, n_singles
|
||||
l = index_singles(k)
|
||||
diag_H_elements(1) -= diag_H_elements(l)
|
||||
diag_H_elements(0) -= diag_H_elements(l)
|
||||
enddo
|
||||
! do k = 1, n_doubles
|
||||
! l = index_doubles(k)
|
||||
|
@ -48,7 +48,6 @@ subroutine all_single(e_pt2)
|
||||
print*,'-----------------------'
|
||||
print*,'i = ',i
|
||||
call H_apply_just_mono(pt2, norm_pert, H_pert_diag, N_st)
|
||||
call make_s2_eigenfunction_first_order
|
||||
call diagonalize_CI
|
||||
print*,'N_det = ',N_det
|
||||
print*,'E = ',CI_energy(1)
|
||||
|
@ -30,12 +30,20 @@ subroutine create_restart_and_1h(i_hole)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
integer :: N_det_old
|
||||
N_det_old = N_det
|
||||
|
||||
logical, allocatable :: duplicate(:)
|
||||
allocate (new_det(N_int,2,n_new_det),duplicate(n_new_det))
|
||||
N_det += n_new_det
|
||||
allocate (new_det(N_int,2,n_new_det))
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
do i = 1, N_det_old
|
||||
do k = 1, N_int
|
||||
psi_det(k,1,i) = old_psi_det(k,1,i)
|
||||
psi_det(k,2,i) = old_psi_det(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
n_new_det = 0
|
||||
do j = 1, n_act_orb
|
||||
@ -50,56 +58,19 @@ subroutine create_restart_and_1h(i_hole)
|
||||
if(i_ok .ne. 1)cycle
|
||||
n_new_det +=1
|
||||
do k = 1, N_int
|
||||
new_det(k,1,n_new_det) = key_tmp(k,1)
|
||||
new_det(k,2,n_new_det) = key_tmp(k,2)
|
||||
psi_det(k,1,n_det_old+n_new_det) = key_tmp(k,1)
|
||||
psi_det(k,2,n_det_old+n_new_det) = key_tmp(k,2)
|
||||
enddo
|
||||
psi_coef(n_det_old+n_new_det,:) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: i_test
|
||||
duplicate = .False.
|
||||
do i = 1, n_new_det
|
||||
if(duplicate(i))cycle
|
||||
do j = i+1, n_new_det
|
||||
i_test = 0
|
||||
do ispin =1 ,2
|
||||
do k = 1, N_int
|
||||
i_test += popcnt(xor(new_det(k,ispin,i),new_det(k,ispin,j)))
|
||||
enddo
|
||||
enddo
|
||||
if(i_test.eq.0)then
|
||||
duplicate(j) = .True.
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: n_new_det_unique
|
||||
n_new_det_unique = 0
|
||||
print*, 'uniq det'
|
||||
do i = 1, n_new_det
|
||||
if(.not.duplicate(i))then
|
||||
n_new_det_unique += 1
|
||||
endif
|
||||
enddo
|
||||
print*, n_new_det_unique
|
||||
N_det += n_new_det_unique
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
do i = 1, n_new_det_unique
|
||||
do ispin = 1, 2
|
||||
do k = 1, N_int
|
||||
psi_det(k,ispin,N_det_old+i) = new_det(k,ispin,i)
|
||||
enddo
|
||||
enddo
|
||||
psi_coef(N_det_old+i,:) = 0.d0
|
||||
enddo
|
||||
|
||||
|
||||
SOFT_TOUCH N_det psi_det psi_coef
|
||||
deallocate (new_det,duplicate)
|
||||
logical :: found_duplicates
|
||||
if(n_act_orb.gt.1)then
|
||||
call remove_duplicates_in_psi_det(found_duplicates)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine create_restart_and_1p(i_particle)
|
||||
@ -136,8 +107,18 @@ subroutine create_restart_and_1p(i_particle)
|
||||
|
||||
integer :: N_det_old
|
||||
N_det_old = N_det
|
||||
logical, allocatable :: duplicate(:)
|
||||
allocate (new_det(N_int,2,n_new_det),duplicate(n_new_det))
|
||||
N_det += n_new_det
|
||||
allocate (new_det(N_int,2,n_new_det))
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
do i = 1, N_det_old
|
||||
do k = 1, N_int
|
||||
psi_det(k,1,i) = old_psi_det(k,1,i)
|
||||
psi_det(k,2,i) = old_psi_det(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
n_new_det = 0
|
||||
do j = 1, n_act_orb
|
||||
@ -152,59 +133,17 @@ subroutine create_restart_and_1p(i_particle)
|
||||
if(i_ok .ne. 1)cycle
|
||||
n_new_det +=1
|
||||
do k = 1, N_int
|
||||
new_det(k,1,n_new_det) = key_tmp(k,1)
|
||||
new_Det(k,2,n_new_det) = key_tmp(k,2)
|
||||
psi_det(k,1,n_det_old+n_new_det) = key_tmp(k,1)
|
||||
psi_det(k,2,n_det_old+n_new_det) = key_tmp(k,2)
|
||||
enddo
|
||||
psi_coef(n_det_old+n_new_det,:) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: i_test
|
||||
duplicate = .False.
|
||||
do i = 1, n_new_det
|
||||
if(duplicate(i))cycle
|
||||
call debug_det(new_det(1,1,i),N_int)
|
||||
do j = i+1, n_new_det
|
||||
i_test = 0
|
||||
call debug_det(new_det(1,1,j),N_int)
|
||||
do ispin =1 ,2
|
||||
do k = 1, N_int
|
||||
i_test += popcnt(xor(new_det(k,ispin,i),new_det(k,ispin,j)))
|
||||
enddo
|
||||
enddo
|
||||
if(i_test.eq.0)then
|
||||
duplicate(j) = .True.
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: n_new_det_unique
|
||||
n_new_det_unique = 0
|
||||
print*, 'uniq det'
|
||||
do i = 1, n_new_det
|
||||
if(.not.duplicate(i))then
|
||||
n_new_det_unique += 1
|
||||
endif
|
||||
enddo
|
||||
print*, n_new_det_unique
|
||||
|
||||
N_det += n_new_det_unique
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
do i = 1, n_new_det_unique
|
||||
do ispin = 1, 2
|
||||
do k = 1, N_int
|
||||
psi_det(k,ispin,N_det_old+i) = new_det(k,ispin,i)
|
||||
enddo
|
||||
enddo
|
||||
psi_coef(N_det_old+i,:) = 0.d0
|
||||
enddo
|
||||
|
||||
SOFT_TOUCH N_det psi_det psi_coef
|
||||
deallocate (new_det,duplicate)
|
||||
|
||||
logical :: found_duplicates
|
||||
call remove_duplicates_in_psi_det(found_duplicates)
|
||||
end
|
||||
|
||||
subroutine create_restart_1h_1p(i_hole,i_part)
|
||||
|
@ -1,16 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, mo_general_density_alpha, (mo_tot_num_align,mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
mo_general_density_alpha = one_body_dm_mo_alpha_generators_restart
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_general_density_beta, (mo_tot_num_align,mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
mo_general_density_beta = one_body_dm_mo_beta_generators_restart
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,12 +1,12 @@
|
||||
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_generators_restart, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_generators_restart, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, norm_generators_restart, (N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, norm_generators_restart]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and beta one-body density matrix for the generators restart
|
||||
END_DOC
|
||||
|
||||
integer :: j,k,l,m,istate
|
||||
integer :: j,k,l,m
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
double precision :: ck, cl, ckl
|
||||
double precision :: phase
|
||||
@ -14,37 +14,23 @@
|
||||
integer :: exc(0:2,2,2),n_occ_alpha
|
||||
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
|
||||
integer :: degree_respect_to_HF_k
|
||||
integer :: degree_respect_to_HF_l,index_ref_generators_restart(N_states)
|
||||
double precision :: inv_coef_ref_generators_restart(N_states)
|
||||
integer :: degree_respect_to_HF_l,index_ref_generators_restart
|
||||
double precision :: inv_coef_ref_generators_restart
|
||||
integer :: i
|
||||
print*, 'providing the one_body_dm_mo_alpha_generators_restart'
|
||||
|
||||
do istate = 1, N_states
|
||||
do i = 1, N_det_generators_restart
|
||||
! Find the reference determinant for intermediate normalization
|
||||
call get_excitation_degree(ref_generators_restart(1,1,istate),psi_det_generators_restart(1,1,i),degree,N_int)
|
||||
call get_excitation_degree(ref_generators_restart,psi_det_generators_restart(1,1,i),degree,N_int)
|
||||
if(degree == 0)then
|
||||
index_ref_generators_restart(istate) = i
|
||||
inv_coef_ref_generators_restart(istate) = 1.d0/psi_coef_generators_restart(i,istate)
|
||||
index_ref_generators_restart = i
|
||||
inv_coef_ref_generators_restart = 1.d0/psi_coef_generators_restart(i,1)
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
norm_generators_restart = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, N_det_generators_restart
|
||||
psi_coef_generators_restart(i,istate) = psi_coef_generators_restart(i,istate) * inv_coef_ref_generators_restart(istate)
|
||||
norm_generators_restart(istate) += psi_coef_generators_restart(i,istate)**2
|
||||
enddo
|
||||
enddo
|
||||
double precision :: inv_norm(N_States)
|
||||
do istate = 1, N_states
|
||||
inv_norm(istate) = 1.d0/dsqrt(norm_generators_restart(istate))
|
||||
enddo
|
||||
do istate = 1, N_states
|
||||
do i = 1, N_det_generators_restart
|
||||
psi_coef_generators_restart(i,istate) = psi_coef_generators_restart(i,istate) * inv_norm(istate)
|
||||
enddo
|
||||
psi_coef_generators_restart(i,1) = psi_coef_generators_restart(i,1) * inv_coef_ref_generators_restart
|
||||
norm_generators_restart += psi_coef_generators_restart(i,1)**2
|
||||
enddo
|
||||
|
||||
|
||||
|
@ -107,6 +107,7 @@ subroutine is_a_good_candidate(threshold,is_ok,e_pt2,verbose,exit_loop,is_ok_per
|
||||
!enddo
|
||||
!soft_touch psi_selectors psi_selectors_coef
|
||||
!if(do_it_perturbative)then
|
||||
print*, 'is_ok_perturbative',is_ok_perturbative
|
||||
if(is_ok.or.is_ok_perturbative)then
|
||||
N_det = N_det_generators
|
||||
do m = 1, N_states
|
||||
@ -116,6 +117,7 @@ subroutine is_a_good_candidate(threshold,is_ok,e_pt2,verbose,exit_loop,is_ok_per
|
||||
psi_det(l,2,k) = psi_det_generators_input(l,2,k)
|
||||
enddo
|
||||
psi_coef(k,m) = psi_coef_diagonalized_tmp(k,m)
|
||||
print*, 'psi_coef(k,m)',psi_coef(k,m)
|
||||
enddo
|
||||
enddo
|
||||
soft_touch psi_det psi_coef N_det
|
||||
@ -148,7 +150,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
double precision, intent(inout) :: dressed_H_matrix(Ndet_generators, Ndet_generators)
|
||||
|
||||
|
||||
integer :: i,j,degree,index_ref_generators_restart(N_states),i_count,k,i_det_no_ref
|
||||
integer :: i,j,degree,index_ref_generators_restart,i_count,k,i_det_no_ref
|
||||
double precision :: eigvalues(Ndet_generators), eigvectors(Ndet_generators,Ndet_generators),hij
|
||||
double precision :: psi_coef_ref(Ndet_generators,N_states),diag_h_mat_average,diag_h_mat_no_ref_average
|
||||
logical :: is_a_ref_det(Ndet_generators)
|
||||
@ -166,17 +168,11 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
enddo
|
||||
|
||||
|
||||
integer :: istate
|
||||
do istate = 1, N_states
|
||||
do i = 1, Ndet_generators
|
||||
call get_excitation_degree(ref_generators_restart(1,1,istate),psi_det_generators_input(1,1,i),degree,N_int)
|
||||
call get_excitation_degree(ref_generators_restart,psi_det_generators_input(1,1,i),degree,N_int)
|
||||
if(degree == 0)then
|
||||
index_ref_generators_restart(istate) = i
|
||||
exit
|
||||
index_ref_generators_restart = i
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, Ndet_generators
|
||||
do j = 1, Ndet_generators
|
||||
call i_h_j(psi_det_generators_input(1,1,j),psi_det_generators_input(1,1,i),N_int,hij) ! Fill the zeroth order H matrix
|
||||
dressed_H_matrix(i,j) = hij
|
||||
@ -189,21 +185,15 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
i_det_no_ref +=1
|
||||
diag_h_mat_average+=dressed_H_matrix(i,i)
|
||||
enddo
|
||||
double precision :: average_ref_h_mat
|
||||
average_ref_h_mat = 0.d0
|
||||
do istate = 1, N_states
|
||||
average_ref_h_mat += dressed_H_matrix(index_ref_generators_restart(istate),index_ref_generators_restart(istate))
|
||||
enddo
|
||||
average_ref_h_mat = 1.d0/dble(N_states)
|
||||
diag_h_mat_average = diag_h_mat_average/dble(i_det_no_ref)
|
||||
print*,'diag_h_mat_average = ',diag_h_mat_average
|
||||
print*,'ref h_mat average = ',average_ref_h_mat
|
||||
print*,'ref h_mat = ',dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
! Filter the the MLCT that are higher than 27.2 eV in energy with respect to the reference determinant
|
||||
do i = 1, Ndet_generators
|
||||
if(is_a_ref_det(i))cycle
|
||||
if(number_of_holes(psi_det_generators_input(1,1,i)).eq.0 .and. number_of_particles(psi_det_generators_input(1,1,i)).eq.1)then
|
||||
if(diag_h_mat_average - average_ref_h_mat .gt.2.d0)then
|
||||
if(diag_h_mat_average - dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart) .gt.2.d0)then
|
||||
is_ok = .False.
|
||||
exit_loop = .True.
|
||||
return
|
||||
@ -212,7 +202,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
|
||||
! Filter the the LMCT that are higher than 54.4 eV in energy with respect to the reference determinant
|
||||
if(number_of_holes(psi_det_generators_input(1,1,i)).eq.1 .and. number_of_particles(psi_det_generators_input(1,1,i)).eq.0)then
|
||||
if(diag_h_mat_average - average_ref_h_mat .gt.1.d0)then
|
||||
if(diag_h_mat_average - dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart) .gt.2.d0)then
|
||||
is_ok = .False.
|
||||
return
|
||||
endif
|
||||
@ -220,7 +210,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
exit
|
||||
enddo
|
||||
|
||||
call lapack_diagd(eigvalues,eigvectors,dressed_H_matrix,Ndet_generators,Ndet_generators) ! Diagonalize the naked matrix
|
||||
call lapack_diagd(eigvalues,eigvectors,dressed_H_matrix,Ndet_generators,Ndet_generators) ! Diagonalize the Dressed_H_matrix
|
||||
|
||||
double precision :: s2(N_det_generators),E_ref(N_states)
|
||||
integer :: i_state(N_states)
|
||||
@ -246,10 +236,15 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
E_ref(i) = eigvalues(i)
|
||||
enddo
|
||||
endif
|
||||
do i = 1,N_states
|
||||
print*,'i_state = ',i_state(i)
|
||||
enddo
|
||||
do k = 1, N_states
|
||||
print*,'state ',k
|
||||
do i = 1, Ndet_generators
|
||||
psi_coef_diagonalized_tmp(i,k) = eigvectors(i,i_state(k)) / eigvectors(index_ref_generators_restart(k),i_state(k))
|
||||
psi_coef_diagonalized_tmp(i,k) = eigvectors(i,i_state(k)) / eigvectors(index_ref_generators_restart,i_state(k))
|
||||
psi_coef_ref(i,k) = eigvectors(i,i_state(k))
|
||||
print*,'psi_coef_ref(i) = ',psi_coef_ref(i,k)
|
||||
enddo
|
||||
enddo
|
||||
if(verbose)then
|
||||
@ -262,7 +257,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
do k = 1, N_states
|
||||
print*,'state ',k
|
||||
do i = 1, Ndet_generators
|
||||
print*,'coef, <I|H|I> = ',psi_coef_diagonalized_tmp(i,k),dressed_H_matrix(i,i)-dressed_H_matrix(index_ref_generators_restart(k),index_ref_generators_restart(k)),is_a_ref_det(i)
|
||||
print*,'coef, <I|H|I> = ',psi_coef_diagonalized_tmp(i,k),dressed_H_matrix(i,i)-dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart),is_a_ref_det(i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
@ -283,20 +278,18 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
call lapack_diagd(eigvalues,eigvectors,dressed_H_matrix,Ndet_generators,Ndet_generators) ! Diagonalize the Dressed_H_matrix
|
||||
integer :: i_good_state(0:N_states)
|
||||
i_good_state(0) = 0
|
||||
do k = 1, N_states
|
||||
! print*,'state',k
|
||||
do i = 1, Ndet_generators
|
||||
! State following
|
||||
do k = 1, N_states
|
||||
accu = 0.d0
|
||||
do j =1, Ndet_generators
|
||||
print*,'',eigvectors(j,i) , psi_coef_ref(j,k)
|
||||
accu += eigvectors(j,i) * psi_coef_ref(j,k)
|
||||
enddo
|
||||
! print*,i,accu
|
||||
if(dabs(accu).ge.0.60d0)then
|
||||
print*,'accu = ',accu
|
||||
if(dabs(accu).ge.0.72d0)then
|
||||
i_good_state(0) +=1
|
||||
i_good_state(i_good_state(0)) = i
|
||||
print*, 'state, ovrlap',k,i,accu
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if(i_good_state(0)==N_states)then
|
||||
@ -311,14 +304,14 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
accu = 0.d0
|
||||
do k = 1, N_states
|
||||
do i = 1, Ndet_generators
|
||||
psi_coef_diagonalized_tmp(i,k) = eigvectors(i,i_state(k)) / eigvectors(index_ref_generators_restart(k),i_state(k))
|
||||
psi_coef_diagonalized_tmp(i,k) = eigvectors(i,i_state(k)) / eigvectors(index_ref_generators_restart,i_state(k))
|
||||
enddo
|
||||
enddo
|
||||
if(verbose)then
|
||||
do k = 1, N_states
|
||||
print*,'state ',k
|
||||
do i = 1, Ndet_generators
|
||||
print*,'coef, <I|H+Delta H|I> = ',psi_coef_diagonalized_tmp(i,k),dressed_H_matrix(i,i)-dressed_H_matrix(index_ref_generators_restart(k),index_ref_generators_restart(k)),is_a_ref_det(i)
|
||||
print*,'coef, <I|H+Delta H|I> = ',psi_coef_diagonalized_tmp(i,k),dressed_H_matrix(i,i)-dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart),is_a_ref_det(i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
@ -340,7 +333,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
|
||||
do i = 1, Ndet_generators
|
||||
if(is_a_ref_det(i))cycle
|
||||
do k = 1, N_states
|
||||
! print*, psi_coef_diagonalized_tmp(i,k),threshold_perturbative
|
||||
print*, psi_coef_diagonalized_tmp(i,k),threshold_perturbative
|
||||
if(dabs(psi_coef_diagonalized_tmp(i,k)) .gt.threshold_perturbative)then
|
||||
is_ok_perturbative = .False.
|
||||
exit
|
||||
|
@ -15,6 +15,8 @@ end
|
||||
|
||||
subroutine run_prepare
|
||||
implicit none
|
||||
! no_oa_or_av_opt = .False.
|
||||
! touch no_oa_or_av_opt
|
||||
call damping_SCF
|
||||
call diag_inactive_virt_and_update_mos
|
||||
end
|
||||
@ -26,8 +28,7 @@ subroutine routine_fobo_scf
|
||||
print*,''
|
||||
character*(64) :: label
|
||||
label = "Natural"
|
||||
do i = 1, 10
|
||||
call initialize_mo_coef_begin_iteration
|
||||
do i = 1, 5
|
||||
print*,'*******************************************************************************'
|
||||
print*,'*******************************************************************************'
|
||||
print*,'FOBO-SCF Iteration ',i
|
||||
@ -55,8 +56,6 @@ subroutine routine_fobo_scf
|
||||
call save_osoci_natural_mos
|
||||
call damping_SCF
|
||||
call diag_inactive_virt_and_update_mos
|
||||
call reorder_active_orb
|
||||
call save_mos
|
||||
call clear_mo_map
|
||||
call provide_properties
|
||||
enddo
|
||||
|
@ -40,13 +40,11 @@ subroutine FOBOCI_lmct_mlct_old_thr(iter)
|
||||
logical :: lmct
|
||||
double precision, allocatable :: psi_singles_coef(:,:)
|
||||
logical :: exit_loop
|
||||
call update_generators_restart_coef
|
||||
allocate( zero_bitmask(N_int,2) )
|
||||
do i = 1, n_inact_orb
|
||||
lmct = .True.
|
||||
integer :: i_hole_osoci
|
||||
i_hole_osoci = list_inact(i)
|
||||
! if(i_hole_osoci.ne.26)cycle
|
||||
print*,'--------------------------'
|
||||
! First set the current generators to the one of restart
|
||||
call check_symetry(i_hole_osoci,thr,test_sym)
|
||||
@ -56,6 +54,7 @@ subroutine FOBOCI_lmct_mlct_old_thr(iter)
|
||||
print*,'i_hole_osoci = ',i_hole_osoci
|
||||
call create_restart_and_1h(i_hole_osoci)
|
||||
call set_generators_to_psi_det
|
||||
print*,'Passed set generators'
|
||||
call set_bitmask_particl_as_input(reunion_of_bitmask)
|
||||
call set_bitmask_hole_as_input(reunion_of_bitmask)
|
||||
double precision :: e_pt2
|
||||
@ -83,10 +82,10 @@ subroutine FOBOCI_lmct_mlct_old_thr(iter)
|
||||
call set_bitmask_particl_as_input(reunion_of_bitmask)
|
||||
call set_bitmask_hole_as_input(reunion_of_bitmask)
|
||||
call all_single(e_pt2)
|
||||
! call make_s2_eigenfunction_first_order
|
||||
! threshold_davidson = 1.d-6
|
||||
! soft_touch threshold_davidson davidson_criterion
|
||||
! call diagonalize_ci
|
||||
call make_s2_eigenfunction_first_order
|
||||
threshold_davidson = 1.d-6
|
||||
soft_touch threshold_davidson davidson_criterion
|
||||
call diagonalize_ci
|
||||
double precision :: hkl
|
||||
call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
|
||||
hkl = dressing_matrix(1,1)
|
||||
@ -119,7 +118,6 @@ subroutine FOBOCI_lmct_mlct_old_thr(iter)
|
||||
do i = 1, n_virt_orb
|
||||
integer :: i_particl_osoci
|
||||
i_particl_osoci = list_virt(i)
|
||||
! cycle
|
||||
|
||||
print*,'--------------------------'
|
||||
! First set the current generators to the one of restart
|
||||
@ -154,11 +152,11 @@ subroutine FOBOCI_lmct_mlct_old_thr(iter)
|
||||
enddo
|
||||
enddo
|
||||
call all_single(e_pt2)
|
||||
! call make_s2_eigenfunction_first_order
|
||||
! threshold_davidson = 1.d-6
|
||||
! soft_touch threshold_davidson davidson_criterion
|
||||
!
|
||||
! call diagonalize_ci
|
||||
call make_s2_eigenfunction_first_order
|
||||
threshold_davidson = 1.d-6
|
||||
soft_touch threshold_davidson davidson_criterion
|
||||
|
||||
call diagonalize_ci
|
||||
deallocate(dressing_matrix)
|
||||
else
|
||||
if(exit_loop)then
|
||||
@ -543,6 +541,7 @@ subroutine FOBOCI_lmct_mlct_old_thr_restart(iter)
|
||||
call print_generators_bitmasks_holes
|
||||
! Impose that only the active part can be reached
|
||||
call set_bitmask_hole_as_input(unpaired_bitmask)
|
||||
!!! call all_single_h_core
|
||||
call create_restart_and_1p(i_particl_osoci)
|
||||
!!! ! Update the generators
|
||||
call set_generators_to_psi_det
|
||||
|
@ -21,19 +21,23 @@ END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators_restart, (N_int,2,N_det_generators_restart) ]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), ref_generators_restart, (N_int,2,N_states) ]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), ref_generators_restart, (N_int,2) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_generators_restart, (N_det_generators_restart,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! read wf
|
||||
!
|
||||
END_DOC
|
||||
integer :: i, k,j
|
||||
integer :: i, k
|
||||
integer, save :: ifirst = 0
|
||||
double precision, allocatable :: psi_coef_read(:,:)
|
||||
print*, ' Providing psi_det_generators_restart'
|
||||
if(ifirst == 0)then
|
||||
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
|
||||
do k = 1, N_int
|
||||
ref_generators_restart(k,1) = psi_det_generators_restart(k,1,1)
|
||||
ref_generators_restart(k,2) = psi_det_generators_restart(k,2,1)
|
||||
enddo
|
||||
allocate (psi_coef_read(N_det_generators_restart,N_states))
|
||||
call ezfio_get_determinants_psi_coef(psi_coef_read)
|
||||
do k = 1, N_states
|
||||
@ -41,18 +45,6 @@ END_PROVIDER
|
||||
psi_coef_generators_restart(i,k) = psi_coef_read(i,k)
|
||||
enddo
|
||||
enddo
|
||||
do k = 1, N_states
|
||||
do i = 1, N_det_generators_restart
|
||||
if(dabs(psi_coef_generators_restart(i,k)).gt.0.5d0)then
|
||||
do j = 1, N_int
|
||||
ref_generators_restart(j,1,k) = psi_det_generators_restart(j,1,i)
|
||||
ref_generators_restart(j,2,k) = psi_det_generators_restart(j,2,i)
|
||||
enddo
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
call debug_det(ref_generators_restart(1,1,k),N_int)
|
||||
enddo
|
||||
ifirst = 1
|
||||
deallocate(psi_coef_read)
|
||||
else
|
||||
@ -82,18 +74,3 @@ END_PROVIDER
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (10000,N_states) ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine update_generators_restart_coef
|
||||
implicit none
|
||||
call set_generators_to_generators_restart
|
||||
call set_psi_det_to_generators
|
||||
call diagonalize_CI
|
||||
integer :: i,j,k,l
|
||||
do i = 1, N_det_generators_restart
|
||||
do j = 1, N_states
|
||||
psi_coef_generators_restart(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
soft_touch psi_coef_generators_restart
|
||||
provide one_body_dm_mo_alpha_generators_restart
|
||||
end
|
||||
|
@ -2,7 +2,7 @@ subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
|
||||
implicit none
|
||||
integer, intent(in) :: i_hole
|
||||
double precision, intent(out) :: norm(N_states)
|
||||
integer :: i,j,degree,index_ref_generators_restart(N_states),k
|
||||
integer :: i,j,degree,index_ref_generators_restart,k
|
||||
integer:: number_of_holes,n_h, number_of_particles,n_p
|
||||
integer, allocatable :: index_one_hole(:),index_one_hole_one_p(:),index_two_hole_one_p(:),index_two_hole(:)
|
||||
integer, allocatable :: index_one_p(:)
|
||||
@ -13,8 +13,6 @@ subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
|
||||
integer :: n_good_hole
|
||||
logical,allocatable :: is_a_ref_det(:)
|
||||
allocate(index_one_hole(n_det),index_one_hole_one_p(n_det),index_two_hole_one_p(N_det),index_two_hole(N_det),index_one_p(N_det),is_a_ref_det(N_det))
|
||||
double precision, allocatable :: local_norm(:)
|
||||
allocate(local_norm(N_states))
|
||||
|
||||
n_one_hole = 0
|
||||
n_one_hole_one_p = 0
|
||||
@ -24,18 +22,17 @@ subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
|
||||
n_good_hole = 0
|
||||
! Find the one holes and one hole one particle
|
||||
is_a_ref_det = .False.
|
||||
integer :: istate
|
||||
do istate = 1, N_States
|
||||
do i = 1, N_det
|
||||
! Find the reference determinant for intermediate normalization
|
||||
call get_excitation_degree(ref_generators_restart(1,1,istate),psi_det(1,1,i),degree,N_int)
|
||||
call get_excitation_degree(ref_generators_restart,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 0)then
|
||||
index_ref_generators_restart(istate) = i
|
||||
inv_coef_ref_generators_restart(istate) = 1.d0/psi_coef(i,istate)
|
||||
index_ref_generators_restart = i
|
||||
do k = 1, N_states
|
||||
inv_coef_ref_generators_restart(k) = 1.d0/psi_coef(i,k)
|
||||
enddo
|
||||
! cycle
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, N_det
|
||||
|
||||
! Find all the determinants present in the reference wave function
|
||||
do j = 1, N_det_generators_restart
|
||||
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_restart(1,1,j),degree,N_int)
|
||||
@ -62,17 +59,20 @@ subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
!do k = 1, N_det
|
||||
! call debug_det(psi_det(1,1,k),N_int)
|
||||
! print*,'k,coef = ',k,psi_coef(k,1)/psi_coef(index_ref_generators_restart,1)
|
||||
!enddo
|
||||
print*,''
|
||||
print*,'n_good_hole = ',n_good_hole
|
||||
do k = 1,N_states
|
||||
print*,'state ',k
|
||||
do i = 1, n_good_hole
|
||||
print*,'psi_coef(index_good_hole) = ',psi_coef(index_good_hole(i),k)/psi_coef(index_ref_generators_restart(k),k)
|
||||
print*,'psi_coef(index_good_hole) = ',psi_coef(index_good_hole(i),k)/psi_coef(index_ref_generators_restart,k)
|
||||
enddo
|
||||
print*,''
|
||||
enddo
|
||||
norm = 0.d0
|
||||
|
||||
! Set the wave function to the intermediate normalization
|
||||
do k = 1, N_states
|
||||
@ -80,30 +80,19 @@ subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
|
||||
psi_coef(i,k) = psi_coef(i,k) * inv_coef_ref_generators_restart(k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
norm = 0.d0
|
||||
do k = 1,N_states
|
||||
print*,'state ',k
|
||||
do i = 1, N_det
|
||||
!! print*,'psi_coef(i_ref) = ',psi_coef(i,1)
|
||||
if (is_a_ref_det(i))then
|
||||
print*,'i,psi_coef_ref = ',psi_coef(i,k)
|
||||
cycle
|
||||
endif
|
||||
norm(k) += psi_coef(i,k) * psi_coef(i,k)
|
||||
enddo
|
||||
print*,'norm = ',norm(k)
|
||||
enddo
|
||||
do k =1, N_states
|
||||
local_norm(k) = 1.d0 / dsqrt(norm(k))
|
||||
enddo
|
||||
do k = 1,N_states
|
||||
do i = 1, N_det
|
||||
psi_coef(i,k) = psi_coef(i,k) * local_norm(k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(index_one_hole,index_one_hole_one_p,index_two_hole_one_p,index_two_hole,index_one_p,is_a_ref_det)
|
||||
deallocate(local_norm)
|
||||
soft_touch psi_coef
|
||||
end
|
||||
|
||||
@ -112,7 +101,7 @@ subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
|
||||
implicit none
|
||||
integer, intent(in) :: i_particl
|
||||
double precision, intent(out) :: norm(N_states)
|
||||
integer :: i,j,degree,index_ref_generators_restart(N_states),k
|
||||
integer :: i,j,degree,index_ref_generators_restart,k
|
||||
integer:: number_of_holes,n_h, number_of_particles,n_p
|
||||
integer, allocatable :: index_one_hole(:),index_one_hole_one_p(:),index_two_hole_one_p(:),index_two_hole(:)
|
||||
integer, allocatable :: index_one_p(:),index_one_hole_two_p(:)
|
||||
@ -128,8 +117,6 @@ subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
|
||||
integer :: i_count
|
||||
allocate(index_one_hole(n_det),index_one_hole_one_p(n_det),index_two_hole_one_p(N_det),index_two_hole(N_det),index_one_p(N_det),is_a_ref_det(N_det))
|
||||
allocate(index_one_hole_two_p(n_det))
|
||||
double precision, allocatable :: local_norm(:)
|
||||
allocate(local_norm(N_states))
|
||||
|
||||
n_one_hole = 0
|
||||
n_one_hole_one_p = 0
|
||||
@ -141,18 +128,16 @@ subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
|
||||
! Find the one holes and one hole one particle
|
||||
i_count = 0
|
||||
is_a_ref_det = .False.
|
||||
integer :: istate
|
||||
do istate = 1, N_states
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(ref_generators_restart(1,1,istate),psi_det(1,1,i),degree,N_int)
|
||||
call get_excitation_degree(ref_generators_restart,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 0)then
|
||||
index_ref_generators_restart(istate) = i
|
||||
inv_coef_ref_generators_restart(istate) = 1.d0/psi_coef(i,istate)
|
||||
index_ref_generators_restart = i
|
||||
do k = 1, N_states
|
||||
inv_coef_ref_generators_restart(k) = 1.d0/psi_coef(i,k)
|
||||
enddo
|
||||
! cycle
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i = 1, N_det
|
||||
! Find all the determinants present in the reference wave function
|
||||
do j = 1, N_det_generators_restart
|
||||
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_restart(1,1,j),degree,N_int)
|
||||
@ -188,7 +173,7 @@ subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
|
||||
do k = 1, N_states
|
||||
print*,'state ',k
|
||||
do i = 1, n_good_particl
|
||||
print*,'psi_coef(index_good_particl,1) = ',psi_coef(index_good_particl(i),k)/psi_coef(index_ref_generators_restart(k),k)
|
||||
print*,'psi_coef(index_good_particl,1) = ',psi_coef(index_good_particl(i),k)/psi_coef(index_ref_generators_restart,k)
|
||||
enddo
|
||||
print*,''
|
||||
enddo
|
||||
@ -200,29 +185,20 @@ subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
|
||||
psi_coef(i,k) = psi_coef(i,k) * inv_coef_ref_generators_restart(k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
norm = 0.d0
|
||||
do k = 1, N_states
|
||||
print*,'state ',k
|
||||
do i = 1, N_det
|
||||
!! print*,'i = ',i, psi_coef(i,1)
|
||||
if (is_a_ref_det(i))then
|
||||
print*,'i,psi_coef_ref = ',psi_coef(i,k)
|
||||
cycle
|
||||
endif
|
||||
norm(k) += psi_coef(i,k) * psi_coef(i,k)
|
||||
enddo
|
||||
print*,'norm = ',norm(k)
|
||||
enddo
|
||||
do k =1, N_states
|
||||
local_norm(k) = 1.d0 / dsqrt(norm(k))
|
||||
enddo
|
||||
do k = 1,N_states
|
||||
do i = 1, N_det
|
||||
psi_coef(i,k) = psi_coef(i,k) * local_norm(k)
|
||||
enddo
|
||||
print*,'norm = ',norm
|
||||
enddo
|
||||
soft_touch psi_coef
|
||||
deallocate(index_one_hole,index_one_hole_one_p,index_two_hole_one_p,index_two_hole,index_one_p,is_a_ref_det)
|
||||
deallocate(local_norm)
|
||||
end
|
||||
|
||||
|
||||
@ -234,60 +210,12 @@ subroutine update_density_matrix_osoci
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
integer :: iorb,jorb
|
||||
! active <--> inactive block
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
one_body_dm_mo_alpha_osoci(i,j) += one_body_dm_mo_alpha_average(i,j) - one_body_dm_mo_alpha_generators_restart(i,j)
|
||||
one_body_dm_mo_beta_osoci(i,j) += one_body_dm_mo_beta_average(i,j) - one_body_dm_mo_beta_generators_restart(i,j)
|
||||
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha_average(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
|
||||
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta_average(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
|
||||
enddo
|
||||
enddo
|
||||
!do i = 1, n_act_orb
|
||||
! iorb = list_act(i)
|
||||
! do j = 1, n_inact_orb
|
||||
! jorb = list_inact(j)
|
||||
! one_body_dm_mo_alpha_osoci(iorb,jorb)+= one_body_dm_mo_alpha_average(iorb,jorb)
|
||||
! one_body_dm_mo_alpha_osoci(jorb,iorb)+= one_body_dm_mo_alpha_average(jorb,iorb)
|
||||
! one_body_dm_mo_beta_osoci(iorb,jorb) += one_body_dm_mo_beta_average(iorb,jorb)
|
||||
! one_body_dm_mo_beta_osoci(jorb,iorb) += one_body_dm_mo_beta_average(jorb,iorb)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!! active <--> virt block
|
||||
!do i = 1, n_act_orb
|
||||
! iorb = list_act(i)
|
||||
! do j = 1, n_virt_orb
|
||||
! jorb = list_virt(j)
|
||||
! one_body_dm_mo_alpha_osoci(iorb,jorb)+= one_body_dm_mo_alpha_average(iorb,jorb)
|
||||
! one_body_dm_mo_alpha_osoci(jorb,iorb)+= one_body_dm_mo_alpha_average(jorb,iorb)
|
||||
! one_body_dm_mo_beta_osoci(iorb,jorb) += one_body_dm_mo_beta_average(iorb,jorb)
|
||||
! one_body_dm_mo_beta_osoci(jorb,iorb) += one_body_dm_mo_beta_average(jorb,iorb)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!! virt <--> virt block
|
||||
!do j = 1, n_virt_orb
|
||||
! jorb = list_virt(j)
|
||||
! one_body_dm_mo_alpha_osoci(jorb,jorb)+= one_body_dm_mo_alpha_average(jorb,jorb)
|
||||
! one_body_dm_mo_beta_osoci(jorb,jorb) += one_body_dm_mo_beta_average(jorb,jorb)
|
||||
!enddo
|
||||
|
||||
!! inact <--> inact block
|
||||
!do j = 1, n_inact_orb
|
||||
! jorb = list_inact(j)
|
||||
! one_body_dm_mo_alpha_osoci(jorb,jorb) -= one_body_dm_mo_alpha_average(jorb,jorb)
|
||||
! one_body_dm_mo_beta_osoci(jorb,jorb) -= one_body_dm_mo_beta_average(jorb,jorb)
|
||||
!enddo
|
||||
double precision :: accu_alpha, accu_beta
|
||||
accu_alpha = 0.d0
|
||||
accu_beta = 0.d0
|
||||
do i = 1, mo_tot_num
|
||||
accu_alpha += one_body_dm_mo_alpha_osoci(i,i)
|
||||
accu_beta += one_body_dm_mo_beta_osoci(i,i)
|
||||
! write(*,'(I3,X,100(F16.10,X))') i,one_body_dm_mo_alpha_osoci(i,i),one_body_dm_mo_beta_osoci(i,i),one_body_dm_mo_alpha_osoci(i,i)+one_body_dm_mo_beta_osoci(i,i)
|
||||
enddo
|
||||
print*, 'accu_alpha/beta',accu_alpha,accu_beta
|
||||
|
||||
|
||||
|
||||
|
||||
end
|
||||
@ -333,18 +261,8 @@ end
|
||||
|
||||
subroutine initialize_density_matrix_osoci
|
||||
implicit none
|
||||
call set_generators_to_generators_restart
|
||||
call set_psi_det_to_generators
|
||||
call diagonalize_CI
|
||||
|
||||
one_body_dm_mo_alpha_osoci = one_body_dm_mo_alpha_generators_restart
|
||||
one_body_dm_mo_beta_osoci = one_body_dm_mo_beta_generators_restart
|
||||
integer :: i
|
||||
print*, '8*********************'
|
||||
print*, 'initialize_density_matrix_osoci'
|
||||
do i = 1, mo_tot_num
|
||||
print*,one_body_dm_mo_alpha_osoci(i,i),one_body_dm_mo_alpha_generators_restart(i,i)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine rescale_density_matrix_osoci(norm)
|
||||
@ -520,10 +438,6 @@ subroutine save_osoci_natural_mos
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*, 'test'
|
||||
print*, 'test'
|
||||
print*, 'test'
|
||||
print*, 'test'
|
||||
do i = 1, mo_tot_num
|
||||
do j = i+1, mo_tot_num
|
||||
if(dabs(tmp(i,j)).le.threshold_fobo_dm)then
|
||||
@ -531,10 +445,8 @@ subroutine save_osoci_natural_mos
|
||||
tmp(j,i) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
print*, tmp(i,i)
|
||||
enddo
|
||||
|
||||
|
||||
label = "Natural"
|
||||
|
||||
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
|
||||
|
@ -1,57 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, mo_coef_begin_iteration, (ao_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and beta one-body density matrix that will be used for the 1h1p approach
|
||||
END_DOC
|
||||
END_PROVIDER
|
||||
|
||||
subroutine initialize_mo_coef_begin_iteration
|
||||
implicit none
|
||||
mo_coef_begin_iteration = mo_coef
|
||||
|
||||
end
|
||||
|
||||
subroutine reorder_active_orb
|
||||
implicit none
|
||||
integer :: i,j,iorb
|
||||
integer :: k,l
|
||||
double precision, allocatable :: accu(:)
|
||||
integer, allocatable :: index_active_orb(:),iorder(:)
|
||||
double precision, allocatable :: mo_coef_tmp(:,:)
|
||||
allocate(accu(mo_tot_num),index_active_orb(n_act_orb),iorder(mo_tot_num))
|
||||
allocate(mo_coef_tmp(ao_num_align,mo_Tot_num))
|
||||
|
||||
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
do j = 1, mo_tot_num
|
||||
accu(j) = 0.d0
|
||||
iorder(j) = j
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
accu(j) += mo_coef_begin_iteration(k,iorb) * mo_coef(l,j) * ao_overlap(k,l)
|
||||
enddo
|
||||
enddo
|
||||
accu(j) = -dabs(accu(j))
|
||||
enddo
|
||||
call dsort(accu,iorder,mo_tot_num)
|
||||
index_active_orb(i) = iorder(1)
|
||||
enddo
|
||||
|
||||
double precision :: x
|
||||
integer :: i1,i2
|
||||
print*, 'swapping the active MOs'
|
||||
do j = 1, n_act_orb
|
||||
i1 = list_act(j)
|
||||
i2 = index_active_orb(j)
|
||||
print*, i1,i2
|
||||
do i=1,ao_num_align
|
||||
x = mo_coef(i,i1)
|
||||
mo_coef(i,i1) = mo_coef(i,i2)
|
||||
mo_coef(i,i2) = x
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(accu,index_active_orb, iorder)
|
||||
end
|
||||
|
@ -12,6 +12,11 @@ s.set_perturbation("epstein_nesbet_2x2")
|
||||
s.unset_openmp()
|
||||
print s
|
||||
|
||||
s = H_apply("FCI_PT2_new")
|
||||
s.set_perturbation("decontracted")
|
||||
s.unset_openmp()
|
||||
print s
|
||||
|
||||
|
||||
s = H_apply("FCI_no_skip")
|
||||
s.set_selection_pt2("epstein_nesbet_2x2")
|
||||
|
@ -1,23 +1,11 @@
|
||||
BEGIN_PROVIDER [ logical, initialize_pt2_E0_denominator ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If true, initialize pt2_E0_denominator
|
||||
END_DOC
|
||||
initialize_pt2_E0_denominator = .True.
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! E0 in the denominator of the PT2
|
||||
END_DOC
|
||||
if (initialize_pt2_E0_denominator) then
|
||||
pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
|
||||
pt2_E0_denominator(1:N_states) = CI_electronic_energy(1:N_states)
|
||||
! pt2_E0_denominator(1:N_states) = HF_energy - nuclear_repulsion
|
||||
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
|
||||
call write_double(6,pt2_E0_denominator(1)+nuclear_repulsion, 'PT2 Energy denominator')
|
||||
else
|
||||
pt2_E0_denominator = -huge(1.d0)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -68,8 +68,8 @@ program fci_zmq
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(N_det, to_select)
|
||||
to_select = 2*N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
to_select = min(to_select, N_det_max-n_det_before)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
@ -96,17 +96,11 @@ program fci_zmq
|
||||
|
||||
if(do_pt2_end)then
|
||||
print*,'Last iteration only to compute the PT2'
|
||||
!threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
!threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
!TOUCH threshold_selectors threshold_generators
|
||||
threshold_selectors = 1.d0
|
||||
threshold_generators = 1d0
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
TOUCH threshold_selectors threshold_generators
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
double precision :: relative_error
|
||||
relative_error=1.d-3
|
||||
pt2 = 0.d0
|
||||
call ZMQ_pt2(pt2,relative_error)
|
||||
!call ZMQ_selection(0, pt2)! pour non-stochastic
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, 'Final step'
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
@ -125,3 +119,122 @@ program fci_zmq
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine ZMQ_selection(N_in, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
character*(512) :: task
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: N_in
|
||||
type(selection_buffer) :: b
|
||||
integer :: i, N
|
||||
integer, external :: omp_get_thread_num
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
|
||||
|
||||
if (.True.) then
|
||||
PROVIDE pt2_e0_denominator
|
||||
N = max(N_in,1)
|
||||
provide nproc
|
||||
call new_parallel_job(zmq_to_qp_run_socket,"selection")
|
||||
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
endif
|
||||
|
||||
integer :: i_generator, i_generator_start, i_generator_max, step
|
||||
! step = int(max(1.,10*elec_num/mo_tot_num)
|
||||
|
||||
step = int(5000000.d0 / dble(N_int * N_states * elec_num * elec_num * mo_tot_num * mo_tot_num ))
|
||||
step = max(1,step)
|
||||
do i= 1, N_det_generators,step
|
||||
i_generator_start = i
|
||||
i_generator_max = min(i+step-1,N_det_generators)
|
||||
write(task,*) i_generator_start, i_generator_max, 1, N
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
end do
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call selection_collector(b, pt2)
|
||||
else
|
||||
call selection_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
|
||||
if (N_in > 0) then
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
endif
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine selection_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine selection_collector(b, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
double precision :: pt2_mwen(N_states)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, N, ntask
|
||||
double precision, allocatable :: val(:)
|
||||
integer(bit_kind), allocatable :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
integer :: done
|
||||
real :: time, time0
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
|
||||
done = 0
|
||||
more = 1
|
||||
pt2(:) = 0d0
|
||||
call CPU_TIME(time0)
|
||||
do while (more == 1)
|
||||
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
|
||||
pt2 += pt2_mwen
|
||||
do i=1, N
|
||||
call add_to_selection_buffer(b, det(1,1,i), val(i))
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
|
||||
end do
|
||||
done += ntask
|
||||
call CPU_TIME(time)
|
||||
! print *, "DONE" , done, time - time0
|
||||
end do
|
||||
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
call sort_selection_buffer(b)
|
||||
end subroutine
|
||||
|
||||
|
@ -1,70 +0,0 @@
|
||||
program pt2_slave
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Helper program to compute the PT2 in distributed mode.
|
||||
END_DOC
|
||||
|
||||
read_wf = .False.
|
||||
SOFT_TOUCH read_wf
|
||||
call provide_everything
|
||||
call switch_qp_run_to_master
|
||||
call run_wf
|
||||
end
|
||||
|
||||
subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
|
||||
end
|
||||
|
||||
subroutine run_wf
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
double precision :: energy(N_states_diag)
|
||||
character*(64) :: states(1)
|
||||
integer :: rc, i
|
||||
|
||||
call provide_everything
|
||||
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
states(1) = 'pt2'
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
do
|
||||
|
||||
call wait_for_states(states,zmq_state,1)
|
||||
|
||||
if(trim(zmq_state) == 'Stopped') then
|
||||
|
||||
exit
|
||||
|
||||
else if (trim(zmq_state) == 'pt2') then
|
||||
|
||||
! Selection
|
||||
! ---------
|
||||
|
||||
print *, 'PT2'
|
||||
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states)
|
||||
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call pt2_slave_tcp(i, energy)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'PT2 done'
|
||||
|
||||
endif
|
||||
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine pt2_slave_tcp(i,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: i
|
||||
logical :: lstop
|
||||
lstop = .False.
|
||||
call run_pt2_slave(0,i,energy,lstop)
|
||||
end
|
||||
|
@ -1,38 +0,0 @@
|
||||
program pt2_stoch
|
||||
implicit none
|
||||
read_wf = .True.
|
||||
SOFT_TOUCH read_wf
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: degree
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in
|
||||
|
||||
double precision :: E_CI_before, relative_error
|
||||
|
||||
allocate (pt2(N_states))
|
||||
pt2 = 0.d0
|
||||
|
||||
E_CI_before = pt2_E0_denominator(1) + nuclear_repulsion
|
||||
threshold_selectors = 1.d0
|
||||
threshold_generators = 1d0
|
||||
relative_error = 1.d-3
|
||||
call ZMQ_pt2(pt2, relative_error)
|
||||
print *, 'Final step'
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'PT2 = ', pt2
|
||||
print *, 'E = ', E_CI_before
|
||||
print *, 'E+PT2 = ', E_CI_before+pt2
|
||||
print *, '-----'
|
||||
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before+pt2(1))
|
||||
end
|
||||
|
||||
|
@ -1,579 +0,0 @@
|
||||
BEGIN_PROVIDER [ integer, fragment_first ]
|
||||
implicit none
|
||||
fragment_first = first_det_of_teeth(1)
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ZMQ_pt2(pt2,relative_error)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
character(len=64000) :: task
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_to_qp_run_socket2
|
||||
type(selection_buffer) :: b
|
||||
integer, external :: omp_get_thread_num
|
||||
double precision, intent(in) :: relative_error
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
|
||||
|
||||
double precision, allocatable :: pt2_detail(:,:), comb(:)
|
||||
logical, allocatable :: computed(:)
|
||||
integer, allocatable :: tbc(:)
|
||||
integer :: i, j, k, Ncomb, generator_per_task, i_generator_end
|
||||
integer, external :: pt2_find
|
||||
|
||||
double precision :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth)
|
||||
double precision, external :: omp_get_wtime
|
||||
double precision :: time0, time
|
||||
|
||||
allocate(pt2_detail(N_states, N_det_generators), comb(N_det_generators/2), computed(N_det_generators), tbc(0:size_tbc))
|
||||
sumabove = 0d0
|
||||
sum2above = 0d0
|
||||
Nabove = 0d0
|
||||
|
||||
provide nproc fragment_first fragment_count mo_bielec_integrals_in_map mo_mono_elec_integral pt2_weight
|
||||
|
||||
!call random_seed()
|
||||
|
||||
computed = .false.
|
||||
|
||||
tbc(0) = first_det_of_comb - 1
|
||||
do i=1, tbc(0)
|
||||
tbc(i) = i
|
||||
computed(i) = .true.
|
||||
end do
|
||||
|
||||
pt2_detail = 0d0
|
||||
time0 = omp_get_wtime()
|
||||
print *, "time - avg - err - n_combs"
|
||||
generator_per_task = 1
|
||||
do while(.true.)
|
||||
|
||||
call write_time(6)
|
||||
call new_parallel_job(zmq_to_qp_run_socket,"pt2")
|
||||
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
|
||||
call create_selection_buffer(1, 1*2, b)
|
||||
|
||||
Ncomb=size(comb)
|
||||
call get_carlo_workbatch(computed, comb, Ncomb, tbc)
|
||||
|
||||
call write_time(6)
|
||||
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer :: ipos
|
||||
logical :: tasks
|
||||
tasks = .False.
|
||||
ipos=1
|
||||
|
||||
do i=1,tbc(0)
|
||||
if(tbc(i) > fragment_first) then
|
||||
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') 0, tbc(i)
|
||||
ipos += 20
|
||||
if (ipos > 63980) then
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos-20)))
|
||||
ipos=1
|
||||
tasks = .True.
|
||||
endif
|
||||
else
|
||||
do j=1,fragment_count
|
||||
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') j, tbc(i)
|
||||
ipos += 20
|
||||
if (ipos > 63980) then
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos-20)))
|
||||
ipos=1
|
||||
tasks = .True.
|
||||
endif
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
if (ipos > 1) then
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos-20)))
|
||||
tasks = .True.
|
||||
endif
|
||||
|
||||
if (tasks) then
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc+1) &
|
||||
!$OMP PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call pt2_collector(b, tbc, comb, Ncomb, computed, pt2_detail, sumabove, sum2above, Nabove, relative_error, pt2)
|
||||
else
|
||||
call pt2_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'pt2')
|
||||
|
||||
else
|
||||
pt2 = 0.d0
|
||||
do i=1,N_det_generators
|
||||
do k=1,N_states
|
||||
pt2(k) = pt2(k) + pt2_detail(k,i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
tbc(0) = 0
|
||||
if (pt2(1) /= 0.d0) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
|
||||
deallocate(pt2_detail, comb, computed, tbc)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine do_carlo(tbc, Ncomb, comb, pt2_detail, computed, sumabove, sum2above, Nabove)
|
||||
integer, intent(in) :: tbc(0:size_tbc), Ncomb
|
||||
logical, intent(in) :: computed(N_det_generators)
|
||||
double precision, intent(in) :: comb(Ncomb), pt2_detail(N_states, N_det_generators)
|
||||
double precision, intent(inout) :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth)
|
||||
integer :: i, dets(comb_teeth)
|
||||
double precision :: myVal, myVal2
|
||||
|
||||
mainLoop : do i=1,Ncomb
|
||||
call get_comb(comb(i), dets, comb_teeth)
|
||||
do j=1,comb_teeth
|
||||
if(.not.(computed(dets(j)))) then
|
||||
exit mainLoop
|
||||
end if
|
||||
end do
|
||||
|
||||
myVal = 0d0
|
||||
myVal2 = 0d0
|
||||
do j=comb_teeth,1,-1
|
||||
myVal += pt2_detail(1, dets(j)) * pt2_weight_inv(dets(j)) * comb_step
|
||||
sumabove(j) += myVal
|
||||
sum2above(j) += myVal*myVal
|
||||
Nabove(j) += 1
|
||||
end do
|
||||
end do mainLoop
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pt2_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_pt2_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine pt2_collector(b, tbc, comb, Ncomb, computed, pt2_detail, sumabove, sum2above, Nabove, relative_error, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
integer, intent(in) :: Ncomb
|
||||
double precision, intent(inout) :: pt2_detail(N_states, N_det_generators)
|
||||
double precision, intent(in) :: comb(Ncomb), relative_error
|
||||
logical, intent(inout) :: computed(N_det_generators)
|
||||
integer, intent(in) :: tbc(0:size_tbc)
|
||||
double precision, intent(inout) :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth)
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, allocatable :: pt2_mwen(:,:)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, N, ntask
|
||||
double precision, allocatable :: val(:)
|
||||
integer(bit_kind), allocatable :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
integer :: done, Nindex
|
||||
integer, allocatable :: index(:)
|
||||
double precision, save :: time0 = -1.d0
|
||||
double precision :: time, timeLast
|
||||
double precision, external :: omp_get_wtime
|
||||
integer :: tooth, firstTBDcomb, orgTBDcomb
|
||||
integer, allocatable :: parts_to_get(:)
|
||||
logical, allocatable :: actually_computed(:)
|
||||
|
||||
allocate(actually_computed(N_det_generators), parts_to_get(N_det_generators), &
|
||||
pt2_mwen(N_states, N_det_generators) )
|
||||
do i=1,N_det_generators
|
||||
actually_computed(i) = computed(i)
|
||||
enddo
|
||||
|
||||
parts_to_get(:) = 1
|
||||
if(fragment_first > 0) then
|
||||
do i=1,fragment_first
|
||||
parts_to_get(i) = fragment_count
|
||||
enddo
|
||||
endif
|
||||
|
||||
do i=1,tbc(0)
|
||||
actually_computed(tbc(i)) = .false.
|
||||
end do
|
||||
|
||||
orgTBDcomb = Nabove(1)
|
||||
firstTBDcomb = 1
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det_generators), index(1))
|
||||
more = 1
|
||||
if (time0 < 0.d0) then
|
||||
time0 = omp_get_wtime()
|
||||
endif
|
||||
timeLast = time0
|
||||
|
||||
print *, 'N_deterministic = ', first_det_of_teeth(1)-1
|
||||
pullLoop : do while (more == 1)
|
||||
call pull_pt2_results(zmq_socket_pull, Nindex, index, pt2_mwen, task_id, ntask)
|
||||
do i=1,Nindex
|
||||
pt2_detail(1:N_states, index(i)) += pt2_mwen(1:N_states,i)
|
||||
parts_to_get(index(i)) -= 1
|
||||
if(parts_to_get(index(i)) < 0) then
|
||||
print *, i, index(i), parts_to_get(index(i)), Nindex
|
||||
print *, "PARTS ??"
|
||||
print *, parts_to_get
|
||||
stop "PARTS ??"
|
||||
end if
|
||||
if(parts_to_get(index(i)) == 0) actually_computed(index(i)) = .true.
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
|
||||
end do
|
||||
|
||||
time = omp_get_wtime()
|
||||
|
||||
if(time - timeLast > 1d1 .or. more /= 1) then
|
||||
timeLast = time
|
||||
do i=1, first_det_of_teeth(1)-1
|
||||
if(.not.(actually_computed(i))) then
|
||||
print *, "PT2 : deterministic part not finished"
|
||||
cycle pullLoop
|
||||
end if
|
||||
end do
|
||||
|
||||
double precision :: E0, avg, eqt, prop
|
||||
call do_carlo(tbc, Ncomb+1-firstTBDcomb, comb(firstTBDcomb), pt2_detail, actually_computed, sumabove, sum2above, Nabove)
|
||||
firstTBDcomb = Nabove(1) - orgTBDcomb + 1
|
||||
if(Nabove(1) < 2d0) cycle
|
||||
call get_first_tooth(actually_computed, tooth)
|
||||
|
||||
done = 0
|
||||
do i=first_det_of_teeth(tooth), first_det_of_teeth(tooth+1)-1
|
||||
if(actually_computed(i)) done = done + 1
|
||||
end do
|
||||
|
||||
E0 = sum(pt2_detail(1,:first_det_of_teeth(tooth)-1))
|
||||
prop = ((1d0 - dfloat(comb_teeth - tooth + 1) * comb_step) - pt2_cweight(first_det_of_teeth(tooth)-1))
|
||||
prop = prop * pt2_weight_inv(first_det_of_teeth(tooth))
|
||||
E0 += pt2_detail(1,first_det_of_teeth(tooth)) * prop
|
||||
avg = E0 + (sumabove(tooth) / Nabove(tooth))
|
||||
eqt = sqrt(1d0 / (Nabove(tooth)-1) * abs(sum2above(tooth) / Nabove(tooth) - (sumabove(tooth)/Nabove(tooth))**2))
|
||||
time = omp_get_wtime()
|
||||
if (dabs(eqt/avg) < relative_error) then
|
||||
pt2(1) = avg
|
||||
! exit pullLoop
|
||||
else
|
||||
print "(4(G22.13), 4(I9))", time - time0, avg, eqt, Nabove(tooth), tooth, first_det_of_teeth(tooth)-1, done, first_det_of_teeth(tooth+1)-first_det_of_teeth(tooth)
|
||||
endif
|
||||
end if
|
||||
end do pullLoop
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
call sort_selection_buffer(b)
|
||||
end subroutine
|
||||
|
||||
integer function pt2_find(v, w, sze, imin, imax)
|
||||
implicit none
|
||||
integer, intent(in) :: sze, imin, imax
|
||||
double precision, intent(in) :: v, w(sze)
|
||||
integer :: i,l,h
|
||||
integer, parameter :: block=64
|
||||
|
||||
l = imin
|
||||
h = imax-1
|
||||
|
||||
do while(h-l >= block)
|
||||
i = ishft(h+l,-1)
|
||||
if(w(i+1) > v) then
|
||||
h = i-1
|
||||
else
|
||||
l = i+1
|
||||
end if
|
||||
end do
|
||||
!DIR$ LOOP COUNT (64)
|
||||
do pt2_find=l,h
|
||||
if(w(pt2_find) >= v) then
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
end function
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, comb_teeth ]
|
||||
implicit none
|
||||
comb_teeth = 100
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine get_first_tooth(computed, first_teeth)
|
||||
implicit none
|
||||
logical, intent(in) :: computed(N_det_generators)
|
||||
integer, intent(out) :: first_teeth
|
||||
integer :: i, first_det
|
||||
|
||||
first_det = 1
|
||||
first_teeth = 1
|
||||
do i=first_det_of_comb, N_det_generators
|
||||
if(.not.(computed(i))) then
|
||||
first_det = i
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
|
||||
do i=comb_teeth, 1, -1
|
||||
if(first_det_of_teeth(i) < first_det) then
|
||||
first_teeth = i
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine get_last_full_tooth(computed, last_tooth)
|
||||
implicit none
|
||||
logical, intent(in) :: computed(N_det_generators)
|
||||
integer, intent(out) :: last_tooth
|
||||
integer :: i, j, missing
|
||||
|
||||
last_tooth = 0
|
||||
combLoop : do i=comb_teeth, 1, -1
|
||||
missing = 1+ ishft(first_det_of_teeth(i+1)-first_det_of_teeth(i),-12) ! /4096
|
||||
do j=first_det_of_teeth(i), first_det_of_teeth(i+1)-1
|
||||
if(.not.computed(j)) then
|
||||
missing -= 1
|
||||
if(missing < 0) cycle combLoop
|
||||
end if
|
||||
end do
|
||||
last_tooth = i
|
||||
exit
|
||||
end do combLoop
|
||||
end subroutine
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, size_tbc ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Size of the tbc array
|
||||
END_DOC
|
||||
size_tbc = N_det_generators + fragment_count*fragment_first
|
||||
END_PROVIDER
|
||||
|
||||
subroutine get_carlo_workbatch(computed, comb, Ncomb, tbc)
|
||||
implicit none
|
||||
integer, intent(inout) :: Ncomb
|
||||
double precision, intent(out) :: comb(Ncomb)
|
||||
integer, intent(inout) :: tbc(0:size_tbc)
|
||||
logical, intent(inout) :: computed(N_det_generators)
|
||||
integer :: i, j, last_full, dets(comb_teeth), tbc_save
|
||||
integer :: icount, n
|
||||
n = tbc(0)
|
||||
icount = 0
|
||||
call RANDOM_NUMBER(comb)
|
||||
do i=1,size(comb)
|
||||
comb(i) = comb(i) * comb_step
|
||||
tbc_save = tbc(0)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_comb(comb(i), computed, tbc, size_tbc, comb_teeth)
|
||||
if (tbc(0) < size(tbc)) then
|
||||
Ncomb = i
|
||||
else
|
||||
tbc(0) = tbc_save
|
||||
return
|
||||
endif
|
||||
icount = icount + tbc(0) - tbc_save
|
||||
if (icount > n) then
|
||||
call get_filling_teeth(computed, tbc)
|
||||
icount = 0
|
||||
n = ishft(tbc_save,-4)
|
||||
endif
|
||||
enddo
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine get_filling_teeth(computed, tbc)
|
||||
implicit none
|
||||
integer, intent(inout) :: tbc(0:size_tbc)
|
||||
logical, intent(inout) :: computed(N_det_generators)
|
||||
integer :: i, j, k, last_full, dets(comb_teeth)
|
||||
|
||||
call get_last_full_tooth(computed, last_full)
|
||||
if(last_full /= 0) then
|
||||
if (tbc(0) > size(tbc) - first_det_of_teeth(last_full+1) -2) then
|
||||
return
|
||||
endif
|
||||
k = tbc(0)+1
|
||||
do j=1,first_det_of_teeth(last_full+1)-1
|
||||
if(.not.(computed(j))) then
|
||||
tbc(k) = j
|
||||
k=k+1
|
||||
computed(j) = .true.
|
||||
end if
|
||||
end do
|
||||
tbc(0) = k-1
|
||||
end if
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine reorder_tbc(tbc)
|
||||
implicit none
|
||||
integer, intent(inout) :: tbc(0:size_tbc)
|
||||
logical, allocatable :: ltbc(:)
|
||||
integer :: i, ci
|
||||
|
||||
allocate(ltbc(size_tbc))
|
||||
ltbc(:) = .false.
|
||||
do i=1,tbc(0)
|
||||
ltbc(tbc(i)) = .true.
|
||||
end do
|
||||
|
||||
ci = 0
|
||||
do i=1,size_tbc
|
||||
if(ltbc(i)) then
|
||||
ci = ci+1
|
||||
tbc(ci) = i
|
||||
end if
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine get_comb(stato, dets, ct)
|
||||
implicit none
|
||||
integer, intent(in) :: ct
|
||||
double precision, intent(in) :: stato
|
||||
integer, intent(out) :: dets(ct)
|
||||
double precision :: curs
|
||||
integer :: j
|
||||
integer, external :: pt2_find
|
||||
|
||||
curs = 1d0 - stato
|
||||
do j = comb_teeth, 1, -1
|
||||
!DIR$ FORCEINLINE
|
||||
dets(j) = pt2_find(curs, pt2_cweight,size(pt2_cweight), first_det_of_teeth(j), first_det_of_teeth(j+1))
|
||||
curs -= comb_step
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine add_comb(comb, computed, tbc, stbc, ct)
|
||||
implicit none
|
||||
integer, intent(in) :: stbc, ct
|
||||
double precision, intent(in) :: comb
|
||||
logical, intent(inout) :: computed(N_det_generators)
|
||||
integer, intent(inout) :: tbc(0:stbc)
|
||||
integer :: i, k, l, dets(ct)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call get_comb(comb, dets, ct)
|
||||
|
||||
k=tbc(0)+1
|
||||
do i = 1, ct
|
||||
l = dets(i)
|
||||
if(.not.(computed(l))) then
|
||||
tbc(k) = l
|
||||
k = k+1
|
||||
computed(l) = .true.
|
||||
end if
|
||||
end do
|
||||
tbc(0) = k-1
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_weight, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_cweight, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_cweight_cache, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, comb_step ]
|
||||
&BEGIN_PROVIDER [ integer, first_det_of_teeth, (comb_teeth+1) ]
|
||||
&BEGIN_PROVIDER [ integer, first_det_of_comb ]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: norm_left, stato
|
||||
integer, external :: pt2_find
|
||||
|
||||
pt2_weight(1) = psi_coef_generators(1,1)**2
|
||||
pt2_cweight(1) = psi_coef_generators(1,1)**2
|
||||
|
||||
do i=2,N_det_generators
|
||||
pt2_weight(i) = psi_coef_generators(i,1)**2
|
||||
pt2_cweight(i) = pt2_cweight(i-1) + psi_coef_generators(i,1)**2
|
||||
end do
|
||||
|
||||
do i=1,N_det_generators
|
||||
pt2_weight(i) = pt2_weight(i) / pt2_cweight(N_det_generators)
|
||||
pt2_cweight(i) = pt2_cweight(i) / pt2_cweight(N_det_generators)
|
||||
enddo
|
||||
|
||||
norm_left = 1d0
|
||||
|
||||
comb_step = 1d0/dfloat(comb_teeth)
|
||||
first_det_of_comb = 1
|
||||
do i=1,N_det_generators
|
||||
if(pt2_weight(i)/norm_left < comb_step*.5d0) then
|
||||
first_det_of_comb = i
|
||||
exit
|
||||
end if
|
||||
norm_left -= pt2_weight(i)
|
||||
end do
|
||||
|
||||
comb_step = (1d0 - pt2_cweight(first_det_of_comb-1)) * comb_step
|
||||
|
||||
stato = 1d0 - comb_step
|
||||
iloc = N_det_generators
|
||||
do i=comb_teeth, 1, -1
|
||||
integer :: iloc
|
||||
iloc = pt2_find(stato, pt2_cweight, N_det_generators, 1, iloc)
|
||||
first_det_of_teeth(i) = iloc
|
||||
stato -= comb_step
|
||||
end do
|
||||
first_det_of_teeth(comb_teeth+1) = N_det_generators + 1
|
||||
first_det_of_teeth(1) = first_det_of_comb
|
||||
if(first_det_of_teeth(1) /= first_det_of_comb) then
|
||||
print *, 'Error in ', irp_here
|
||||
stop "comb provider"
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_weight_inv, (N_det_generators) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Inverse of pt2_weight array
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i=1,N_det_generators
|
||||
pt2_weight_inv(i) = 1.d0/pt2_weight(i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,172 +0,0 @@
|
||||
|
||||
subroutine run_pt2_slave(thread,iproc,energy)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: thread, iproc
|
||||
integer :: rc, i
|
||||
|
||||
integer :: worker_id, task_id(1), ctask, ltask
|
||||
character*(512) :: task
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
type(selection_buffer) :: buf, buf2
|
||||
logical :: done
|
||||
|
||||
double precision :: pt2(N_states)
|
||||
double precision,allocatable :: pt2_detail(:,:)
|
||||
integer :: index
|
||||
integer :: Nindex
|
||||
|
||||
allocate(pt2_detail(N_states, N_det_generators))
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
|
||||
if(worker_id == -1) then
|
||||
print *, "WORKER -1"
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
return
|
||||
end if
|
||||
buf%N = 0
|
||||
ctask = 1
|
||||
Nindex=1
|
||||
pt2 = 0d0
|
||||
pt2_detail = 0d0
|
||||
do
|
||||
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task)
|
||||
|
||||
done = task_id(ctask) == 0
|
||||
if (done) then
|
||||
ctask = ctask - 1
|
||||
else
|
||||
integer :: i_generator, i_i_generator, N, subset
|
||||
read (task,*) subset, index
|
||||
|
||||
!!!!!
|
||||
N=1
|
||||
!!!!!
|
||||
if(buf%N == 0) then
|
||||
! Only first time
|
||||
call create_selection_buffer(N, N*2, buf)
|
||||
call create_selection_buffer(N, N*3, buf2)
|
||||
else
|
||||
if(N /= buf%N) stop "N changed... wtf man??"
|
||||
end if
|
||||
do i_i_generator=1, Nindex
|
||||
i_generator = index
|
||||
call select_connected(i_generator,energy,pt2_detail(1, i_i_generator),buf,subset)
|
||||
pt2(:) += pt2_detail(:, i_generator)
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(done .or. ctask == size(task_id)) then
|
||||
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
|
||||
do i=1, ctask
|
||||
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i))
|
||||
end do
|
||||
if(ctask > 0) then
|
||||
call push_pt2_results(zmq_socket_push, Nindex, index, pt2_detail, task_id(1), ctask)
|
||||
do i=1,buf%cur
|
||||
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
|
||||
enddo
|
||||
call sort_selection_buffer(buf2)
|
||||
buf%mini = buf2%mini
|
||||
pt2 = 0d0
|
||||
pt2_detail(:,:Nindex) = 0d0
|
||||
buf%cur = 0
|
||||
end if
|
||||
ctask = 0
|
||||
end if
|
||||
|
||||
if(done) exit
|
||||
ctask = ctask + 1
|
||||
end do
|
||||
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine push_pt2_results(zmq_socket_push, N, index, pt2_detail, task_id, ntask)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
double precision, intent(in) :: pt2_detail(N_states, N_det_generators)
|
||||
integer, intent(in) :: ntask, N, index, task_id(*)
|
||||
integer :: rc
|
||||
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, N, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, index, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4*N) stop "push"
|
||||
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, pt2_detail, 8*N_states*N, ZMQ_SNDMORE)
|
||||
if(rc /= 8*N_states*N) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, task_id, ntask*4, 0)
|
||||
if(rc /= 4*ntask) stop "push"
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
character*(2) :: ok
|
||||
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pull_pt2_results(zmq_socket_pull, N, index, pt2_detail, task_id, ntask)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
double precision, intent(inout) :: pt2_detail(N_states, N_det_generators)
|
||||
integer, intent(out) :: index
|
||||
integer, intent(out) :: N, ntask, task_id(*)
|
||||
integer :: rc, rn, i
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
|
||||
if(rc /= 4) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, index, 4, 0)
|
||||
if(rc /= 4*N) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, pt2_detail, N_states*8*N, 0)
|
||||
if(rc /= 8*N_states*N) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
|
||||
if(rc /= 4) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id, ntask*4, 0)
|
||||
if(rc /= 4*ntask) stop "pull"
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
|
||||
|
||||
do i=N+1,N_det_generators
|
||||
pt2_detail(1:N_states,i) = 0.d0
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_workload, (N_det_generators) ]
|
||||
integer :: i
|
||||
do i=1,N_det_generators
|
||||
pt2_workload(i) = dfloat(N_det_generators - i + 1)**2
|
||||
end do
|
||||
pt2_workload = pt2_workload / sum(pt2_workload)
|
||||
END_PROVIDER
|
||||
|
@ -26,6 +26,7 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
|
||||
if(worker_id == -1) then
|
||||
print *, "WORKER -1"
|
||||
!call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
return
|
||||
@ -40,8 +41,8 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
if (done) then
|
||||
ctask = ctask - 1
|
||||
else
|
||||
integer :: i_generator, N
|
||||
read(task,*) i_generator, N
|
||||
integer :: i_generator, i_generator_start, i_generator_max, step, N
|
||||
read (task,*) i_generator_start, i_generator_max, step, N
|
||||
if(buf%N == 0) then
|
||||
! Only first time
|
||||
call create_selection_buffer(N, N*2, buf)
|
||||
@ -49,7 +50,11 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
else
|
||||
if(N /= buf%N) stop "N changed... wtf man??"
|
||||
end if
|
||||
call select_connected(i_generator,energy,pt2,buf,0)
|
||||
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
|
||||
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
|
||||
do i_generator=i_generator_start,i_generator_max,step
|
||||
call select_connected(i_generator,energy,pt2,buf)
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(done .or. ctask == size(task_id)) then
|
||||
@ -110,7 +115,7 @@ subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
|
||||
if(rc /= 4*ntask) stop "push"
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
end subroutine
|
||||
|
||||
|
||||
@ -144,7 +149,7 @@ subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, nt
|
||||
if(rc /= 4*ntask) stop "pull"
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
end subroutine
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -27,7 +27,7 @@ subroutine add_to_selection_buffer(b, det, val)
|
||||
|
||||
if(dabs(val) >= b%mini) then
|
||||
b%cur += 1
|
||||
b%det(1:N_int,1:2,b%cur) = det(1:N_int,1:2)
|
||||
b%det(:,:,b%cur) = det(:,:)
|
||||
b%val(b%cur) = val
|
||||
if(b%cur == size(b%val)) then
|
||||
call sort_selection_buffer(b)
|
||||
@ -41,33 +41,29 @@ subroutine sort_selection_buffer(b)
|
||||
implicit none
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, allocatable:: absval(:)
|
||||
double precision, allocatable :: vals(:), absval(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, pointer :: vals(:)
|
||||
integer(bit_kind), pointer :: detmp(:,:,:)
|
||||
integer(bit_kind), allocatable :: detmp(:,:,:)
|
||||
integer :: i, nmwen
|
||||
logical, external :: detEq
|
||||
nmwen = min(b%N, b%cur)
|
||||
|
||||
|
||||
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)), absval(b%cur), vals(size(b%val)))
|
||||
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
|
||||
absval = -dabs(b%val(:b%cur))
|
||||
do i=1,b%cur
|
||||
iorder(i) = i
|
||||
end do
|
||||
! Optimal for almost sorted data
|
||||
call insertion_dsort(absval, iorder, b%cur)
|
||||
call dsort(absval, iorder, b%cur)
|
||||
|
||||
do i=1, nmwen
|
||||
detmp(1:N_int,1,i) = b%det(1:N_int,1,iorder(i))
|
||||
detmp(1:N_int,2,i) = b%det(1:N_int,2,iorder(i))
|
||||
detmp(:,:,i) = b%det(:,:,iorder(i))
|
||||
vals(i) = b%val(iorder(i))
|
||||
end do
|
||||
do i=nmwen+1, size(vals)
|
||||
vals(i) = 0.d0
|
||||
enddo
|
||||
deallocate(b%det, b%val)
|
||||
b%det => detmp
|
||||
b%val => vals
|
||||
b%det(:,:,:nmwen) = detmp(:,:,:)
|
||||
b%det(:,:,nmwen+1:) = 0_bit_kind
|
||||
b%val(:nmwen) = vals(:)
|
||||
b%val(nmwen+1:) = 0d0
|
||||
b%mini = max(b%mini,dabs(b%val(b%N)))
|
||||
b%cur = nmwen
|
||||
end subroutine
|
||||
|
@ -12,8 +12,8 @@ program selection_slave
|
||||
end
|
||||
|
||||
subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
|
||||
PROVIDE pt2_e0_denominator mo_tot_num N_int fragment_count
|
||||
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context mo_mono_elec_integral
|
||||
! PROVIDE pt2_e0_denominator mo_tot_num N_int
|
||||
end
|
||||
|
||||
subroutine run_wf
|
||||
@ -23,19 +23,16 @@ subroutine run_wf
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
double precision :: energy(N_states)
|
||||
character*(64) :: states(4)
|
||||
character*(64) :: states(2)
|
||||
integer :: rc, i
|
||||
logical :: force_update
|
||||
|
||||
call provide_everything
|
||||
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
states(1) = 'selection'
|
||||
states(2) = 'davidson'
|
||||
states(3) = 'pt2'
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
force_update = .True.
|
||||
|
||||
do
|
||||
|
||||
@ -55,7 +52,7 @@ subroutine run_wf
|
||||
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call run_selection_slave(0,i,energy)
|
||||
call selection_slave_tcp(i, energy)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'Selection done'
|
||||
|
||||
@ -65,34 +62,46 @@ subroutine run_wf
|
||||
! --------
|
||||
|
||||
print *, 'Davidson'
|
||||
call davidson_miniserver_get(force_update)
|
||||
force_update = .False.
|
||||
call davidson_miniserver_get()
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call davidson_slave_tcp(i)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'Davidson done'
|
||||
|
||||
else if (trim(zmq_state) == 'pt2') then
|
||||
|
||||
! PT2
|
||||
! ---
|
||||
|
||||
print *, 'PT2'
|
||||
call zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states)
|
||||
|
||||
logical :: lstop
|
||||
lstop = .False.
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call run_pt2_slave(0,i,energy,lstop)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'PT2 done'
|
||||
|
||||
endif
|
||||
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine update_energy(energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: energy(N_states)
|
||||
BEGIN_DOC
|
||||
! Update energy when it is received from ZMQ
|
||||
END_DOC
|
||||
integer :: j,k
|
||||
do j=1,N_states
|
||||
do k=1,N_det
|
||||
CI_eigenvectors(k,j) = psi_coef(k,j)
|
||||
enddo
|
||||
enddo
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
|
||||
if (.True.) then
|
||||
do k=1,N_states
|
||||
ci_electronic_energy(k) = energy(k)
|
||||
enddo
|
||||
TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
|
||||
endif
|
||||
|
||||
call write_double(6,ci_energy,'Energy')
|
||||
end
|
||||
|
||||
subroutine selection_slave_tcp(i,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: energy(N_states)
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(0,i,energy)
|
||||
end
|
||||
|
||||
|
@ -13,7 +13,7 @@ end
|
||||
|
||||
subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
|
||||
PROVIDE pt2_e0_denominator mo_tot_num N_int fragment_count
|
||||
PROVIDE pt2_e0_denominator mo_tot_num N_int
|
||||
end
|
||||
|
||||
subroutine run_wf
|
||||
@ -60,6 +60,28 @@ subroutine run_wf
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine update_energy(energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: energy(N_states)
|
||||
BEGIN_DOC
|
||||
! Update energy when it is received from ZMQ
|
||||
END_DOC
|
||||
integer :: j,k
|
||||
do j=1,N_states
|
||||
do k=1,N_det
|
||||
CI_eigenvectors(k,j) = psi_coef(k,j)
|
||||
enddo
|
||||
enddo
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2,CI_eigenvectors,N_det,psi_det,N_int)
|
||||
if (.True.) then
|
||||
do k=1,N_states
|
||||
ci_electronic_energy(k) = energy(k)
|
||||
enddo
|
||||
TOUCH ci_electronic_energy CI_eigenvectors_s2 CI_eigenvectors
|
||||
endif
|
||||
|
||||
call write_double(6,ci_energy,'Energy')
|
||||
end
|
||||
|
||||
subroutine selection_slave_tcp(i,energy)
|
||||
implicit none
|
||||
|
@ -1,8 +1,8 @@
|
||||
module selection_types
|
||||
type selection_buffer
|
||||
integer :: N, cur
|
||||
integer(8) , pointer :: det(:,:,:)
|
||||
double precision, pointer :: val(:)
|
||||
integer(8), allocatable :: det(:,:,:)
|
||||
double precision, allocatable :: val(:)
|
||||
double precision :: mini
|
||||
endtype
|
||||
end module
|
||||
|
@ -1,109 +0,0 @@
|
||||
program fci_zmq
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref
|
||||
|
||||
double precision, allocatable :: psi_coef_ref(:,:)
|
||||
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
|
||||
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
! Stopping criterion is the PT2max
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = 2
|
||||
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
|
||||
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
|
||||
psi_coef_ref = psi_coef_sorted
|
||||
psi_det_ref = psi_det_sorted
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
do while (Nmax-Nmin > 1)
|
||||
psi_coef = psi_coef_ref
|
||||
psi_det = psi_det_ref
|
||||
TOUCH psi_det psi_coef
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
if (ratio < var_pt2_ratio) then
|
||||
Nmin = N_det
|
||||
else
|
||||
Nmax = N_det
|
||||
psi_coef_ref = psi_coef
|
||||
psi_det_ref = psi_det
|
||||
TOUCH psi_det psi_coef
|
||||
endif
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
call save_wavefunction
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@ -1,95 +0,0 @@
|
||||
program fci_zmq
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref, pt2_ratio
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
pt2_ratio = (E_ref + pt2_max - HF_energy) / (E_ref - HF_energy)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = N_det/8
|
||||
do while (Nmax-Nmin > 1)
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
if (ratio < pt2_ratio) then
|
||||
Nmin = N_det
|
||||
to_select = (Nmax-Nmin)/2
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
else
|
||||
Nmax = N_det
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
endif
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', pt2_ratio
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@ -1,127 +0,0 @@
|
||||
subroutine ZMQ_selection(N_in, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: N_in
|
||||
type(selection_buffer) :: b
|
||||
integer :: i, N
|
||||
integer, external :: omp_get_thread_num
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
integer, parameter :: maxtasks=10000
|
||||
|
||||
|
||||
PROVIDE fragment_count
|
||||
|
||||
N = max(N_in,1)
|
||||
if (.True.) then
|
||||
PROVIDE pt2_e0_denominator
|
||||
provide nproc
|
||||
call new_parallel_job(zmq_to_qp_run_socket,"selection")
|
||||
call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator))
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
endif
|
||||
|
||||
character*(20*maxtasks) :: task
|
||||
task = ' '
|
||||
|
||||
integer :: k
|
||||
k=0
|
||||
do i= 1, N_det_generators
|
||||
k = k+1
|
||||
write(task(20*(k-1)+1:20*k),'(I9,1X,I9,''|'')') i, N
|
||||
k = k+20
|
||||
if (k>20*maxtasks) then
|
||||
k=0
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
endif
|
||||
end do
|
||||
if (k > 0) then
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
|
||||
endif
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call selection_collector(b, pt2)
|
||||
else
|
||||
call selection_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'selection')
|
||||
if (N_in > 0) then
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
call save_wavefunction
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine selection_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine selection_collector(b, pt2)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
double precision :: pt2_mwen(N_states)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, N, ntask
|
||||
double precision, allocatable :: val(:)
|
||||
integer(bit_kind), allocatable :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
integer :: done
|
||||
real :: time, time0
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det_generators))
|
||||
done = 0
|
||||
more = 1
|
||||
pt2(:) = 0d0
|
||||
call CPU_TIME(time0)
|
||||
do while (more == 1)
|
||||
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
|
||||
pt2 += pt2_mwen
|
||||
do i=1, N
|
||||
call add_to_selection_buffer(b, det(1,1,i), val(i))
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
|
||||
end do
|
||||
done += ntask
|
||||
call CPU_TIME(time)
|
||||
! print *, "DONE" , done, time - time0
|
||||
end do
|
||||
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
call sort_selection_buffer(b)
|
||||
end subroutine
|
||||
|
@ -1,25 +0,0 @@
|
||||
# Automatically created by /home/razoa/quantum_package/scripts/module/module_handler.py
|
||||
IRPF90_temp
|
||||
IRPF90_man
|
||||
irpf90_entities
|
||||
tags
|
||||
irpf90.make
|
||||
Makefile
|
||||
Makefile.depend
|
||||
build.ninja
|
||||
.ninja_log
|
||||
.ninja_deps
|
||||
ezfio_interface.irp.f
|
||||
Ezfio_files
|
||||
Determinants
|
||||
Integrals_Monoelec
|
||||
MO_Basis
|
||||
Utils
|
||||
Pseudo
|
||||
Bitmask
|
||||
AO_Basis
|
||||
Electrons
|
||||
MOGuess
|
||||
Nuclei
|
||||
Hartree_Fock
|
||||
Integrals_Bielec
|
@ -1 +0,0 @@
|
||||
Determinants Hartree_Fock
|
@ -1,61 +0,0 @@
|
||||
======================
|
||||
Generators_full Module
|
||||
======================
|
||||
|
||||
All the determinants of the wave function are generators. In this way, the Full CI
|
||||
space is explored.
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
.. image:: tree_dependency.png
|
||||
|
||||
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
|
||||
* `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock>`_
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
|
||||
.. image:: tree_dependency.png
|
||||
|
||||
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
|
||||
* `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock>`_
|
||||
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
|
||||
`degree_max_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L43>`_
|
||||
Max degree of excitation (respect to HF) of the generators
|
||||
|
||||
|
||||
`n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L3>`_
|
||||
For Single reference wave functions, the number of generators is 1 : the
|
||||
Hartree-Fock determinant
|
||||
|
||||
|
||||
`psi_coef_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L26>`_
|
||||
For Single reference wave functions, the generator is the
|
||||
Hartree-Fock determinant
|
||||
|
||||
|
||||
`psi_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L25>`_
|
||||
For Single reference wave functions, the generator is the
|
||||
Hartree-Fock determinant
|
||||
|
||||
|
||||
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L66>`_
|
||||
Memo to skip useless selectors
|
||||
|
||||
|
||||
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L58>`_
|
||||
Size of the select_max array
|
||||
|
@ -1,75 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_det_generators ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the number of generators is 1 : the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: norm
|
||||
call write_time(output_determinants)
|
||||
norm = 0.d0
|
||||
N_det_generators = N_det
|
||||
do i=1,N_det
|
||||
norm = norm + psi_average_norm_contrib_sorted(i)
|
||||
if (norm >= threshold_generators) then
|
||||
N_det_generators = i
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
N_det_generators = max(N_det_generators,1)
|
||||
call write_int(output_determinants,N_det_generators,'Number of generators')
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the generator is the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i, k
|
||||
psi_coef_generators = 0.d0
|
||||
psi_det_generators = 0_bit_kind
|
||||
do i=1,N_det_generators
|
||||
do k=1,N_int
|
||||
psi_det_generators(k,1,i) = psi_det_sorted(k,1,i)
|
||||
psi_det_generators(k,2,i) = psi_det_sorted(k,2,i)
|
||||
enddo
|
||||
psi_coef_generators(i,:) = psi_coef_sorted(i,:)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, degree_max_generators]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Max degree of excitation (respect to HF) of the generators
|
||||
END_DOC
|
||||
integer :: i,degree
|
||||
degree_max_generators = 0
|
||||
do i = 1, N_det_generators
|
||||
call get_excitation_degree(HF_bitmask,psi_det_generators(1,1,i),degree,N_int)
|
||||
if(degree .gt. degree_max_generators)then
|
||||
degree_max_generators = degree
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, size_select_max]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Size of the select_max array
|
||||
END_DOC
|
||||
size_select_max = 10000
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, select_max, (size_select_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Memo to skip useless selectors
|
||||
END_DOC
|
||||
select_max = huge(1.d0)
|
||||
END_PROVIDER
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 81 KiB |
@ -9,14 +9,14 @@ BEGIN_PROVIDER [ integer, N_det_generators ]
|
||||
logical :: good
|
||||
call write_time(output_determinants)
|
||||
N_det_generators = 0
|
||||
do i=1,N_det_ref
|
||||
do i=1,N_det
|
||||
do l=1,n_cas_bitmask
|
||||
good = .True.
|
||||
do k=1,N_int
|
||||
good = good .and. ( &
|
||||
iand(not(cas_bitmask(k,1,l)), psi_ref(k,1,i)) == &
|
||||
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
|
||||
iand(not(cas_bitmask(k,1,l)), HF_bitmask(k,1)) ) .and. ( &
|
||||
iand(not(cas_bitmask(k,2,l)), psi_ref(k,2,i)) == &
|
||||
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
|
||||
iand(not(cas_bitmask(k,2,l)), HF_bitmask(k,2)) )
|
||||
enddo
|
||||
if (good) then
|
||||
@ -41,14 +41,14 @@ END_PROVIDER
|
||||
integer :: i, k, l, m
|
||||
logical :: good
|
||||
m=0
|
||||
do i=1,N_det_ref
|
||||
do i=1,N_det
|
||||
do l=1,n_cas_bitmask
|
||||
good = .True.
|
||||
do k=1,N_int
|
||||
good = good .and. ( &
|
||||
iand(not(cas_bitmask(k,1,l)), psi_ref(k,1,i)) == &
|
||||
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
|
||||
iand(not(cas_bitmask(k,1,l)), HF_bitmask(k,1)) .and. ( &
|
||||
iand(not(cas_bitmask(k,2,l)), psi_ref(k,2,i)) == &
|
||||
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
|
||||
iand(not(cas_bitmask(k,2,l)), HF_bitmask(k,2) )) )
|
||||
enddo
|
||||
if (good) then
|
||||
@ -58,8 +58,8 @@ END_PROVIDER
|
||||
if (good) then
|
||||
m = m+1
|
||||
do k=1,N_int
|
||||
psi_det_generators(k,1,m) = psi_ref(k,1,i)
|
||||
psi_det_generators(k,2,m) = psi_ref(k,2,i)
|
||||
psi_det_generators(k,1,m) = psi_det(k,1,i)
|
||||
psi_det_generators(k,2,m) = psi_det(k,2,i)
|
||||
enddo
|
||||
psi_coef_generators(m,:) = psi_coef(m,:)
|
||||
endif
|
||||
|
@ -1,75 +0,0 @@
|
||||
program localize_mos
|
||||
implicit none
|
||||
integer :: rank, i,j,k
|
||||
double precision, allocatable :: W(:,:)
|
||||
double precision :: f, f_incr
|
||||
|
||||
allocate (W(ao_num,ao_num))
|
||||
|
||||
W = 0.d0
|
||||
do k=1,elec_beta_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,elec_beta_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,elec_beta_num,W, size(W,1), &
|
||||
mo_coef(1,1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
|
||||
if (elec_alpha_num>elec_alpha_num) then
|
||||
W = 0.d0
|
||||
do k=elec_beta_num+1,elec_alpha_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
|
||||
mo_coef(1,elec_beta_num+1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
endif
|
||||
|
||||
W = 0.d0
|
||||
do k=elec_alpha_num+1,mo_tot_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
|
||||
mo_coef(1,elec_alpha_num+1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
mo_label = "Localized"
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
W(1:ao_num,1:mo_tot_num) = mo_coef(1:ao_num,1:mo_tot_num)
|
||||
integer :: iorder(mo_tot_num)
|
||||
double precision :: s(mo_tot_num), swap(ao_num)
|
||||
do k=1,mo_tot_num
|
||||
iorder(k) = k
|
||||
s(k) = Fock_matrix_diag_mo(k)
|
||||
enddo
|
||||
call dsort(s(1),iorder(1),elec_beta_num)
|
||||
call dsort(s(elec_beta_num+1),iorder(elec_beta_num+1),elec_alpha_num-elec_beta_num)
|
||||
call dsort(s(elec_alpha_num+1),iorder(elec_alpha_num+1),mo_tot_num-elec_alpha_num)
|
||||
do k=1,mo_tot_num
|
||||
mo_coef(1:ao_num,k) = W(1:ao_num,iorder(k))
|
||||
print *, k, s(k)
|
||||
enddo
|
||||
call save_mos
|
||||
|
||||
end
|
@ -1,34 +0,0 @@
|
||||
[disk_access_ao_integrals_erf]
|
||||
type: Disk_access
|
||||
doc: Read/Write AO integrals with the long range interaction from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
|
||||
[disk_access_mo_integrals_erf]
|
||||
type: Disk_access
|
||||
doc: Read/Write MO integrals with the long range interaction from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
[ao_integrals_threshold]
|
||||
type: Threshold
|
||||
doc: If |<pq|rs>| < ao_integrals_threshold then <pq|rs> is zero
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_ao
|
||||
|
||||
[mo_integrals_threshold]
|
||||
type: Threshold
|
||||
doc: If |<ij|kl>| < ao_integrals_threshold then <pq|rs> is zero
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_mo
|
||||
|
||||
[mu_erf]
|
||||
type: double precision
|
||||
doc: cutting of the interaction in the range separated model
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.5
|
||||
ezfio_name: mu_erf
|
||||
|
@ -1 +0,0 @@
|
||||
Pseudo Bitmask ZMQ Integrals_Bielec
|
@ -1,570 +0,0 @@
|
||||
double precision function ao_bielec_integral_erf(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! integral of the AO basis <ik|jl> or (ij|kl)
|
||||
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||||
END_DOC
|
||||
|
||||
integer,intent(in) :: i,j,k,l
|
||||
integer :: p,q,r,s
|
||||
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
||||
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
||||
double precision :: integral
|
||||
include 'Utils/constants.include.F'
|
||||
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
||||
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
double precision :: ao_bielec_integral_schwartz_accel_erf
|
||||
|
||||
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
ao_bielec_integral_erf = ao_bielec_integral_schwartz_accel_erf(i,j,k,l)
|
||||
return
|
||||
endif
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_bielec_integral_erf = 0.d0
|
||||
|
||||
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: p_inv,q_inv
|
||||
double precision :: general_primitive_integral_erf
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||||
I_power,J_power,I_center,J_center,dim1)
|
||||
p_inv = 1.d0/pp
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
integral = general_primitive_integral_erf(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
ao_bielec_integral_erf = ao_bielec_integral_erf + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
else
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
enddo
|
||||
double precision :: ERI_erf
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
integral = ERI_erf( &
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||||
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||||
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||||
I_power(3),J_power(3),K_power(3),L_power(3))
|
||||
ao_bielec_integral_erf = ao_bielec_integral_erf + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
double precision function ao_bielec_integral_schwartz_accel_erf(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! integral of the AO basis <ik|jl> or (ij|kl)
|
||||
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||||
END_DOC
|
||||
integer,intent(in) :: i,j,k,l
|
||||
integer :: p,q,r,s
|
||||
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
||||
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
||||
double precision :: integral
|
||||
include 'Utils/constants.include.F'
|
||||
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
||||
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
double precision, allocatable :: schwartz_kl(:,:)
|
||||
double precision :: schwartz_ij
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_bielec_integral_schwartz_accel_erf = 0.d0
|
||||
double precision :: thr
|
||||
thr = ao_integrals_threshold*ao_integrals_threshold
|
||||
|
||||
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
|
||||
|
||||
|
||||
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
schwartz_kl(0,0) = 0.d0
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
schwartz_kl(s,r) = general_primitive_integral_erf(dim1, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q) &
|
||||
* coef2
|
||||
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
||||
enddo
|
||||
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
||||
enddo
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
double precision :: coef1
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
double precision :: coef2
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
double precision :: p_inv,q_inv
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||||
I_power,J_power,I_center,J_center,dim1)
|
||||
p_inv = 1.d0/pp
|
||||
schwartz_ij = general_primitive_integral_erf(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p) * &
|
||||
coef2*coef2
|
||||
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
do r = 1, ao_prim_num(k)
|
||||
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
double precision :: coef3
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
double precision :: coef4
|
||||
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
double precision :: general_primitive_integral_erf
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
integral = general_primitive_integral_erf(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
ao_bielec_integral_schwartz_accel_erf = ao_bielec_integral_schwartz_accel_erf + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
else
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
enddo
|
||||
double precision :: ERI_erf
|
||||
|
||||
schwartz_kl(0,0) = 0.d0
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l)
|
||||
schwartz_kl(s,r) = ERI_erf( &
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||||
K_power(1),L_power(1),K_power(1),L_power(1), &
|
||||
K_power(2),L_power(2),K_power(2),L_power(2), &
|
||||
K_power(3),L_power(3),K_power(3),L_power(3)) * &
|
||||
coef2
|
||||
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
||||
enddo
|
||||
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
||||
enddo
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
schwartz_ij = ERI_erf( &
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),&
|
||||
I_power(1),J_power(1),I_power(1),J_power(1), &
|
||||
I_power(2),J_power(2),I_power(2),J_power(2), &
|
||||
I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2
|
||||
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
do r = 1, ao_prim_num(k)
|
||||
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
||||
cycle
|
||||
endif
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
integral = ERI_erf( &
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||||
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||||
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||||
I_power(3),J_power(3),K_power(3),L_power(3))
|
||||
ao_bielec_integral_schwartz_accel_erf = ao_bielec_integral_schwartz_accel_erf + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
endif
|
||||
deallocate (schwartz_kl)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine compute_ao_bielec_integrals_erf(j,k,l,sze,buffer_value)
|
||||
implicit none
|
||||
use map_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute AO 1/r12 integrals for all i and fixed j,k,l
|
||||
END_DOC
|
||||
|
||||
include 'Utils/constants.include.F'
|
||||
integer, intent(in) :: j,k,l,sze
|
||||
real(integral_kind), intent(out) :: buffer_value(sze)
|
||||
double precision :: ao_bielec_integral_erf
|
||||
|
||||
integer :: i
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
if (ao_bielec_integral_erf_schwartz(j,l) < thresh ) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
|
||||
do i = 1, ao_num
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thresh) then
|
||||
buffer_value(i) = 0._integral_kind
|
||||
cycle
|
||||
endif
|
||||
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thresh ) then
|
||||
buffer_value(i) = 0._integral_kind
|
||||
cycle
|
||||
endif
|
||||
!DIR$ FORCEINLINE
|
||||
buffer_value(i) = ao_bielec_integral_erf(i,k,j,l)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
double precision function general_primitive_integral_erf(dim, &
|
||||
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||||
END_DOC
|
||||
integer,intent(in) :: dim
|
||||
include 'Utils/constants.include.F'
|
||||
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
||||
integer, intent(in) :: iorder_p(3)
|
||||
integer, intent(in) :: iorder_q(3)
|
||||
|
||||
double precision :: r_cut,gama_r_cut,rho,dist
|
||||
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
||||
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||||
double precision :: bla
|
||||
integer :: ix,iy,iz,jx,jy,jz,i
|
||||
double precision :: a,b,c,d,e,f,accu,pq,const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||||
integer :: n_pt_tmp,n_pt_out, iorder
|
||||
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
||||
|
||||
general_primitive_integral_erf = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
double precision :: p_plus_q
|
||||
p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf)
|
||||
pq = p_inv*0.5d0*q_inv
|
||||
|
||||
pq_inv = 0.5d0/p_plus_q
|
||||
p10_1 = q*pq ! 1/(2p)
|
||||
p01_1 = p*pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv+pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix=0,iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
if (abs(P_new(ix,1)) < thresh) cycle
|
||||
a = P_new(ix,1)
|
||||
do jx = 0, iorder_q(1)
|
||||
d = a*Q_new(jx,1)
|
||||
if (abs(d) < thresh) cycle
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if (n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix=0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
if (abs(P_new(iy,2)) > thresh) then
|
||||
b = P_new(iy,2)
|
||||
do jy = 0, iorder_q(2)
|
||||
e = b*Q_new(jy,2)
|
||||
if (abs(e) < thresh) cycle
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||||
do ix=0,iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
if (abs(P_new(iz,3)) > thresh) then
|
||||
c = P_new(iz,3)
|
||||
do jz = 0, iorder_q(3)
|
||||
f = c*Q_new(jz,3)
|
||||
if (abs(f) < thresh) cycle
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p*q *pq_inv_2 ! le rho qui va bien
|
||||
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||||
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||||
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix+n_Iy
|
||||
do i=0,n_pt_tmp
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp+n_Iz
|
||||
do i=0,n_pt_out
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
double precision :: rint_sum
|
||||
accu = accu + rint_sum(n_pt_out,const,d1)
|
||||
|
||||
! change p+q in dsqrt
|
||||
general_primitive_integral_erf = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p_plus_q)
|
||||
end
|
||||
|
||||
|
||||
double precision function ERI_erf(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! ATOMIC PRIMTIVE bielectronic integral between the 4 primitives ::
|
||||
! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
|
||||
! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
|
||||
! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2)
|
||||
! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2)
|
||||
END_DOC
|
||||
double precision, intent(in) :: delta,gama,alpha,beta
|
||||
integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
|
||||
integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2
|
||||
integer :: i,j,k,l,n_pt
|
||||
integer :: n_pt_sup
|
||||
double precision :: p,q,denom,coeff
|
||||
double precision :: I_f
|
||||
integer :: nx,ny,nz
|
||||
include 'Utils/constants.include.F'
|
||||
nx = a_x+b_x+c_x+d_x
|
||||
if(iand(nx,1) == 1) then
|
||||
ERI_erf = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
ny = a_y+b_y+c_y+d_y
|
||||
if(iand(ny,1) == 1) then
|
||||
ERI_erf = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
nz = a_z+b_z+c_z+d_z
|
||||
if(iand(nz,1) == 1) then
|
||||
ERI_erf = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
ASSERT (alpha >= 0.d0)
|
||||
ASSERT (beta >= 0.d0)
|
||||
ASSERT (delta >= 0.d0)
|
||||
ASSERT (gama >= 0.d0)
|
||||
p = alpha + beta
|
||||
q = delta + gama
|
||||
double precision :: p_plus_q
|
||||
p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf)
|
||||
ASSERT (p+q >= 0.d0)
|
||||
n_pt = ishft( nx+ny+nz,1 )
|
||||
|
||||
coeff = pi_5_2 / (p * q * dsqrt(p_plus_q))
|
||||
if (n_pt == 0) then
|
||||
ERI_erf = coeff
|
||||
return
|
||||
endif
|
||||
|
||||
call integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
|
||||
|
||||
ERI_erf = I_f * coeff
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
implicit none
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Parallel client for AO integrals
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: j,l
|
||||
integer,intent(out) :: n_integrals
|
||||
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
|
||||
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
|
||||
|
||||
integer :: i,k
|
||||
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0
|
||||
double precision :: thr
|
||||
integer :: kk, m, j1, i1
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
n_integrals = 0
|
||||
|
||||
j1 = j+ishft(l*l-l,-1)
|
||||
do k = 1, ao_num ! r1
|
||||
i1 = ishft(k*k-k,-1)
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
do i = 1, k
|
||||
i1 += 1
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thr) then
|
||||
cycle
|
||||
endif
|
||||
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thr ) then
|
||||
cycle
|
||||
endif
|
||||
!DIR$ FORCEINLINE
|
||||
integral = ao_bielec_integral_erf(i,k,j,l) ! i,k : r1 j,l : r2
|
||||
if (abs(integral) < thr) then
|
||||
cycle
|
||||
endif
|
||||
n_integrals += 1
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,buffer_i(n_integrals))
|
||||
buffer_value(n_integrals) = integral
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
@ -1,175 +0,0 @@
|
||||
subroutine ao_bielec_integrals_erf_in_map_slave_tcp(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_bielec_integrals_erf_in_map_slave(0,i)
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_erf_in_map_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals. i is the ID of the current thread.
|
||||
END_DOC
|
||||
call ao_bielec_integrals_erf_in_map_slave(1,i)
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_erf_in_map_slave(thread,iproc)
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes a buffer of integrals
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: thread, iproc
|
||||
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer :: worker_id, task_id
|
||||
character*(512) :: task
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
character*(64) :: state
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
allocate ( buffer_i(ao_num*ao_num), buffer_value(ao_num*ao_num) )
|
||||
|
||||
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
|
||||
|
||||
do
|
||||
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task)
|
||||
if (task_id == 0) exit
|
||||
read(task,*) j, l
|
||||
call compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id)
|
||||
call push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id)
|
||||
enddo
|
||||
|
||||
|
||||
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
|
||||
deallocate( buffer_i, buffer_value )
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_bielec_integrals_erf_in_map_collector
|
||||
use map_module
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Collects results from the AO integral calculation
|
||||
END_DOC
|
||||
|
||||
integer :: j,l,n_integrals
|
||||
integer :: rc
|
||||
|
||||
real(integral_kind), allocatable :: buffer_value(:)
|
||||
integer(key_kind), allocatable :: buffer_i(:)
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_pull
|
||||
|
||||
integer*8 :: control, accu
|
||||
integer :: task_id, more, sze
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
zmq_socket_pull = new_zmq_pull_socket()
|
||||
|
||||
sze = ao_num*ao_num
|
||||
allocate ( buffer_i(sze), buffer_value(sze) )
|
||||
|
||||
accu = 0_8
|
||||
more = 1
|
||||
do while (more == 1)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)
|
||||
if (rc == -1) then
|
||||
n_integrals = 0
|
||||
return
|
||||
endif
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, n_integrals, 4, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
if (n_integrals >= 0) then
|
||||
|
||||
if (n_integrals > sze) then
|
||||
deallocate (buffer_value, buffer_i)
|
||||
sze = n_integrals
|
||||
allocate (buffer_value(sze), buffer_i(sze))
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)
|
||||
if (rc /= key_kind*n_integrals) then
|
||||
print *, rc, key_kind, n_integrals
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_i, key_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)
|
||||
if (rc /= integral_kind*n_integrals) then
|
||||
print *, irp_here, ': f77_zmq_recv( zmq_socket_pull, buffer_value, integral_kind*n_integrals, 0)'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
|
||||
|
||||
! Activate if zmq_socket_pull is a REP
|
||||
rc = f77_zmq_send( zmq_socket_pull, 0, 4, 0)
|
||||
if (rc /= 4) then
|
||||
print *, irp_here, ' : f77_zmq_send (zmq_socket_pull,...'
|
||||
stop 'error'
|
||||
endif
|
||||
|
||||
|
||||
call insert_into_ao_integrals_erf_map(n_integrals,buffer_i,buffer_value)
|
||||
accu += n_integrals
|
||||
if (task_id /= 0) then
|
||||
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
deallocate( buffer_i, buffer_value )
|
||||
|
||||
integer (map_size_kind) :: get_ao_erf_map_size
|
||||
control = get_ao_erf_map_size(ao_integrals_erf_map)
|
||||
|
||||
if (control /= accu) then
|
||||
print *, ''
|
||||
print *, irp_here
|
||||
print *, 'Control : ', control
|
||||
print *, 'Accu : ', accu
|
||||
print *, 'Some integrals were lost during the parallel computation.'
|
||||
print *, 'Try to reduce the number of threads.'
|
||||
stop
|
||||
endif
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_pull_socket(zmq_socket_pull)
|
||||
|
||||
end
|
||||
|
@ -1,22 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, big_array_coulomb_integrals_erf, (mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
&BEGIN_PROVIDER [double precision, big_array_exchange_integrals_erf,(mo_tot_num_align,mo_tot_num, mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
double precision :: integral
|
||||
|
||||
do k = 1, mo_tot_num
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
l = j
|
||||
integral = get_mo_bielec_integral_erf(i,j,k,l,mo_integrals_erf_map)
|
||||
big_array_coulomb_integrals_erf(j,i,k) = integral
|
||||
l = j
|
||||
integral = get_mo_bielec_integral_erf(i,j,l,k,mo_integrals_erf_map)
|
||||
big_array_exchange_integrals_erf(j,i,k) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
@ -1,626 +0,0 @@
|
||||
use map_module
|
||||
|
||||
!! AO Map
|
||||
!! ======
|
||||
|
||||
BEGIN_PROVIDER [ type(map_type), ao_integrals_erf_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! AO integrals
|
||||
END_DOC
|
||||
integer(key_kind) :: key_max
|
||||
integer(map_size_kind) :: sze
|
||||
call bielec_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
|
||||
sze = key_max
|
||||
call map_init(ao_integrals_erf_map,sze)
|
||||
print*, 'AO map initialized : ', sze
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Min and max values of the AOs for which the integrals are in the cache
|
||||
END_DOC
|
||||
ao_integrals_erf_cache_min = max(1,ao_num - 63)
|
||||
ao_integrals_erf_cache_max = ao_num
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_integrals_erf_cache, (0:64*64*64*64) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of AO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_bielec_integrals_erf_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
|
||||
do k=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
|
||||
do j=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
|
||||
do i=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(ao_integrals_erf_map,idx,integral)
|
||||
ii = l-ao_integrals_erf_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
|
||||
ao_integrals_erf_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function get_ao_bielec_integral_erf(i,j,k,l,map) result(result)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets one AO bi-electronic integral from the AO map
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_cache ao_integrals_erf_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
tmp = 0.d0
|
||||
else if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < ao_integrals_threshold) then
|
||||
tmp = 0.d0
|
||||
else
|
||||
ii = l-ao_integrals_erf_cache_min
|
||||
ii = ior(ii, k-ao_integrals_erf_cache_min)
|
||||
ii = ior(ii, j-ao_integrals_erf_cache_min)
|
||||
ii = ior(ii, i-ao_integrals_erf_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
tmp = tmp
|
||||
else
|
||||
ii = l-ao_integrals_erf_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
|
||||
tmp = ao_integrals_erf_cache(ii)
|
||||
endif
|
||||
endif
|
||||
result = tmp
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_bielec_integrals_erf(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
double precision :: get_ao_bielec_integral_erf
|
||||
do i=1,sze
|
||||
out_val(i) = get_ao_bielec_integral_erf(i,j,k,l,ao_integrals_erf_map)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine get_ao_bielec_integrals_erf_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All non-zero i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
real(integral_kind), intent(out) :: out_val(sze)
|
||||
integer, intent(out) :: out_val_index(sze),non_zero_int
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh,tmp
|
||||
PROVIDE ao_bielec_integrals_erf_in_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
non_zero_int = 0
|
||||
do i=1,sze
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_bielec_integral_erf
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < thresh) then
|
||||
cycle
|
||||
endif
|
||||
call bielec_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_integrals_erf_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(non_zero_int) = i
|
||||
out_val(non_zero_int) = tmp
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
function get_ao_erf_map_size()
|
||||
implicit none
|
||||
integer (map_size_kind) :: get_ao_erf_map_size
|
||||
BEGIN_DOC
|
||||
! Returns the number of elements in the AO map
|
||||
END_DOC
|
||||
get_ao_erf_map_size = ao_integrals_erf_map % n_elements
|
||||
end
|
||||
|
||||
subroutine clear_ao_erf_map
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Frees the memory of the AO map
|
||||
END_DOC
|
||||
call map_deinit(ao_integrals_erf_map)
|
||||
FREE ao_integrals_erf_map
|
||||
end
|
||||
|
||||
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine dump_$ao_integrals(filename)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save to disk the $ao integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer*8 :: i,j, n
|
||||
call ezfio_set_work_empty(.False.)
|
||||
open(unit=66,file=filename,FORM='unformatted')
|
||||
write(66) integral_kind, key_kind
|
||||
write(66) $ao_integrals_map%sorted, $ao_integrals_map%map_size, &
|
||||
$ao_integrals_map%n_elements
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
write(66) $ao_integrals_map%map(i)%sorted, $ao_integrals_map%map(i)%map_size,&
|
||||
$ao_integrals_map%map(i)%n_elements
|
||||
enddo
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
write(66) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
close(66)
|
||||
|
||||
end
|
||||
|
||||
IRP_IF COARRAY
|
||||
subroutine communicate_$ao_integrals()
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Communicate the $ao integrals with co-array
|
||||
END_DOC
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer*8 :: i,j, k, nmax
|
||||
integer*8, save :: n[*]
|
||||
integer :: copy_n
|
||||
|
||||
real(integral_kind), allocatable :: buffer_val(:)[:]
|
||||
integer(cache_key_kind), allocatable :: buffer_key(:)[:]
|
||||
real(integral_kind), allocatable :: copy_val(:)
|
||||
integer(key_kind), allocatable :: copy_key(:)
|
||||
|
||||
n = 0_8
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
n = max(n,$ao_integrals_map%map(i)%n_elements)
|
||||
enddo
|
||||
sync all
|
||||
nmax = 0_8
|
||||
do j=1,num_images()
|
||||
nmax = max(nmax,n[j])
|
||||
enddo
|
||||
allocate( buffer_key(nmax)[*], buffer_val(nmax)[*])
|
||||
allocate( copy_key(nmax), copy_val(nmax))
|
||||
do i=0_8,$ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
do j=1,n
|
||||
buffer_key(j) = key(j)
|
||||
buffer_val(j) = val(j)
|
||||
enddo
|
||||
sync all
|
||||
do j=1,num_images()
|
||||
if (j /= this_image()) then
|
||||
copy_n = n[j]
|
||||
do k=1,copy_n
|
||||
copy_val(k) = buffer_val(k)[j]
|
||||
copy_key(k) = buffer_key(k)[j]
|
||||
copy_key(k) = copy_key(k)+ishft(i,-map_shift)
|
||||
enddo
|
||||
call map_append($ao_integrals_map, copy_key, copy_val, copy_n )
|
||||
endif
|
||||
enddo
|
||||
sync all
|
||||
enddo
|
||||
deallocate( buffer_key, buffer_val, copy_val, copy_key)
|
||||
|
||||
end
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
integer function load_$ao_integrals(filename)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Read from disk the $ao integrals
|
||||
END_DOC
|
||||
character*(*), intent(in) :: filename
|
||||
integer*8 :: i
|
||||
integer(cache_key_kind), pointer :: key(:)
|
||||
real(integral_kind), pointer :: val(:)
|
||||
integer :: iknd, kknd
|
||||
integer*8 :: n, j
|
||||
load_$ao_integrals = 1
|
||||
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
|
||||
read(66,err=98,end=98) iknd, kknd
|
||||
if (iknd /= integral_kind) then
|
||||
print *, 'Wrong integrals kind in file :', iknd
|
||||
stop 1
|
||||
endif
|
||||
if (kknd /= key_kind) then
|
||||
print *, 'Wrong key kind in file :', kknd
|
||||
stop 1
|
||||
endif
|
||||
read(66,err=98,end=98) $ao_integrals_map%sorted, $ao_integrals_map%map_size,&
|
||||
$ao_integrals_map%n_elements
|
||||
do i=0_8, $ao_integrals_map%map_size
|
||||
read(66,err=99,end=99) $ao_integrals_map%map(i)%sorted, &
|
||||
$ao_integrals_map%map(i)%map_size, $ao_integrals_map%map(i)%n_elements
|
||||
call cache_map_reallocate($ao_integrals_map%map(i),$ao_integrals_map%map(i)%map_size)
|
||||
enddo
|
||||
do i=0_8, $ao_integrals_map%map_size
|
||||
key => $ao_integrals_map%map(i)%key
|
||||
val => $ao_integrals_map%map(i)%value
|
||||
n = $ao_integrals_map%map(i)%n_elements
|
||||
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
|
||||
enddo
|
||||
call map_sort($ao_integrals_map)
|
||||
load_$ao_integrals = 0
|
||||
return
|
||||
99 continue
|
||||
call map_deinit($ao_integrals_map)
|
||||
98 continue
|
||||
stop 'Problem reading $ao_integrals_map file in work/'
|
||||
|
||||
end
|
||||
|
||||
SUBST [ ao_integrals_map, ao_integrals, ao_num ]
|
||||
ao_integrals_erf_map ; ao_integrals_erf ; ao_num ;;
|
||||
mo_integrals_erf_map ; mo_integrals_erf ; mo_tot_num;;
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ type(map_type), mo_integrals_erf_map ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO integrals
|
||||
END_DOC
|
||||
integer(key_kind) :: key_max
|
||||
integer(map_size_kind) :: sze
|
||||
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
|
||||
sze = key_max
|
||||
call map_init(mo_integrals_erf_map,sze)
|
||||
print*, 'MO map initialized'
|
||||
END_PROVIDER
|
||||
|
||||
subroutine insert_into_ao_integrals_erf_map(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create new entry into AO map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_integrals_erf_map, buffer_i, buffer_values, n_integrals)
|
||||
end
|
||||
|
||||
subroutine insert_into_mo_integrals_erf_map(n_integrals, &
|
||||
buffer_i, buffer_values, thr)
|
||||
use map_module
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Create new entry into MO map, or accumulate in an existing entry
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_integrals
|
||||
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
real(integral_kind), intent(in) :: thr
|
||||
call map_update(mo_integrals_erf_map, buffer_i, buffer_values, n_integrals, thr)
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_min ]
|
||||
&BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Min and max values of the MOs for which the integrals are in the cache
|
||||
END_DOC
|
||||
mo_integrals_erf_cache_min = max(1,elec_alpha_num - 31)
|
||||
mo_integrals_erf_cache_max = min(mo_tot_num,mo_integrals_erf_cache_min+63)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of MO integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
integer :: i,j,k,l
|
||||
integer :: ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
FREE ao_integrals_erf_cache
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
do j=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
do i=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(mo_integrals_erf_map,idx,integral)
|
||||
ii = l-mo_integrals_erf_cache_min
|
||||
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
|
||||
mo_integrals_erf_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function get_mo_bielec_integral_erf(i,j,k,l,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns one integral <ij|kl> in the MO basis
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
integer :: ii
|
||||
type(map_type), intent(inout) :: map
|
||||
real(integral_kind) :: tmp
|
||||
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
|
||||
ii = l-mo_integrals_erf_cache_min
|
||||
ii = ior(ii, k-mo_integrals_erf_cache_min)
|
||||
ii = ior(ii, j-mo_integrals_erf_cache_min)
|
||||
ii = ior(ii, i-mo_integrals_erf_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
get_mo_bielec_integral_erf = dble(tmp)
|
||||
else
|
||||
ii = l-mo_integrals_erf_cache_min
|
||||
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
|
||||
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
|
||||
get_mo_bielec_integral_erf = mo_integrals_erf_cache(ii)
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
double precision function mo_bielec_integral_erf(i,j,k,l)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns one integral <ij|kl> in the MO basis
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
|
||||
!DIR$ FORCEINLINE
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
mo_bielec_integral_erf = get_mo_bielec_integral_erf(i,j,k,l,mo_integrals_erf_map)
|
||||
return
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_erf(j,k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ij|kl> in the MO basis, all
|
||||
! i for j,k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: j,k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_erf_ij(k,l,sze,out_array,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ij|kl> in the MO basis, all
|
||||
! i(1)j(2) 1/r12 k(1)l(2)
|
||||
! i, j for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_array(sze,sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i,j,kk,ll,m
|
||||
integer(key_kind),allocatable :: hash(:)
|
||||
integer ,allocatable :: pairs(:,:), iorder(:)
|
||||
real(integral_kind), allocatable :: tmp_val(:)
|
||||
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
|
||||
tmp_val(sze*sze))
|
||||
|
||||
kk=0
|
||||
out_array = 0.d0
|
||||
do j=1,sze
|
||||
do i=1,sze
|
||||
kk += 1
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(i,j,k,l,hash(kk))
|
||||
pairs(1,kk) = i
|
||||
pairs(2,kk) = j
|
||||
iorder(kk) = kk
|
||||
enddo
|
||||
enddo
|
||||
|
||||
logical :: integral_is_in_map
|
||||
if (key_kind == 8) then
|
||||
call i8radix_sort(hash,iorder,kk,-1)
|
||||
else if (key_kind == 4) then
|
||||
call iradix_sort(hash,iorder,kk,-1)
|
||||
else if (key_kind == 2) then
|
||||
call i2radix_sort(hash,iorder,kk,-1)
|
||||
endif
|
||||
|
||||
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
|
||||
|
||||
do ll=1,kk
|
||||
m = iorder(ll)
|
||||
i=pairs(1,m)
|
||||
j=pairs(2,m)
|
||||
out_array(i,j) = tmp_val(ll)
|
||||
enddo
|
||||
|
||||
deallocate(pairs,hash,iorder,tmp_val)
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_erf_coulomb_ii(k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ki|li>
|
||||
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
|
||||
! for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
|
||||
integer :: kk
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(k,i,l,i,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine get_mo_bielec_integrals_erf_exch_ii(k,l,sze,out_val,map)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns multiple integrals <ki|il>
|
||||
! k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1)
|
||||
! for k,l fixed.
|
||||
END_DOC
|
||||
integer, intent(in) :: k,l, sze
|
||||
double precision, intent(out) :: out_val(sze)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
integer(key_kind) :: hash(sze)
|
||||
real(integral_kind) :: tmp_val(sze)
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
|
||||
integer :: kk
|
||||
do i=1,sze
|
||||
!DIR$ FORCEINLINE
|
||||
call bielec_integrals_index(k,i,i,l,hash(i))
|
||||
enddo
|
||||
|
||||
if (key_kind == 8) then
|
||||
call map_get_many(map, hash, out_val, sze)
|
||||
else
|
||||
call map_get_many(map, hash, tmp_val, sze)
|
||||
! Conversion to double precision
|
||||
do i=1,sze
|
||||
out_val(i) = dble(tmp_val(i))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
integer*8 function get_mo_erf_map_size()
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Return the number of elements in the MO map
|
||||
END_DOC
|
||||
get_mo_erf_map_size = mo_integrals_erf_map % n_elements
|
||||
end
|
@ -1,616 +0,0 @@
|
||||
subroutine mo_bielec_integrals_erf_index(i,j,k,l,i1)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes an unique index for i,j,k,l integrals
|
||||
END_DOC
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind), intent(out) :: i1
|
||||
integer(key_kind) :: p,q,r,s,i2
|
||||
p = min(i,k)
|
||||
r = max(i,k)
|
||||
p = p+ishft(r*r-r,-1)
|
||||
q = min(j,l)
|
||||
s = max(j,l)
|
||||
q = q+ishft(s*s-s,-1)
|
||||
i1 = min(p,q)
|
||||
i2 = max(p,q)
|
||||
i1 = i1+ishft(i2*i2-i2,-1)
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ logical, mo_bielec_integrals_erf_in_map ]
|
||||
use map_module
|
||||
implicit none
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer(bit_kind) :: mask_ijk(N_int,3)
|
||||
|
||||
BEGIN_DOC
|
||||
! If True, the map of MO bielectronic integrals is provided
|
||||
END_DOC
|
||||
|
||||
mo_bielec_integrals_erf_in_map = .True.
|
||||
if (read_mo_integrals_erf) then
|
||||
print*,'Reading the MO integrals_erf'
|
||||
call map_load_from_disk(trim(ezfio_filename)//'/work/mo_ints_erf',mo_integrals_erf_map)
|
||||
print*, 'MO integrals_erf provided'
|
||||
return
|
||||
else
|
||||
PROVIDE ao_bielec_integrals_erf_in_map
|
||||
endif
|
||||
|
||||
!if(no_vvvv_integrals)then
|
||||
! integer :: i,j,k,l
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
|
||||
! ! (core+inact+act) ^ 4
|
||||
! ! <ii|ii>
|
||||
! print*, ''
|
||||
! print*, '<ii|ii>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map(mask_ijkl)
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
|
||||
! ! (core+inact+act) ^ 2 (virt) ^2
|
||||
! ! <iv|iv> = J_iv
|
||||
! print*, ''
|
||||
! print*, '<iv|iv>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map(mask_ijkl)
|
||||
!
|
||||
! ! (core+inact+act) ^ 2 (virt) ^2
|
||||
! ! <ii|vv> = (iv|iv)
|
||||
! print*, ''
|
||||
! print*, '<ii|vv>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
! mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map(mask_ijkl)
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
|
||||
! if(.not.no_vvv_integrals)then
|
||||
! print*, ''
|
||||
! print*, '<rv|sv> and <rv|vs>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijk(i,1) = virt_bitmask(i,1)
|
||||
! mask_ijk(i,2) = virt_bitmask(i,1)
|
||||
! mask_ijk(i,3) = virt_bitmask(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map_three_indices(mask_ijk)
|
||||
! endif
|
||||
!
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
|
||||
! ! (core+inact+act) ^ 3 (virt) ^1
|
||||
! ! <iv|ii>
|
||||
! print*, ''
|
||||
! print*, '<iv|ii>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map(mask_ijkl)
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
|
||||
! ! (core+inact+act) ^ 1 (virt) ^3
|
||||
! ! <iv|vv>
|
||||
! if(.not.no_ivvv_integrals)then
|
||||
! print*, ''
|
||||
! print*, '<iv|vv>'
|
||||
! do i = 1,N_int
|
||||
! mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
! mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
! mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
! mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
! enddo
|
||||
! call add_integrals_to_map_no_exit_34(mask_ijkl)
|
||||
! endif
|
||||
!
|
||||
!else
|
||||
call add_integrals_erf_to_map(full_ijkl_bitmask_4)
|
||||
!endif
|
||||
if (write_mo_integrals_erf) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints_erf',mo_integrals_erf_map)
|
||||
call ezfio_set_integrals_erf_disk_access_mo_integrals_erf("Read")
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine add_integrals_erf_to_map(mask_ijkl)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Adds integrals to tha MO map according to some bitmask
|
||||
END_DOC
|
||||
|
||||
integer(bit_kind), intent(in) :: mask_ijkl(N_int,4)
|
||||
|
||||
integer :: i,j,k,l
|
||||
integer :: i0,j0,k0,l0
|
||||
double precision :: c, cpu_1, cpu_2, wall_1, wall_2, wall_0
|
||||
|
||||
integer, allocatable :: list_ijkl(:,:)
|
||||
integer :: n_i, n_j, n_k, n_l
|
||||
integer, allocatable :: bielec_tmp_0_idx(:)
|
||||
real(integral_kind), allocatable :: bielec_tmp_0(:,:)
|
||||
double precision, allocatable :: bielec_tmp_1(:)
|
||||
double precision, allocatable :: bielec_tmp_2(:,:)
|
||||
double precision, allocatable :: bielec_tmp_3(:,:,:)
|
||||
!DEC$ ATTRIBUTES ALIGN : 64 :: bielec_tmp_1, bielec_tmp_2, bielec_tmp_3
|
||||
|
||||
integer :: n_integrals
|
||||
integer :: size_buffer
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
real :: map_mb
|
||||
|
||||
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
|
||||
integer :: i2,i3,i4
|
||||
double precision,parameter :: thr_coef = 1.d-10
|
||||
|
||||
PROVIDE ao_bielec_integrals_erf_in_map mo_coef
|
||||
|
||||
!Get list of MOs for i,j,k and l
|
||||
!-------------------------------
|
||||
|
||||
allocate(list_ijkl(mo_tot_num,4))
|
||||
call bitstring_to_list( mask_ijkl(1,1), list_ijkl(1,1), n_i, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
|
||||
character*(2048) :: output(1)
|
||||
print*, 'i'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,1), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,1))
|
||||
enddo
|
||||
if(j==0)then
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'j'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,2), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,2))
|
||||
enddo
|
||||
if(j==0)then
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'k'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,3), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,3))
|
||||
enddo
|
||||
if(j==0)then
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'l'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,4), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,4))
|
||||
enddo
|
||||
if(j==0)then
|
||||
return
|
||||
endif
|
||||
|
||||
size_buffer = min(ao_num*ao_num*ao_num,16000000)
|
||||
print*, 'Providing the molecular integrals '
|
||||
print*, 'Buffers : ', 8.*(mo_tot_num_align*(n_j)*(n_k+1) + mo_tot_num_align +&
|
||||
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
|
||||
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
double precision :: accu_bis
|
||||
accu_bis = 0.d0
|
||||
|
||||
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
|
||||
!$OMP bielec_tmp_0_idx, bielec_tmp_0, bielec_tmp_1,bielec_tmp_2,bielec_tmp_3,&
|
||||
!$OMP buffer_i,buffer_value,n_integrals,wall_2,i0,j0,k0,l0, &
|
||||
!$OMP wall_0,thread_num,accu_bis) &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP SHARED(size_buffer,ao_num,mo_tot_num,n_i,n_j,n_k,n_l,mo_tot_num_align,&
|
||||
!$OMP mo_coef_transp, &
|
||||
!$OMP mo_coef_transp_is_built, list_ijkl, &
|
||||
!$OMP mo_coef_is_built, wall_1, &
|
||||
!$OMP mo_coef,mo_integrals_threshold,mo_integrals_erf_map)
|
||||
n_integrals = 0
|
||||
wall_0 = wall_1
|
||||
allocate(bielec_tmp_3(mo_tot_num_align, n_j, n_k), &
|
||||
bielec_tmp_1(mo_tot_num_align), &
|
||||
bielec_tmp_0(ao_num,ao_num), &
|
||||
bielec_tmp_0_idx(ao_num), &
|
||||
bielec_tmp_2(mo_tot_num_align, n_j), &
|
||||
buffer_i(size_buffer), &
|
||||
buffer_value(size_buffer) )
|
||||
|
||||
thread_num = 0
|
||||
!$ thread_num = omp_get_thread_num()
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do l1 = 1,ao_num
|
||||
!DEC$ VECTOR ALIGNED
|
||||
bielec_tmp_3 = 0.d0
|
||||
do k1 = 1,ao_num
|
||||
!DEC$ VECTOR ALIGNED
|
||||
bielec_tmp_2 = 0.d0
|
||||
do j1 = 1,ao_num
|
||||
call get_ao_bielec_integrals_erf(j1,k1,l1,ao_num,bielec_tmp_0(1,j1))
|
||||
! call compute_ao_bielec_integrals(j1,k1,l1,ao_num,bielec_tmp_0(1,j1))
|
||||
enddo
|
||||
do j1 = 1,ao_num
|
||||
kmax = 0
|
||||
do i1 = 1,ao_num
|
||||
c = bielec_tmp_0(i1,j1)
|
||||
if (c == 0.d0) then
|
||||
cycle
|
||||
endif
|
||||
kmax += 1
|
||||
bielec_tmp_0(kmax,j1) = c
|
||||
bielec_tmp_0_idx(kmax) = i1
|
||||
enddo
|
||||
|
||||
if (kmax==0) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
!DEC$ VECTOR ALIGNED
|
||||
bielec_tmp_1 = 0.d0
|
||||
ii1=1
|
||||
do ii1 = 1,kmax-4,4
|
||||
i1 = bielec_tmp_0_idx(ii1)
|
||||
i2 = bielec_tmp_0_idx(ii1+1)
|
||||
i3 = bielec_tmp_0_idx(ii1+2)
|
||||
i4 = bielec_tmp_0_idx(ii1+3)
|
||||
do i = list_ijkl(1,1), list_ijkl(n_i,1)
|
||||
bielec_tmp_1(i) = bielec_tmp_1(i) + &
|
||||
mo_coef_transp(i,i1) * bielec_tmp_0(ii1,j1) + &
|
||||
mo_coef_transp(i,i2) * bielec_tmp_0(ii1+1,j1) + &
|
||||
mo_coef_transp(i,i3) * bielec_tmp_0(ii1+2,j1) + &
|
||||
mo_coef_transp(i,i4) * bielec_tmp_0(ii1+3,j1)
|
||||
enddo ! i
|
||||
enddo ! ii1
|
||||
|
||||
i2 = ii1
|
||||
do ii1 = i2,kmax
|
||||
i1 = bielec_tmp_0_idx(ii1)
|
||||
do i = list_ijkl(1,1), list_ijkl(n_i,1)
|
||||
bielec_tmp_1(i) = bielec_tmp_1(i) + mo_coef_transp(i,i1) * bielec_tmp_0(ii1,j1)
|
||||
enddo ! i
|
||||
enddo ! ii1
|
||||
c = 0.d0
|
||||
|
||||
do i = list_ijkl(1,1), list_ijkl(n_i,1)
|
||||
c = max(c,abs(bielec_tmp_1(i)))
|
||||
if (c>mo_integrals_threshold) exit
|
||||
enddo
|
||||
if ( c < mo_integrals_threshold ) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do j0 = 1, n_j
|
||||
j = list_ijkl(j0,2)
|
||||
c = mo_coef_transp(j,j1)
|
||||
if (abs(c) < thr_coef) then
|
||||
cycle
|
||||
endif
|
||||
do i = list_ijkl(1,1), list_ijkl(n_i,1)
|
||||
bielec_tmp_2(i,j0) = bielec_tmp_2(i,j0) + c * bielec_tmp_1(i)
|
||||
enddo ! i
|
||||
enddo ! j
|
||||
enddo !j1
|
||||
if ( maxval(abs(bielec_tmp_2)) < mo_integrals_threshold ) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
|
||||
do k0 = 1, n_k
|
||||
k = list_ijkl(k0,3)
|
||||
c = mo_coef_transp(k,k1)
|
||||
if (abs(c) < thr_coef) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do j0 = 1, n_j
|
||||
j = list_ijkl(j0,2)
|
||||
do i = list_ijkl(1,1), k
|
||||
bielec_tmp_3(i,j0,k0) = bielec_tmp_3(i,j0,k0) + c* bielec_tmp_2(i,j0)
|
||||
enddo!i
|
||||
enddo !j
|
||||
|
||||
enddo !k
|
||||
enddo !k1
|
||||
|
||||
|
||||
|
||||
do l0 = 1,n_l
|
||||
l = list_ijkl(l0,4)
|
||||
c = mo_coef_transp(l,l1)
|
||||
if (abs(c) < thr_coef) then
|
||||
cycle
|
||||
endif
|
||||
j1 = ishft((l*l-l),-1)
|
||||
do j0 = 1, n_j
|
||||
j = list_ijkl(j0,2)
|
||||
if (j > l) then
|
||||
exit
|
||||
endif
|
||||
j1 += 1
|
||||
do k0 = 1, n_k
|
||||
k = list_ijkl(k0,3)
|
||||
i1 = ishft((k*k-k),-1)
|
||||
if (i1<=j1) then
|
||||
continue
|
||||
else
|
||||
exit
|
||||
endif
|
||||
bielec_tmp_1 = 0.d0
|
||||
do i0 = 1, n_i
|
||||
i = list_ijkl(i0,1)
|
||||
if (i>k) then
|
||||
exit
|
||||
endif
|
||||
bielec_tmp_1(i) = c*bielec_tmp_3(i,j0,k0)
|
||||
! i1+=1
|
||||
enddo
|
||||
|
||||
do i0 = 1, n_i
|
||||
i = list_ijkl(i0,1)
|
||||
if(i> min(k,j1-i1+list_ijkl(1,1)-1))then
|
||||
exit
|
||||
endif
|
||||
if (abs(bielec_tmp_1(i)) < mo_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
n_integrals += 1
|
||||
buffer_value(n_integrals) = bielec_tmp_1(i)
|
||||
!DEC$ FORCEINLINE
|
||||
call mo_bielec_integrals_erf_index(i,j,k,l,buffer_i(n_integrals))
|
||||
if (n_integrals == size_buffer) then
|
||||
call insert_into_mo_integrals_erf_map(n_integrals,buffer_i,buffer_value,&
|
||||
real(mo_integrals_threshold,integral_kind))
|
||||
n_integrals = 0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall_2)
|
||||
if (thread_num == 0) then
|
||||
if (wall_2 - wall_0 > 1.d0) then
|
||||
wall_0 = wall_2
|
||||
print*, 100.*float(l1)/float(ao_num), '% in ', &
|
||||
wall_2-wall_1, 's', map_mb(mo_integrals_erf_map) ,'MB'
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate (bielec_tmp_1,bielec_tmp_2,bielec_tmp_3)
|
||||
|
||||
integer :: index_needed
|
||||
|
||||
call insert_into_mo_integrals_erf_map(n_integrals,buffer_i,buffer_value,&
|
||||
real(mo_integrals_threshold,integral_kind))
|
||||
deallocate(buffer_i, buffer_value)
|
||||
!$OMP END PARALLEL
|
||||
call map_unique(mo_integrals_erf_map)
|
||||
|
||||
call wall_time(wall_2)
|
||||
call cpu_time(cpu_2)
|
||||
integer*8 :: get_mo_erf_map_size, mo_erf_map_size
|
||||
mo_erf_map_size = get_mo_erf_map_size()
|
||||
|
||||
deallocate(list_ijkl)
|
||||
|
||||
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_erf_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_erf_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_from_ao, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_exchange_from_ao, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_anti_from_ao, (mo_tot_num_align,mo_tot_num) ]
|
||||
BEGIN_DOC
|
||||
! mo_bielec_integral_jj_from_ao(i,j) = J_ij
|
||||
! mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij
|
||||
! mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,p,q,r,s
|
||||
double precision :: c
|
||||
real(integral_kind) :: integral
|
||||
integer :: n, pp
|
||||
real(integral_kind), allocatable :: int_value(:)
|
||||
integer, allocatable :: int_idx(:)
|
||||
|
||||
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
|
||||
|
||||
if (.not.do_direct_integrals) then
|
||||
PROVIDE ao_bielec_integrals_erf_in_map mo_coef
|
||||
endif
|
||||
|
||||
mo_bielec_integral_erf_jj_from_ao = 0.d0
|
||||
mo_bielec_integral_erf_jj_exchange_from_ao = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: iqrs, iqsr
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE (i,j,p,q,r,s,integral,c,n,pp,int_value,int_idx, &
|
||||
!$OMP iqrs, iqsr,iqri,iqis) &
|
||||
!$OMP SHARED(mo_tot_num,mo_coef_transp,mo_tot_num_align,ao_num,&
|
||||
!$OMP ao_integrals_threshold,do_direct_integrals) &
|
||||
!$OMP REDUCTION(+:mo_bielec_integral_erf_jj_from_ao,mo_bielec_integral_erf_jj_exchange_from_ao)
|
||||
|
||||
allocate( int_value(ao_num), int_idx(ao_num), &
|
||||
iqrs(mo_tot_num_align,ao_num), iqis(mo_tot_num), iqri(mo_tot_num),&
|
||||
iqsr(mo_tot_num_align,ao_num) )
|
||||
|
||||
!$OMP DO SCHEDULE (guided)
|
||||
do s=1,ao_num
|
||||
do q=1,ao_num
|
||||
|
||||
do j=1,ao_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqrs(i,j) = 0.d0
|
||||
iqsr(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (do_direct_integrals) then
|
||||
double precision :: ao_bielec_integral_erf
|
||||
do r=1,ao_num
|
||||
call compute_ao_bielec_integrals_erf(q,r,s,ao_num,int_value)
|
||||
do p=1,ao_num
|
||||
integral = int_value(p)
|
||||
if (abs(integral) > ao_integrals_threshold) then
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqrs(i,r) += mo_coef_transp(i,p) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
call compute_ao_bielec_integrals_erf(q,s,r,ao_num,int_value)
|
||||
do p=1,ao_num
|
||||
integral = int_value(p)
|
||||
if (abs(integral) > ao_integrals_threshold) then
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqsr(i,r) += mo_coef_transp(i,p) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do r=1,ao_num
|
||||
call get_ao_bielec_integrals_erf_non_zero(q,r,s,ao_num,int_value,int_idx,n)
|
||||
do pp=1,n
|
||||
p = int_idx(pp)
|
||||
integral = int_value(pp)
|
||||
if (abs(integral) > ao_integrals_threshold) then
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqrs(i,r) += mo_coef_transp(i,p) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
call get_ao_bielec_integrals_erf_non_zero(q,s,r,ao_num,int_value,int_idx,n)
|
||||
do pp=1,n
|
||||
p = int_idx(pp)
|
||||
integral = int_value(pp)
|
||||
if (abs(integral) > ao_integrals_threshold) then
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqsr(i,r) += mo_coef_transp(i,p) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
iqis = 0.d0
|
||||
iqri = 0.d0
|
||||
do r=1,ao_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,mo_tot_num
|
||||
iqis(i) += mo_coef_transp(i,r) * iqrs(i,r)
|
||||
iqri(i) += mo_coef_transp(i,r) * iqsr(i,r)
|
||||
enddo
|
||||
enddo
|
||||
do i=1,mo_tot_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do j=1,mo_tot_num
|
||||
c = mo_coef_transp(j,q)*mo_coef_transp(j,s)
|
||||
mo_bielec_integral_erf_jj_from_ao(j,i) += c * iqis(i)
|
||||
mo_bielec_integral_erf_jj_exchange_from_ao(j,i) += c * iqri(i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate(iqrs,iqsr,int_value,int_idx)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
mo_bielec_integral_erf_jj_anti_from_ao = mo_bielec_integral_erf_jj_from_ao - mo_bielec_integral_erf_jj_exchange_from_ao
|
||||
|
||||
|
||||
! end
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_exchange, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_erf_jj_anti, (mo_tot_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_bielec_integral_jj(i,j) = J_ij
|
||||
! mo_bielec_integral_jj_exchange(i,j) = K_ij
|
||||
! mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
double precision :: get_mo_bielec_integral_erf
|
||||
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
mo_bielec_integral_erf_jj = 0.d0
|
||||
mo_bielec_integral_erf_jj_exchange = 0.d0
|
||||
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
mo_bielec_integral_erf_jj(i,j) = get_mo_bielec_integral_erf(i,j,i,j,mo_integrals_erf_map)
|
||||
mo_bielec_integral_erf_jj_exchange(i,j) = get_mo_bielec_integral_erf(i,j,j,i,mo_integrals_erf_map)
|
||||
mo_bielec_integral_erf_jj_anti(i,j) = mo_bielec_integral_erf_jj(i,j) - mo_bielec_integral_erf_jj_exchange(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine clear_mo_erf_map
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Frees the memory of the MO map
|
||||
END_DOC
|
||||
call map_deinit(mo_integrals_erf_map)
|
||||
FREE mo_integrals_erf_map mo_bielec_integral_erf_jj mo_bielec_integral_erf_jj_anti
|
||||
FREE mo_bielec_integral_Erf_jj_exchange mo_bielec_integrals_erf_in_map
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine provide_all_mo_integrals_erf
|
||||
implicit none
|
||||
provide mo_integrals_erf_map mo_bielec_integral_erf_jj mo_bielec_integral_erf_jj_anti
|
||||
provide mo_bielec_integral_erf_jj_exchange mo_bielec_integrals_erf_in_map
|
||||
|
||||
end
|
@ -1,119 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [ logical, ao_bielec_integrals_erf_in_map ]
|
||||
implicit none
|
||||
use f77_zmq
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! Map of Atomic integrals
|
||||
! i(r1) j(r2) 1/r12 k(r1) l(r2)
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
|
||||
double precision :: integral, wall_0
|
||||
include 'Utils/constants.include.F'
|
||||
|
||||
! For integrals file
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
integer,parameter :: size_buffer = 1024*64
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
|
||||
integer :: n_integrals, rc
|
||||
integer :: kk, m, j1, i1, lmax
|
||||
character*(64) :: fmt
|
||||
|
||||
integral = ao_bielec_integral_erf(1,1,1,1)
|
||||
|
||||
real :: map_mb
|
||||
PROVIDE read_ao_integrals_erf disk_access_ao_integrals_erf
|
||||
if (read_ao_integrals_erf) then
|
||||
print*,'Reading the AO integrals_erf'
|
||||
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints_erf',ao_integrals_erf_map)
|
||||
print*, 'AO integrals_erf provided'
|
||||
ao_bielec_integrals_erf_in_map = .True.
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'Providing the AO integrals_erf'
|
||||
call wall_time(wall_0)
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
call new_parallel_job(zmq_to_qp_run_socket,'ao_integrals_erf')
|
||||
|
||||
character(len=:), allocatable :: task
|
||||
allocate(character(len=ao_num*12) :: task)
|
||||
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
|
||||
do l=1,ao_num
|
||||
write(task,fmt) (i,l, i=1,l)
|
||||
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
|
||||
enddo
|
||||
deallocate(task)
|
||||
|
||||
call zmq_set_running(zmq_to_qp_run_socket)
|
||||
|
||||
PROVIDE nproc
|
||||
!$OMP PARALLEL DEFAULT(private) num_threads(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call ao_bielec_integrals_erf_in_map_collector(i)
|
||||
else
|
||||
call ao_bielec_integrals_erf_in_map_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, 'ao_integrals_erf')
|
||||
|
||||
|
||||
print*, 'Sorting the map'
|
||||
call map_sort(ao_integrals_erf_map)
|
||||
call cpu_time(cpu_2)
|
||||
call wall_time(wall_2)
|
||||
integer(map_size_kind) :: get_ao_erf_map_size, ao_erf_map_size
|
||||
ao_erf_map_size = get_ao_erf_map_size()
|
||||
|
||||
print*, 'AO integrals provided:'
|
||||
print*, ' Size of AO map : ', map_mb(ao_integrals_erf_map) ,'MB'
|
||||
print*, ' Number of AO integrals :', ao_erf_map_size
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
|
||||
ao_bielec_integrals_erf_in_map = .True.
|
||||
|
||||
if (write_ao_integrals_erf) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints_erf',ao_integrals_erf_map)
|
||||
call ezfio_set_integrals_erf_disk_access_ao_integrals_erf("Read")
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_bielec_integral_erf_schwartz,(ao_num,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Needed to compute Schwartz inequalities
|
||||
END_DOC
|
||||
|
||||
integer :: i,k
|
||||
double precision :: ao_bielec_integral_erf,cpu_1,cpu_2, wall_1, wall_2
|
||||
|
||||
ao_bielec_integral_erf_schwartz(1,1) = ao_bielec_integral_erf(1,1,1,1)
|
||||
!$OMP PARALLEL DO PRIVATE(i,k) &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP SHARED (ao_num,ao_bielec_integral_erf_schwartz) &
|
||||
!$OMP SCHEDULE(dynamic)
|
||||
do i=1,ao_num
|
||||
do k=1,i
|
||||
ao_bielec_integral_erf_schwartz(i,k) = dsqrt(ao_bielec_integral_erf(i,k,i,k))
|
||||
ao_bielec_integral_erf_schwartz(k,i) = ao_bielec_integral_erf_schwartz(i,k)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,32 +0,0 @@
|
||||
program qp_ao_ints
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Increments a running calculation to compute AO integral_erfs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
call switch_qp_run_to_master
|
||||
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
|
||||
! Set the state of the ZMQ
|
||||
zmq_state = 'ao_integral_erfs'
|
||||
|
||||
! Provide everything needed
|
||||
double precision :: integral_erf, ao_bielec_integral_erf
|
||||
integral_erf = ao_bielec_integral_erf(1,1,1,1)
|
||||
|
||||
character*(64) :: state
|
||||
call wait_for_state(zmq_state,state)
|
||||
do while (state /= 'Stopped')
|
||||
!$OMP PARALLEL DEFAULT(PRIVATE) PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call ao_bielec_integrals_erf_in_map_slave_tcp(i)
|
||||
!$OMP END PARALLEL
|
||||
call wait_for_state(zmq_state,state)
|
||||
enddo
|
||||
|
||||
print *, 'Done'
|
||||
end
|
||||
|
@ -1,47 +0,0 @@
|
||||
BEGIN_PROVIDER [ logical, read_ao_integrals_erf ]
|
||||
&BEGIN_PROVIDER [ logical, read_mo_integrals_erf ]
|
||||
&BEGIN_PROVIDER [ logical, write_ao_integrals_erf ]
|
||||
&BEGIN_PROVIDER [ logical, write_mo_integrals_erf ]
|
||||
|
||||
BEGIN_DOC
|
||||
! One level of abstraction for disk_access_ao_integrals_erf and disk_access_mo_integrals_erf
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
if (disk_access_ao_integrals_erf.EQ.'Read') then
|
||||
read_ao_integrals_erf = .True.
|
||||
write_ao_integrals_erf = .False.
|
||||
|
||||
else if (disk_access_ao_integrals_erf.EQ.'Write') then
|
||||
read_ao_integrals_erf = .False.
|
||||
write_ao_integrals_erf = .True.
|
||||
|
||||
else if (disk_access_ao_integrals_erf.EQ.'None') then
|
||||
read_ao_integrals_erf = .False.
|
||||
write_ao_integrals_erf = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals_erf/disk_access_ao_integrals_erf has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
||||
if (disk_access_mo_integrals_erf.EQ.'Read') then
|
||||
read_mo_integrals_erf = .True.
|
||||
write_mo_integrals_erf = .False.
|
||||
|
||||
else if (disk_access_mo_integrals_erf.EQ.'Write') then
|
||||
read_mo_integrals_erf = .False.
|
||||
write_mo_integrals_erf = .True.
|
||||
|
||||
else if (disk_access_mo_integrals_erf.EQ.'None') then
|
||||
read_mo_integrals_erf = .False.
|
||||
write_mo_integrals_erf = .False.
|
||||
|
||||
else
|
||||
print *, 'bielec_integrals_erf/disk_access_mo_integrals_erf has a wrong type'
|
||||
stop 1
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
@ -1 +0,0 @@
|
||||
Integrals_Monoelec Integrals_erf Determinants DFT_Utils
|
@ -1,12 +0,0 @@
|
||||
==============
|
||||
core_integrals
|
||||
==============
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
@ -1,79 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, density_matrix_read, (mo_tot_num, mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
logical :: exists
|
||||
call ezfio_has_determinants_density_matrix_mo_disk(exists)
|
||||
if(exists)then
|
||||
print*, 'reading the density matrix from input'
|
||||
call ezfio_get_determinants_density_matrix_mo_disk(exists)
|
||||
print*, 'reading done'
|
||||
else
|
||||
print*, 'no density matrix found in EZFIO file ...'
|
||||
print*, 'stopping ..'
|
||||
stop
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, effective_short_range_operator, (mo_tot_num,mo_tot_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l,m,n
|
||||
double precision :: get_mo_bielec_integral,get_mo_bielec_integral_erf
|
||||
double precision :: integral, integral_erf
|
||||
effective_short_range_operator = 0.d0
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
if(dabs(one_body_dm_mo(i,j)).le.1.d-10)cycle
|
||||
do k = 1, mo_tot_num
|
||||
do l = 1, mo_tot_num
|
||||
integral = get_mo_bielec_integral(i,k,j,l,mo_integrals_map)
|
||||
! integral_erf = get_mo_bielec_integral_erf(i,k,j,l,mo_integrals_erf_map)
|
||||
effective_short_range_operator(l,k) += one_body_dm_mo(i,j) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, effective_one_e_potential, (mo_tot_num_align, mo_tot_num,N_states)]
|
||||
implicit none
|
||||
integer :: i,j,i_state
|
||||
effective_one_e_potential = 0.d0
|
||||
do i_state = 1, N_states
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
effective_one_e_potential(i,j,i_state) = effective_short_range_operator(i,j) + mo_nucl_elec_integral(i,j) + mo_kinetic_integral(i,j) &
|
||||
+ 0.5d0 * (lda_ex_potential_alpha_ao(i,j,i_state) + lda_ex_potential_beta_ao(i,j,i_state))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine save_one_e_effective_potential
|
||||
implicit none
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
allocate(tmp(size(effective_one_e_potential,1),size(effective_one_e_potential,2)))
|
||||
integer :: i,j
|
||||
do i = 1, mo_tot_num
|
||||
do j = 1, mo_tot_num
|
||||
tmp(i,j) = effective_one_e_potential(i,j,1)
|
||||
enddo
|
||||
enddo
|
||||
call write_one_e_integrals('mo_one_integral', tmp, &
|
||||
size(tmp,1), size(tmp,2))
|
||||
call ezfio_set_integrals_monoelec_disk_access_only_mo_one_integrals("Read")
|
||||
deallocate(tmp)
|
||||
|
||||
end
|
||||
|
||||
subroutine save_erf_bi_elec_integrals
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
PROVIDE mo_bielec_integrals_erf_in_map
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_erf_map)
|
||||
call ezfio_set_integrals_bielec_disk_access_mo_integrals("Read")
|
||||
end
|
@ -1,18 +0,0 @@
|
||||
program write_integrals
|
||||
implicit none
|
||||
read_wf = .true.
|
||||
touch read_wf
|
||||
disk_access_only_mo_one_integrals = "None"
|
||||
touch disk_access_only_mo_one_integrals
|
||||
disk_access_mo_integrals = "None"
|
||||
touch disk_access_mo_integrals
|
||||
call routine
|
||||
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
call save_one_e_effective_potential
|
||||
call save_erf_bi_elec_integrals
|
||||
|
||||
end
|
@ -1,54 +0,0 @@
|
||||
[thresh_scf]
|
||||
type: Threshold
|
||||
doc: Threshold on the convergence of the Hartree Fock energy
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[exchange_functional]
|
||||
type: character*(256)
|
||||
doc: name of the exchange functional
|
||||
interface: ezfio, provider, ocaml
|
||||
default: "LDA"
|
||||
|
||||
|
||||
[correlation_functional]
|
||||
type: character*(256)
|
||||
doc: name of the correlation functional
|
||||
interface: ezfio, provider, ocaml
|
||||
default: "LDA"
|
||||
|
||||
[HF_exchange]
|
||||
type: double precision
|
||||
doc: Percentage of HF exchange in the DFT model
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.
|
||||
|
||||
[n_it_scf_max]
|
||||
type: Strictly_positive_int
|
||||
doc: Maximum number of SCF iterations
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 200
|
||||
|
||||
[level_shift]
|
||||
type: Positive_float
|
||||
doc: Energy shift on the virtual MOs to improve SCF convergence
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.5
|
||||
|
||||
[mo_guess_type]
|
||||
type: MO_guess
|
||||
doc: Initial MO guess. Can be [ Huckel | HCore ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: Huckel
|
||||
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated HF energy
|
||||
interface: ezfio
|
||||
|
||||
[no_oa_or_av_opt]
|
||||
type: logical
|
||||
doc: If true, skip the (inactive+core) --> (active) and the (active) --> (virtual) orbital rotations within the SCF procedure
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
@ -1,468 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_mo, (mo_tot_num_align,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo, (mo_tot_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis.
|
||||
! For open shells, the ROHF Fock Matrix is
|
||||
!
|
||||
! | F-K | F + K/2 | F |
|
||||
! |---------------------------------|
|
||||
! | F + K/2 | F | F - K/2 |
|
||||
! |---------------------------------|
|
||||
! | F | F - K/2 | F + K |
|
||||
!
|
||||
! F = 1/2 (Fa + Fb)
|
||||
!
|
||||
! K = Fb - Fa
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
if (elec_alpha_num == elec_beta_num) then
|
||||
Fock_matrix_mo = Fock_matrix_alpha_mo
|
||||
else
|
||||
|
||||
do j=1,elec_beta_num
|
||||
! F-K
|
||||
do i=1,elec_beta_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
|
||||
- (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
! F+K/2
|
||||
do i=elec_beta_num+1,elec_alpha_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
|
||||
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_alpha_num+1, mo_tot_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=elec_beta_num+1,elec_alpha_num
|
||||
! F+K/2
|
||||
do i=1,elec_beta_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
|
||||
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_beta_num+1,elec_alpha_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_alpha_num+1, mo_tot_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
|
||||
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=elec_alpha_num+1, mo_tot_num
|
||||
! F
|
||||
do i=1,elec_beta_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_beta_num+1,elec_alpha_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
|
||||
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
! F+K
|
||||
do i=elec_alpha_num+1,mo_tot_num
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j)) &
|
||||
+ (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
do i = 1, mo_tot_num
|
||||
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_ao, (ao_num_align, ao_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_ao, (ao_num_align, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,ao_num
|
||||
Fock_matrix_alpha_ao(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j)
|
||||
Fock_matrix_beta_ao (i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_no_xc_ao, (ao_num_align, ao_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num_align, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Mono electronic an Coulomb matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,ao_num
|
||||
Fock_matrix_alpha_no_xc_ao(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_alpha(i,j)
|
||||
Fock_matrix_beta_no_xc_ao(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_beta (i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_bi_elec_integral_alpha, (ao_num_align, ao_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, ao_bi_elec_integral_beta , (ao_num_align, ao_num) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l,k1,r,s
|
||||
integer :: i0,j0,k0,l0
|
||||
integer*8 :: p,q
|
||||
double precision :: integral, c0, c1, c2
|
||||
double precision :: ao_bielec_integral, local_threshold
|
||||
double precision, allocatable :: ao_bi_elec_integral_alpha_tmp(:,:)
|
||||
double precision, allocatable :: ao_bi_elec_integral_beta_tmp(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_beta_tmp
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_bi_elec_integral_alpha_tmp
|
||||
|
||||
ao_bi_elec_integral_alpha = 0.d0
|
||||
ao_bi_elec_integral_beta = 0.d0
|
||||
if (do_direct_integrals) then
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s,i0,j0,k0,l0, &
|
||||
!$OMP ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp, c0, c1, c2, &
|
||||
!$OMP local_threshold)&
|
||||
!$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
|
||||
!$OMP ao_integrals_map,ao_integrals_threshold, ao_bielec_integral_schwartz, &
|
||||
!$OMP ao_overlap_abs, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta)
|
||||
|
||||
allocate(keys(1), values(1))
|
||||
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
|
||||
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
|
||||
ao_bi_elec_integral_alpha_tmp = 0.d0
|
||||
ao_bi_elec_integral_beta_tmp = 0.d0
|
||||
|
||||
q = ao_num*ao_num*ao_num*ao_num
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do p=1_8,q
|
||||
call bielec_integrals_index_reverse(kk,ii,ll,jj,p)
|
||||
if ( (kk(1)>ao_num).or. &
|
||||
(ii(1)>ao_num).or. &
|
||||
(jj(1)>ao_num).or. &
|
||||
(ll(1)>ao_num) ) then
|
||||
cycle
|
||||
endif
|
||||
k = kk(1)
|
||||
i = ii(1)
|
||||
l = ll(1)
|
||||
j = jj(1)
|
||||
|
||||
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
|
||||
< ao_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
local_threshold = ao_bielec_integral_schwartz(k,l)*ao_bielec_integral_schwartz(i,j)
|
||||
if (local_threshold < ao_integrals_threshold) then
|
||||
cycle
|
||||
endif
|
||||
i0 = i
|
||||
j0 = j
|
||||
k0 = k
|
||||
l0 = l
|
||||
values(1) = 0.d0
|
||||
local_threshold = ao_integrals_threshold/local_threshold
|
||||
do k2=1,8
|
||||
if (kk(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
c0 = HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)
|
||||
c1 = HF_density_matrix_ao_alpha(k,i)
|
||||
c2 = HF_density_matrix_ao_beta(k,i)
|
||||
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
|
||||
cycle
|
||||
endif
|
||||
if (values(1) == 0.d0) then
|
||||
values(1) = ao_bielec_integral(k0,l0,i0,j0)
|
||||
endif
|
||||
integral = c0 * values(1)
|
||||
ao_bi_elec_integral_alpha_tmp(i,j) += integral
|
||||
ao_bi_elec_integral_beta_tmp (i,j) += integral
|
||||
integral = values(1)
|
||||
ao_bi_elec_integral_alpha_tmp(l,j) -= c1 * integral
|
||||
ao_bi_elec_integral_beta_tmp (l,j) -= c2 * integral
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
|
||||
!$OMP END CRITICAL
|
||||
!$OMP CRITICAL
|
||||
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
else
|
||||
PROVIDE ao_bielec_integrals_in_map
|
||||
|
||||
integer(omp_lock_kind) :: lck(ao_num)
|
||||
integer*8 :: i8
|
||||
integer :: ii(8), jj(8), kk(8), ll(8), k2
|
||||
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
|
||||
! !$OMP PARALLEL DEFAULT(NONE) &
|
||||
! !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
! !$OMP n_elements,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)&
|
||||
! !$OMP SHARED(ao_num,ao_num_align,HF_density_matrix_ao_alpha,HF_density_matrix_ao_beta,&
|
||||
! !$OMP ao_integrals_map, ao_bi_elec_integral_alpha, ao_bi_elec_integral_beta,HF_exchange)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_bi_elec_integral_alpha_tmp(ao_num_align,ao_num), &
|
||||
ao_bi_elec_integral_beta_tmp(ao_num_align,ao_num))
|
||||
ao_bi_elec_integral_alpha_tmp = 0.d0
|
||||
ao_bi_elec_integral_beta_tmp = 0.d0
|
||||
|
||||
! !OMP DO SCHEDULE(dynamic)
|
||||
! !DIR$ NOVECTOR
|
||||
do i8=0_8,ao_integrals_map%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
call bielec_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
|
||||
|
||||
do k2=1,8
|
||||
if (kk(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = (HF_density_matrix_ao_alpha(k,l)+HF_density_matrix_ao_beta(k,l)) * values(k1)
|
||||
ao_bi_elec_integral_alpha_tmp(i,j) += integral
|
||||
ao_bi_elec_integral_beta_tmp (i,j) += integral
|
||||
integral = values(k1)
|
||||
ao_bi_elec_integral_alpha_tmp(l,j) -= HF_exchange * (HF_density_matrix_ao_alpha(k,i) * integral)
|
||||
ao_bi_elec_integral_beta_tmp (l,j) -= HF_exchange * (HF_density_matrix_ao_beta (k,i) * integral)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! !$OMP END DO NOWAIT
|
||||
! !$OMP CRITICAL
|
||||
ao_bi_elec_integral_alpha += ao_bi_elec_integral_alpha_tmp
|
||||
! !$OMP END CRITICAL
|
||||
! !$OMP CRITICAL
|
||||
ao_bi_elec_integral_beta += ao_bi_elec_integral_beta_tmp
|
||||
! !$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_bi_elec_integral_alpha_tmp,ao_bi_elec_integral_beta_tmp)
|
||||
! !$OMP END PARALLEL
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_mo, (mo_tot_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis
|
||||
END_DOC
|
||||
double precision, allocatable :: T(:,:)
|
||||
allocate ( T(ao_num_align,mo_tot_num) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
|
||||
1.d0, Fock_matrix_alpha_ao,size(Fock_matrix_alpha_ao,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, T, ao_num_align)
|
||||
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
|
||||
1.d0, mo_coef,size(mo_coef,1), &
|
||||
T, size(T,1), &
|
||||
0.d0, Fock_matrix_alpha_mo, mo_tot_num_align)
|
||||
deallocate(T)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_beta_mo, (mo_tot_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis
|
||||
END_DOC
|
||||
double precision, allocatable :: T(:,:)
|
||||
allocate ( T(ao_num_align,mo_tot_num) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
|
||||
1.d0, Fock_matrix_beta_ao,size(Fock_matrix_beta_ao,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, T, ao_num_align)
|
||||
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
|
||||
1.d0, mo_coef,size(mo_coef,1), &
|
||||
T, size(T,1), &
|
||||
0.d0, Fock_matrix_beta_mo, mo_tot_num_align)
|
||||
deallocate(T)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, HF_energy ]
|
||||
&BEGIN_PROVIDER [ double precision, two_electron_energy]
|
||||
&BEGIN_PROVIDER [ double precision, one_electron_energy]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Hartree-Fock energy
|
||||
END_DOC
|
||||
HF_energy = nuclear_repulsion
|
||||
|
||||
integer :: i,j
|
||||
double precision :: accu_mono,accu_fock
|
||||
one_electron_energy = 0.d0
|
||||
two_electron_energy = 0.d0
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
two_electron_energy += 0.5d0 * ( ao_bi_elec_integral_alpha(i,j) * HF_density_matrix_ao_alpha(i,j) &
|
||||
+ao_bi_elec_integral_beta(i,j) * HF_density_matrix_ao_beta(i,j) )
|
||||
one_electron_energy += ao_mono_elec_integral(i,j) * (HF_density_matrix_ao_alpha(i,j) + HF_density_matrix_ao_beta (i,j) )
|
||||
enddo
|
||||
enddo
|
||||
print*, 'one_electron_energy = ',one_electron_energy
|
||||
print*, 'two_electron_energy = ',two_electron_energy
|
||||
print*, 'e_exchange_dft = ',(1.d0 - HF_exchange) * e_exchange_dft
|
||||
!print*, 'accu_cor = ',e_correlation_dft
|
||||
HF_energy += (1.d0 - HF_exchange) * e_exchange_dft + e_correlation_dft + one_electron_energy + two_electron_energy
|
||||
!print*, 'HF_energy '
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num_align, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
if ( (elec_alpha_num == elec_beta_num).and. &
|
||||
(level_shift == 0.) ) &
|
||||
then
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do i=1,ao_num_align
|
||||
Fock_matrix_ao(i,j) = Fock_matrix_alpha_ao(i,j)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
double precision, allocatable :: T(:,:), M(:,:)
|
||||
integer :: ierr
|
||||
! F_ao = S C F_mo C^t S
|
||||
allocate (T(ao_num_align,ao_num),M(ao_num_align,ao_num),stat=ierr)
|
||||
if (ierr /=0 ) then
|
||||
print *, irp_here, ' : allocation failed'
|
||||
endif
|
||||
|
||||
! ao_overlap (ao_num,ao_num) . mo_coef (ao_num,mo_tot_num)
|
||||
! -> M(ao_num,mo_tot_num)
|
||||
call dgemm('N','N', ao_num,mo_tot_num,ao_num, 1.d0, &
|
||||
ao_overlap, size(ao_overlap,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, &
|
||||
M, size(M,1))
|
||||
|
||||
! M(ao_num,mo_tot_num) . Fock_matrix_mo (mo_tot_num,mo_tot_num)
|
||||
! -> T(ao_num,mo_tot_num)
|
||||
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
|
||||
M, size(M,1), &
|
||||
Fock_matrix_mo, size(Fock_matrix_mo,1), &
|
||||
0.d0, &
|
||||
T, size(T,1))
|
||||
|
||||
! T(ao_num,mo_tot_num) . mo_coef^T (mo_tot_num,ao_num)
|
||||
! -> M(ao_num,ao_num)
|
||||
call dgemm('N','T', ao_num,ao_num,mo_tot_num, 1.d0, &
|
||||
T, size(T,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, &
|
||||
M, size(M,1))
|
||||
|
||||
! M(ao_num,ao_num) . ao_overlap (ao_num,ao_num)
|
||||
! -> Fock_matrix_ao(ao_num,ao_num)
|
||||
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
|
||||
M, size(M,1), &
|
||||
ao_overlap, size(ao_overlap,1), &
|
||||
0.d0, &
|
||||
Fock_matrix_ao, size(Fock_matrix_ao,1))
|
||||
|
||||
|
||||
deallocate(T)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
subroutine Fock_mo_to_ao(FMO,LDFMO,FAO,LDFAO)
|
||||
implicit none
|
||||
integer, intent(in) :: LDFMO ! size(FMO,1)
|
||||
integer, intent(in) :: LDFAO ! size(FAO,1)
|
||||
double precision, intent(in) :: FMO(LDFMO,*)
|
||||
double precision, intent(out) :: FAO(LDFAO,*)
|
||||
|
||||
double precision, allocatable :: T(:,:), M(:,:)
|
||||
integer :: ierr
|
||||
! F_ao = S C F_mo C^t S
|
||||
allocate (T(ao_num_align,ao_num),M(ao_num_align,ao_num),stat=ierr)
|
||||
if (ierr /=0 ) then
|
||||
print *, irp_here, ' : allocation failed'
|
||||
endif
|
||||
|
||||
! ao_overlap (ao_num,ao_num) . mo_coef (ao_num,mo_tot_num)
|
||||
! -> M(ao_num,mo_tot_num)
|
||||
call dgemm('N','N', ao_num,mo_tot_num,ao_num, 1.d0, &
|
||||
ao_overlap, size(ao_overlap,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, &
|
||||
M, size(M,1))
|
||||
|
||||
! M(ao_num,mo_tot_num) . FMO (mo_tot_num,mo_tot_num)
|
||||
! -> T(ao_num,mo_tot_num)
|
||||
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
|
||||
M, size(M,1), &
|
||||
FMO, size(FMO,1), &
|
||||
0.d0, &
|
||||
T, size(T,1))
|
||||
|
||||
! T(ao_num,mo_tot_num) . mo_coef^T (mo_tot_num,ao_num)
|
||||
! -> M(ao_num,ao_num)
|
||||
call dgemm('N','T', ao_num,ao_num,mo_tot_num, 1.d0, &
|
||||
T, size(T,1), &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
0.d0, &
|
||||
M, size(M,1))
|
||||
|
||||
! M(ao_num,ao_num) . ao_overlap (ao_num,ao_num)
|
||||
! -> Fock_matrix_ao(ao_num,ao_num)
|
||||
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
|
||||
M, size(M,1), &
|
||||
ao_overlap, size(ao_overlap,1), &
|
||||
0.d0, &
|
||||
FAO, size(FAO,1))
|
||||
deallocate(T,M)
|
||||
end
|
||||
|
@ -1,41 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_alpha, (ao_num_align,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! S^-1 x Alpha density matrix in the AO basis x S^-1
|
||||
END_DOC
|
||||
|
||||
call dgemm('N','T',ao_num,ao_num,elec_alpha_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
mo_coef, size(mo_coef,1), 0.d0, &
|
||||
HF_density_matrix_ao_alpha, size(HF_density_matrix_ao_alpha,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_beta, (ao_num_align,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! S^-1 Beta density matrix in the AO basis x S^-1
|
||||
END_DOC
|
||||
|
||||
call dgemm('N','T',ao_num,ao_num,elec_beta_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
mo_coef, size(mo_coef,1), 0.d0, &
|
||||
HF_density_matrix_ao_beta, size(HF_density_matrix_ao_beta,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao, (ao_num_align,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! S^-1 Density matrix in the AO basis S^-1
|
||||
END_DOC
|
||||
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_alpha,1))
|
||||
if (elec_alpha_num== elec_beta_num) then
|
||||
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_alpha
|
||||
else
|
||||
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_beta ,1))
|
||||
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_beta
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,54 +0,0 @@
|
||||
program scf
|
||||
BEGIN_DOC
|
||||
! Produce `Hartree_Fock` MO orbital
|
||||
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
|
||||
! output: hartree_fock.energy
|
||||
! optional: mo_basis.mo_coef
|
||||
END_DOC
|
||||
call create_guess
|
||||
call orthonormalize_mos
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine create_guess
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create an MO guess if no MOs are present in the EZFIO directory
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_mo_basis_mo_coef(exists)
|
||||
if (.not.exists) then
|
||||
if (mo_guess_type == "HCore") then
|
||||
mo_coef = ao_ortho_lowdin_coef
|
||||
TOUCH mo_coef
|
||||
mo_label = 'Guess'
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label)
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
else if (mo_guess_type == "Huckel") then
|
||||
call huckel_guess
|
||||
else
|
||||
print *, 'Unrecognized MO guess type : '//mo_guess_type
|
||||
stop 1
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine run
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Run SCF calculation
|
||||
END_DOC
|
||||
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
|
||||
double precision :: E0
|
||||
integer :: i_it, i, j, k
|
||||
|
||||
E0 = HF_energy
|
||||
|
||||
mo_label = "Canonical"
|
||||
call damping_SCF
|
||||
|
||||
end
|
@ -1 +0,0 @@
|
||||
Integrals_Bielec MOGuess Bitmask DFT_Utils
|
@ -1,132 +0,0 @@
|
||||
subroutine damping_SCF
|
||||
implicit none
|
||||
double precision :: E
|
||||
double precision, allocatable :: D_alpha(:,:), D_beta(:,:)
|
||||
double precision :: E_new
|
||||
double precision, allocatable :: D_new_alpha(:,:), D_new_beta(:,:), F_new(:,:)
|
||||
double precision, allocatable :: delta_alpha(:,:), delta_beta(:,:)
|
||||
double precision :: lambda, E_half, a, b, delta_D, delta_E, E_min
|
||||
|
||||
integer :: i,j,k
|
||||
logical :: saving
|
||||
character :: save_char
|
||||
|
||||
allocate( &
|
||||
D_alpha( ao_num_align, ao_num ), &
|
||||
D_beta( ao_num_align, ao_num ), &
|
||||
F_new( ao_num_align, ao_num ), &
|
||||
D_new_alpha( ao_num_align, ao_num ), &
|
||||
D_new_beta( ao_num_align, ao_num ), &
|
||||
delta_alpha( ao_num_align, ao_num ), &
|
||||
delta_beta( ao_num_align, ao_num ))
|
||||
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
D_alpha(i,j) = HF_density_matrix_ao_alpha(i,j)
|
||||
D_beta (i,j) = HF_density_matrix_ao_beta (i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
call write_time(output_hartree_fock)
|
||||
|
||||
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
|
||||
'====','================','================','================', '===='
|
||||
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
|
||||
' N ', 'Energy ', 'Energy diff ', 'Density diff ', 'Save'
|
||||
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') &
|
||||
'====','================','================','================', '===='
|
||||
|
||||
E = HF_energy + 1.d0
|
||||
E_min = HF_energy
|
||||
delta_D = 0.d0
|
||||
do k=1,n_it_scf_max
|
||||
|
||||
delta_E = HF_energy - E
|
||||
E = HF_energy
|
||||
|
||||
if ( (delta_E < 0.d0).and.(dabs(delta_E) < thresh_scf) ) then
|
||||
exit
|
||||
endif
|
||||
|
||||
saving = E < E_min
|
||||
if (saving) then
|
||||
call save_mos
|
||||
save_char = 'X'
|
||||
E_min = E
|
||||
else
|
||||
save_char = ' '
|
||||
endif
|
||||
|
||||
write(output_hartree_fock,'(I4,1X,F16.10, 1X, F16.10, 1X, F16.10, 3X, A )') &
|
||||
k, E, delta_E, delta_D, save_char
|
||||
|
||||
D_alpha = HF_density_matrix_ao_alpha
|
||||
D_beta = HF_density_matrix_ao_beta
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
TOUCH mo_coef
|
||||
|
||||
D_new_alpha = HF_density_matrix_ao_alpha
|
||||
D_new_beta = HF_density_matrix_ao_beta
|
||||
F_new = Fock_matrix_ao
|
||||
E_new = HF_energy
|
||||
|
||||
delta_alpha = D_new_alpha - D_alpha
|
||||
delta_beta = D_new_beta - D_beta
|
||||
|
||||
lambda = .5d0
|
||||
E_half = 0.d0
|
||||
do while (E_half > E)
|
||||
HF_density_matrix_ao_alpha = D_alpha + lambda * delta_alpha
|
||||
HF_density_matrix_ao_beta = D_beta + lambda * delta_beta
|
||||
TOUCH HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
TOUCH mo_coef
|
||||
E_half = HF_energy
|
||||
if ((E_half > E).and.(E_new < E)) then
|
||||
lambda = 1.d0
|
||||
exit
|
||||
else if ((E_half > E).and.(lambda > 5.d-4)) then
|
||||
lambda = 0.5d0 * lambda
|
||||
E_new = E_half
|
||||
else
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
a = (E_new + E - 2.d0*E_half)*2.d0
|
||||
b = -E_new - 3.d0*E + 4.d0*E_half
|
||||
lambda = -lambda*b/(a+1.d-16)
|
||||
D_alpha = (1.d0-lambda) * D_alpha + lambda * D_new_alpha
|
||||
D_beta = (1.d0-lambda) * D_beta + lambda * D_new_beta
|
||||
delta_E = HF_energy - E
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
delta_D = delta_D + &
|
||||
(D_alpha(i,j) - HF_density_matrix_ao_alpha(i,j))*(D_alpha(i,j) - HF_density_matrix_ao_alpha(i,j)) + &
|
||||
(D_beta (i,j) - HF_density_matrix_ao_beta (i,j))*(D_beta (i,j) - HF_density_matrix_ao_beta (i,j))
|
||||
enddo
|
||||
enddo
|
||||
delta_D = dsqrt(delta_D/dble(ao_num)**2)
|
||||
HF_density_matrix_ao_alpha = D_alpha
|
||||
HF_density_matrix_ao_beta = D_beta
|
||||
TOUCH HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
TOUCH mo_coef
|
||||
|
||||
|
||||
enddo
|
||||
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') '====','================','================','================', '===='
|
||||
write(output_hartree_fock,*)
|
||||
|
||||
if(.not.no_oa_or_av_opt)then
|
||||
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
|
||||
endif
|
||||
|
||||
call write_double(output_hartree_fock, E_min, 'Hartree-Fock energy')
|
||||
call ezfio_set_hartree_fock_energy(E_min)
|
||||
|
||||
call write_time(output_hartree_fock)
|
||||
|
||||
deallocate(D_alpha,D_beta,F_new,D_new_alpha,D_new_beta,delta_alpha,delta_beta)
|
||||
end
|
@ -1,119 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, diagonal_Fock_matrix_mo, (ao_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Diagonal Fock matrix in the MO basis
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
integer :: liwork, lwork, n, info
|
||||
integer, allocatable :: iwork(:)
|
||||
double precision, allocatable :: work(:), F(:,:), S(:,:)
|
||||
|
||||
|
||||
allocate( F(mo_tot_num_align,mo_tot_num) )
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
F(i,j) = Fock_matrix_mo(i,j)
|
||||
enddo
|
||||
enddo
|
||||
if(no_oa_or_av_opt)then
|
||||
integer :: iorb,jorb
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
do j = 1, n_inact_orb
|
||||
jorb = list_inact(j)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
do j = 1, n_virt_orb
|
||||
jorb = list_virt(j)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
do j = 1, n_core_orb
|
||||
jorb = list_core(j)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
|
||||
|
||||
|
||||
! Insert level shift here
|
||||
do i = elec_beta_num+1, elec_alpha_num
|
||||
F(i,i) += 0.5d0*level_shift
|
||||
enddo
|
||||
|
||||
do i = elec_alpha_num+1, mo_tot_num
|
||||
F(i,i) += level_shift
|
||||
enddo
|
||||
|
||||
n = mo_tot_num
|
||||
lwork = 1+6*n + 2*n*n
|
||||
liwork = 3 + 5*n
|
||||
|
||||
allocate(work(lwork), iwork(liwork) )
|
||||
|
||||
lwork = -1
|
||||
liwork = -1
|
||||
|
||||
call dsyevd( 'V', 'U', mo_tot_num, F, &
|
||||
size(F,1), diagonal_Fock_matrix_mo, &
|
||||
work, lwork, iwork, liwork, info)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, irp_here//' failed : ', info
|
||||
stop 1
|
||||
endif
|
||||
lwork = int(work(1))
|
||||
liwork = iwork(1)
|
||||
deallocate(work,iwork)
|
||||
allocate(work(lwork), iwork(liwork) )
|
||||
|
||||
call dsyevd( 'V', 'U', mo_tot_num, F, &
|
||||
size(F,1), diagonal_Fock_matrix_mo, &
|
||||
work, lwork, iwork, liwork, info)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, irp_here//' failed : ', info
|
||||
stop 1
|
||||
endif
|
||||
|
||||
call dgemm('N','N',ao_num,mo_tot_num,mo_tot_num, 1.d0, &
|
||||
mo_coef, size(mo_coef,1), F, size(F,1), &
|
||||
0.d0, eigenvectors_Fock_matrix_mo, size(eigenvectors_Fock_matrix_mo,1))
|
||||
deallocate(work, iwork, F)
|
||||
|
||||
|
||||
! endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, diagonal_Fock_matrix_mo_sum, (mo_tot_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! diagonal element of the fock matrix calculated as the sum over all the interactions
|
||||
! with all the electrons in the RHF determinant
|
||||
! diagonal_Fock_matrix_mo_sum(i) = sum_{j=1, N_elec} 2 J_ij -K_ij
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
do j = 1,elec_alpha_num
|
||||
accu = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
accu += 2.d0 * mo_bielec_integral_jj_from_ao(i,j) - mo_bielec_integral_jj_exchange_from_ao(i,j)
|
||||
enddo
|
||||
diagonal_Fock_matrix_mo_sum(j) = accu + mo_mono_elec_integral(j,j)
|
||||
enddo
|
||||
do j = elec_alpha_num+1,mo_tot_num
|
||||
accu = 0.d0
|
||||
do i = 1, elec_alpha_num
|
||||
accu += 2.d0 * mo_bielec_integral_jj_from_ao(i,j) - mo_bielec_integral_jj_exchange_from_ao(i,j)
|
||||
enddo
|
||||
diagonal_Fock_matrix_mo_sum(j) = accu + mo_mono_elec_integral(j,j)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -1,31 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, ao_potential_alpha_xc, (ao_num_align, ao_num)]
|
||||
&BEGIN_PROVIDER [double precision, ao_potential_beta_xc, (ao_num_align, ao_num)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
ao_potential_alpha_xc = 0.d0
|
||||
ao_potential_beta_xc = 0.d0
|
||||
!if(exchange_functional == "LDA")then
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
ao_potential_alpha_xc(i,j) = (1.d0 - HF_exchange) * lda_ex_potential_alpha_ao(i,j,1)
|
||||
ao_potential_beta_xc(i,j) = (1.d0 - HF_exchange) * lda_ex_potential_beta_ao(i,j,1)
|
||||
enddo
|
||||
enddo
|
||||
!endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, e_exchange_dft]
|
||||
implicit none
|
||||
!if(exchange_functional == "LDA")then
|
||||
e_exchange_dft = lda_exchange(1)
|
||||
!endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, e_correlation_dft]
|
||||
implicit none
|
||||
!if(correlation_functional == "LDA")then
|
||||
e_correlation_dft = 0.d0
|
||||
!endif
|
||||
|
||||
END_PROVIDER
|
@ -31,7 +31,7 @@ s.set_perturbation("epstein_nesbet_2x2")
|
||||
s.unset_openmp()
|
||||
print s
|
||||
|
||||
s = H_apply("mrcepa_PT2")
|
||||
s = H_apply_zmq("mrcepa_PT2")
|
||||
s.energy = "psi_energy"
|
||||
s.set_perturbation("epstein_nesbet_2x2")
|
||||
s.unset_openmp()
|
||||
|
@ -1 +1 @@
|
||||
Perturbation Selectors_full Generators_full Psiref_Utils Psiref_CAS MRPT_Utils
|
||||
Perturbation Selectors_full Generators_full Psiref_Utils Psiref_CAS
|
||||
|
@ -23,39 +23,33 @@
|
||||
allocate(pathTo(N_det_non_ref))
|
||||
|
||||
pathTo(:) = 0
|
||||
is_active_exc(:) = .True.
|
||||
is_active_exc(:) = .false.
|
||||
n_exc_active = 0
|
||||
|
||||
! do hh = 1, hh_shortcut(0)
|
||||
! do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
|
||||
! do II = 1, N_det_ref
|
||||
!
|
||||
! call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
|
||||
! if(.not. ok) cycle
|
||||
!
|
||||
! call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
|
||||
! if(.not. ok) cycle
|
||||
!
|
||||
! ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
|
||||
! if(ind == -1) cycle
|
||||
!
|
||||
! logical, external :: is_a_two_holes_two_particles
|
||||
! if (is_a_two_holes_two_particles(myDet)) then
|
||||
! is_active_exc(pp) = .False.
|
||||
! endif
|
||||
do hh = 1, hh_shortcut(0)
|
||||
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
|
||||
do II = 1, N_det_ref
|
||||
|
||||
! ind = psi_non_ref_sorted_idx(ind)
|
||||
! if(pathTo(ind) == 0) then
|
||||
! pathTo(ind) = pp
|
||||
! else
|
||||
! is_active_exc(pp) = .true.
|
||||
! is_active_exc(pathTo(ind)) = .true.
|
||||
! end if
|
||||
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
|
||||
if(.not. ok) cycle
|
||||
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
|
||||
if(.not. ok) cycle
|
||||
|
||||
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
|
||||
if(ind == -1) cycle
|
||||
|
||||
ind = psi_non_ref_sorted_idx(ind)
|
||||
if(pathTo(ind) == 0) then
|
||||
pathTo(ind) = pp
|
||||
else
|
||||
is_active_exc(pp) = .true.
|
||||
is_active_exc(pathTo(ind)) = .true.
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!is_active_exc=.true.
|
||||
do hh = 1, hh_shortcut(0)
|
||||
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
|
||||
if(is_active_exc(pp)) then
|
||||
@ -72,32 +66,6 @@
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ logical, has_a_unique_parent, (N_det_non_ref) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! True if the determinant in the non-reference has a unique parent
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
integer :: degree
|
||||
do j=1,N_det_non_ref
|
||||
has_a_unique_parent(j) = .True.
|
||||
n=0
|
||||
do i=1,N_det_ref
|
||||
call get_excitation_degree(psi_ref(1,1,i), psi_non_ref(1,1,j), degree, N_int)
|
||||
if (degree < 2) then
|
||||
n = n+1
|
||||
if (n > 1) then
|
||||
has_a_unique_parent(j) = .False.
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_exc_active_sze ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -128,7 +96,7 @@ END_PROVIDER
|
||||
!$OMP active_excitation_to_determinants_val, active_excitation_to_determinants_idx)&
|
||||
!$OMP shared(hh_shortcut, psi_ref_coef, N_det_non_ref, psi_non_ref_sorted, &
|
||||
!$OMP psi_non_ref_sorted_idx, psi_ref, N_det_ref, N_states)&
|
||||
!$OMP shared(active_hh_idx, active_pp_idx, n_exc_active)&
|
||||
!$OMP shared(is_active_exc, active_hh_idx, active_pp_idx, n_exc_active)&
|
||||
!$OMP private(lref, pp, II, ok, myMask, myDet, ind, phase, wk, ppp, hh, s)
|
||||
allocate(lref(N_det_non_ref))
|
||||
!$OMP DO schedule(dynamic)
|
||||
|
@ -35,20 +35,21 @@ subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,N_st_diag,Ni
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
allocate(H_jj(sze))
|
||||
|
||||
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj,N_det_ref,dets_in,Nint,istate,delta_ii,idx_ref) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO
|
||||
do i=2,sze
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,sze
|
||||
H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,N_det_ref
|
||||
H_jj(idx_ref(i)) += delta_ii(istate,i)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i=1,N_det_ref
|
||||
H_jj(idx_ref(i)) += delta_ii(istate,i)
|
||||
enddo
|
||||
call davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit,istate)
|
||||
deallocate (H_jj)
|
||||
end
|
||||
@ -223,6 +224,17 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
|
||||
W(i,k,iter+1) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
! do k=1,N_st_diag
|
||||
! do iter2=1,iter
|
||||
! do l=1,N_st_diag
|
||||
! do i=1,sze
|
||||
! U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
|
||||
! W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
!
|
||||
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, &
|
||||
1.d0, U, size(U,1), y, size(y,1)*size(y,2), 0.d0, U(1,1,iter+1), size(U,1))
|
||||
@ -264,11 +276,27 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
|
||||
|
||||
do k=1,N_st_diag
|
||||
|
||||
! do iter2=1,iter
|
||||
! do l=1,N_st_diag
|
||||
! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
|
||||
! do i=1,sze
|
||||
! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter2)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
call dgemv('T',sze,N_st_diag*iter,1.d0,U,size(U,1), &
|
||||
U(1,k,iter+1),1,0.d0,c,1)
|
||||
call dgemv('N',sze,N_st_diag*iter,-1.d0,U,size(U,1), &
|
||||
c,1,1.d0,U(1,k,iter+1),1)
|
||||
|
||||
!
|
||||
! do l=1,k-1
|
||||
! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze)
|
||||
! do i=1,sze
|
||||
! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter+1)
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
call dgemv('T',sze,k-1,1.d0,U(1,1,iter+1),size(U,1), &
|
||||
U(1,k,iter+1),1,0.d0,c,1)
|
||||
call dgemv('N',sze,k-1,-1.d0,U(1,1,iter+1),size(U,1), &
|
||||
@ -401,7 +429,7 @@ subroutine H_u_0_mrcc_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,istate_in,N_st,sze_8)
|
||||
allocate(vt(sze_8,N_st))
|
||||
Vt = 0.d0
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do sh=1,shortcut(0,1)
|
||||
do sh2=sh,shortcut(0,1)
|
||||
exa = 0
|
||||
@ -440,9 +468,9 @@ subroutine H_u_0_mrcc_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,istate_in,N_st,sze_8)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do sh=1,shortcut(0,2)
|
||||
do i=shortcut(sh,2),shortcut(sh+1,2)-1
|
||||
org_i = sort_idx(i,2)
|
||||
@ -462,7 +490,7 @@ subroutine H_u_0_mrcc_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,istate_in,N_st,sze_8)
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO
|
||||
do ii=1,n_det_ref
|
||||
@ -477,12 +505,13 @@ subroutine H_u_0_mrcc_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,istate_in,N_st,sze_8)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP CRITICAL
|
||||
do istate=1,N_st
|
||||
do i=n,1,-1
|
||||
!$OMP ATOMIC
|
||||
v_0(i,istate) = v_0(i,istate) + vt(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(vt)
|
||||
!$OMP END PARALLEL
|
||||
@ -533,23 +562,22 @@ subroutine davidson_diag_mrcc_hs2(dets_in,u_in,dim_in,energies,sze,N_st,N_st_dia
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
allocate(H_jj(sze), S2_jj(sze))
|
||||
|
||||
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
||||
call get_s2(dets_in(1,1,1),dets_in(1,1,1),Nint,S2_jj(1))
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj,S2_jj, dets_in,Nint,N_det_ref,delta_ii, &
|
||||
!$OMP idx_ref, istate) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO
|
||||
do i=2,sze
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,sze
|
||||
H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint)
|
||||
call get_s2(dets_in(1,1,i),dets_in(1,1,i),Nint,S2_jj(i))
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do i=1,N_det_ref
|
||||
H_jj(idx_ref(i)) += delta_ii(istate,i)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit,istate)
|
||||
deallocate (H_jj,S2_jj)
|
||||
@ -1066,7 +1094,6 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(guided)
|
||||
do sh=1,shortcut(0,2)
|
||||
do i=shortcut(sh,2),shortcut(sh+1,2)-1
|
||||
@ -1115,14 +1142,14 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
|
||||
! End Specific to dressing
|
||||
! ------------------------
|
||||
|
||||
!$OMP CRITICAL
|
||||
do istate=1,N_st
|
||||
do i=n,1,-1
|
||||
!$OMP ATOMIC
|
||||
v_0(i,istate) = v_0(i,istate) + vt(istate,i)
|
||||
!$OMP ATOMIC
|
||||
s_0(i,istate) = s_0(i,istate) + st(istate,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END CRITICAL
|
||||
|
||||
deallocate(vt,st)
|
||||
!$OMP END PARALLEL
|
||||
|
@ -5,7 +5,6 @@ use bitmasks
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states, N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ integer, lambda_mrcc_pt2, (0:psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ integer, lambda_mrcc_kept, (0:psi_det_size) ]
|
||||
@ -63,65 +62,6 @@ END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states, N_det_non_ref) ]
|
||||
!&BEGIN_PROVIDER [ integer, lambda_mrcc_pt2, (0:psi_det_size) ]
|
||||
!&BEGIN_PROVIDER [ integer, lambda_mrcc_kept, (0:psi_det_size) ]
|
||||
!&BEGIN_PROVIDER [ double precision, lambda_pert, (N_states, N_det_non_ref) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
||||
! END_DOC
|
||||
! integer :: i,k
|
||||
! double precision :: ihpsi_current(N_states)
|
||||
! integer :: i_pert_count
|
||||
! double precision :: hii, E2(N_states), E2var(N_states)
|
||||
! integer :: N_lambda_mrcc_pt2, N_lambda_mrcc_pt3
|
||||
!
|
||||
! i_pert_count = 0
|
||||
! lambda_mrcc = 0.d0
|
||||
! N_lambda_mrcc_pt2 = 0
|
||||
! N_lambda_mrcc_pt3 = 0
|
||||
! lambda_mrcc_pt2(0) = 0
|
||||
! lambda_mrcc_kept(0) = 0
|
||||
!
|
||||
! E2 = 0.d0
|
||||
! E2var = 0.d0
|
||||
! do i=1,N_det_non_ref
|
||||
! call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
|
||||
! size(psi_ref_coef,1), N_states,ihpsi_current)
|
||||
! call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
|
||||
! do k=1,N_states
|
||||
! if (ihpsi_current(k) == 0.d0) then
|
||||
! ihpsi_current(k) = 1.d-32
|
||||
! endif
|
||||
! lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
||||
! lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
|
||||
! E2(k) += ihpsi_current(k)*ihpsi_current(k) / (psi_ref_energy_diagonalized(k)-hii)
|
||||
! E2var(k) += ihpsi_current(k) * psi_non_ref_coef(i,k)
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! do i=1,N_det_non_ref
|
||||
! call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
|
||||
! size(psi_ref_coef,1), N_states,ihpsi_current)
|
||||
! call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
|
||||
! do k=1,N_states
|
||||
! if (ihpsi_current(k) == 0.d0) then
|
||||
! ihpsi_current(k) = 1.d-32
|
||||
! endif
|
||||
! lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
||||
! lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii) * E2var(k)/E2(k)
|
||||
! enddo
|
||||
! enddo
|
||||
! lambda_mrcc_pt2(0) = N_lambda_mrcc_pt2
|
||||
! lambda_mrcc_kept(0) = N_lambda_mrcc_pt3
|
||||
! print*,'N_det_non_ref = ',N_det_non_ref
|
||||
! print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1)
|
||||
! print*,'lambda max = ',maxval(dabs(lambda_mrcc))
|
||||
! print*,'Number of ignored determinants = ',i_pert_count
|
||||
!
|
||||
!END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ]
|
||||
@ -351,11 +291,11 @@ logical function is_generable(det1, det2, Nint)
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind) :: det1(Nint, 2), det2(Nint, 2)
|
||||
integer :: degree, f, exc(0:2, 2, 2), t
|
||||
integer :: h1, h2, p1, p2, s1, s2
|
||||
integer*2 :: h1, h2, p1, p2, s1, s2
|
||||
integer, external :: searchExc
|
||||
logical, external :: excEq
|
||||
double precision :: phase
|
||||
integer :: tmp_array(4)
|
||||
integer*2 :: tmp_array(4)
|
||||
|
||||
is_generable = .false.
|
||||
call get_excitation(det1, det2, exc, degree, phase, Nint)
|
||||
@ -366,7 +306,7 @@ logical function is_generable(det1, det2, Nint)
|
||||
end if
|
||||
if(degree > 2) stop "?22??"
|
||||
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
call decode_exc_int2(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
|
||||
if(degree == 1) then
|
||||
h2 = h1
|
||||
@ -454,7 +394,7 @@ integer function searchExc(excs, exc, n)
|
||||
use bitmasks
|
||||
|
||||
integer, intent(in) :: n
|
||||
integer,intent(in) :: excs(4,n), exc(4)
|
||||
integer*2,intent(in) :: excs(4,n), exc(4)
|
||||
integer :: l, h, c
|
||||
integer, external :: excCmp
|
||||
logical, external :: excEq
|
||||
@ -519,8 +459,8 @@ subroutine sort_exc(key, N_key)
|
||||
|
||||
|
||||
integer, intent(in) :: N_key
|
||||
integer,intent(inout) :: key(4,N_key)
|
||||
integer :: tmp(4)
|
||||
integer*2,intent(inout) :: key(4,N_key)
|
||||
integer*2 :: tmp(4)
|
||||
integer :: i,ni
|
||||
|
||||
|
||||
@ -542,7 +482,7 @@ end subroutine
|
||||
|
||||
logical function exc_inf(exc1, exc2)
|
||||
implicit none
|
||||
integer,intent(in) :: exc1(4), exc2(4)
|
||||
integer*2,intent(in) :: exc1(4), exc2(4)
|
||||
integer :: i
|
||||
exc_inf = .false.
|
||||
do i=1,4
|
||||
@ -564,9 +504,9 @@ subroutine tamise_exc(key, no, n, N_key)
|
||||
! Uncodumented : TODO
|
||||
END_DOC
|
||||
integer,intent(in) :: no, n, N_key
|
||||
integer,intent(inout) :: key(4, N_key)
|
||||
integer*2,intent(inout) :: key(4, N_key)
|
||||
integer :: k,j
|
||||
integer :: tmp(4)
|
||||
integer*2 :: tmp(4)
|
||||
logical :: exc_inf
|
||||
integer :: ni
|
||||
|
||||
@ -595,9 +535,8 @@ end subroutine
|
||||
|
||||
subroutine dec_exc(exc, h1, h2, p1, p2)
|
||||
implicit none
|
||||
integer, intent(in) :: exc(0:2,2,2)
|
||||
integer, intent(out) :: h1, h2, p1, p2
|
||||
integer :: degree, s1, s2
|
||||
integer :: exc(0:2,2,2), s1, s2, degree
|
||||
integer*2, intent(out) :: h1, h2, p1, p2
|
||||
|
||||
degree = exc(0,1,1) + exc(0,1,2)
|
||||
|
||||
@ -608,7 +547,7 @@ subroutine dec_exc(exc, h1, h2, p1, p2)
|
||||
|
||||
if(degree == 0) return
|
||||
|
||||
call decode_exc(exc, degree, h1, p1, h2, p2, s1, s2)
|
||||
call decode_exc_int2(exc, degree, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
h1 += mo_tot_num * (s1-1)
|
||||
p1 += mo_tot_num * (s1-1)
|
||||
@ -640,7 +579,7 @@ end subroutine
|
||||
&BEGIN_PROVIDER [ integer, N_ex_exists ]
|
||||
implicit none
|
||||
integer :: exc(0:2, 2, 2), degree, n, on, s, l, i
|
||||
integer :: h1, h2, p1, p2
|
||||
integer*2 :: h1, h2, p1, p2
|
||||
double precision :: phase
|
||||
logical,allocatable :: hh(:,:) , pp(:,:)
|
||||
|
||||
@ -678,53 +617,6 @@ END_PROVIDER
|
||||
call sort_det(psi_non_ref_sorted, psi_non_ref_sorted_idx, N_det_non_ref, N_int)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, rho_mrpt, (N_det_non_ref, N_states) ]
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
double precision :: coef_mrpt(N_States),coef_array(N_states),hij,delta_e(N_states)
|
||||
double precision :: hij_array(N_det_Ref),delta_e_array(N_det_ref,N_states)
|
||||
integer :: number_of_holes, number_of_particles,nh,np
|
||||
do i = 1, N_det_non_ref
|
||||
print*,'i',i
|
||||
nh = number_of_holes(psi_non_ref(1,1,i))
|
||||
np = number_of_particles(psi_non_ref(1,1,i))
|
||||
do j = 1, N_det_ref
|
||||
do k = 1, N_States
|
||||
coef_array(k) = psi_ref_coef(j,k)
|
||||
enddo
|
||||
call i_h_j(psi_ref(1,1,j), psi_non_ref(1,1,i), N_int, Hij_array(j))
|
||||
call get_delta_e_dyall(psi_ref(1,1,j),psi_non_ref(1,1,i),coef_array,hij_array(j),delta_e)
|
||||
! write(*,'(A7,x,100(F16.10,x))')'delta_e',delta_e(:)
|
||||
do k = 1, N_states
|
||||
delta_e_Array(j,k) = delta_e(k)
|
||||
enddo
|
||||
enddo
|
||||
coef_mrpt = 0.d0
|
||||
do k = 1, N_states
|
||||
do j = 1, N_det_Ref
|
||||
coef_mrpt(k) += psi_ref_coef(j,k) * hij_array(j) / delta_e_array(j,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
write(*,'(A7,X,100(F16.10,x))')'coef ',psi_non_ref_coef(i,1) , coef_mrpt(1),psi_non_ref_coef(i,2) , coef_mrpt(2)
|
||||
print*, nh,np
|
||||
do k = 1, N_States
|
||||
if(dabs(coef_mrpt(k)) .le.1.d-10)then
|
||||
rho_mrpt(i,k) = 0.d0
|
||||
exit
|
||||
endif
|
||||
if(psi_non_ref_coef(i,k) / coef_mrpt(k) .lt.0d0)then
|
||||
rho_mrpt(i,k) = 1.d0
|
||||
else
|
||||
rho_mrpt(i,k) = psi_non_ref_coef(i,k) / coef_mrpt(k)
|
||||
endif
|
||||
enddo
|
||||
print*,'rho',rho_mrpt(i,:)
|
||||
write(33,*)i,rho_mrpt(i,:)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, dIj_unique, (hh_nex, N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, rho_mrcc, (N_det_non_ref, N_states) ]
|
||||
@ -740,12 +632,12 @@ END_PROVIDER
|
||||
double precision :: phase
|
||||
|
||||
|
||||
double precision, allocatable :: rho_mrcc_inact(:)
|
||||
double precision, allocatable :: rho_mrcc_init(:)
|
||||
integer :: a_coll, at_roww
|
||||
|
||||
print *, "TI", hh_nex, N_det_non_ref
|
||||
|
||||
allocate(rho_mrcc_inact(N_det_non_ref))
|
||||
allocate(rho_mrcc_init(N_det_non_ref))
|
||||
allocate(x_new(hh_nex))
|
||||
allocate(x(hh_nex), AtB(hh_nex))
|
||||
|
||||
@ -757,7 +649,7 @@ END_PROVIDER
|
||||
!$OMP private(at_row, a_col, i, j, r1, r2, wk, A_ind_mwen, A_val_mwen, a_coll, at_roww)&
|
||||
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtB, mrcc_AtA_val, mrcc_AtA_ind, s, n_exc_active, active_pp_idx)
|
||||
|
||||
!$OMP DO schedule(static, 100)
|
||||
!$OMP DO schedule(dynamic, 100)
|
||||
do at_roww = 1, n_exc_active ! hh_nex
|
||||
at_row = active_pp_idx(at_roww)
|
||||
do i=1,active_excitation_to_determinants_idx(0,at_roww)
|
||||
@ -776,7 +668,7 @@ END_PROVIDER
|
||||
X(a_col) = AtB(a_col)
|
||||
end do
|
||||
|
||||
rho_mrcc_inact(:) = 0d0
|
||||
rho_mrcc_init = 0d0
|
||||
|
||||
allocate(lref(N_det_ref))
|
||||
do hh = 1, hh_shortcut(0)
|
||||
@ -800,23 +692,29 @@ END_PROVIDER
|
||||
X(pp) = AtB(pp)
|
||||
do II=1,N_det_ref
|
||||
if(lref(II) > 0) then
|
||||
rho_mrcc_inact(lref(II)) = psi_ref_coef(II,s) * X(pp)
|
||||
rho_mrcc_init(lref(II)) = psi_ref_coef(II,s) * X(pp)
|
||||
else if(lref(II) < 0) then
|
||||
rho_mrcc_inact(-lref(II)) = -psi_ref_coef(II,s) * X(pp)
|
||||
rho_mrcc_init(-lref(II)) = -psi_ref_coef(II,s) * X(pp)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
deallocate(lref)
|
||||
|
||||
do i=1,N_det_non_ref
|
||||
rho_mrcc(i,s) = rho_mrcc_init(i)
|
||||
enddo
|
||||
|
||||
x_new = x
|
||||
|
||||
double precision :: factor, resold
|
||||
factor = 1.d0
|
||||
resold = huge(1.d0)
|
||||
|
||||
do k=0,hh_nex/4
|
||||
do k=0,10*hh_nex
|
||||
res = 0.d0
|
||||
!$OMP PARALLEL default(shared) private(cx, i, a_col, a_coll) reduction(+:res)
|
||||
!$OMP DO
|
||||
do a_coll = 1, n_exc_active
|
||||
a_col = active_pp_idx(a_coll)
|
||||
cx = 0.d0
|
||||
@ -827,108 +725,102 @@ END_PROVIDER
|
||||
res = res + (X_new(a_col) - X(a_col))*(X_new(a_col) - X(a_col))
|
||||
X(a_col) = X_new(a_col)
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (res > resold) then
|
||||
factor = factor * 0.5d0
|
||||
endif
|
||||
|
||||
if(iand(k, 127) == 0) then
|
||||
print *, k, res, 1.d0 - res/resold
|
||||
endif
|
||||
|
||||
if ( res < 1d-10 ) then
|
||||
exit
|
||||
endif
|
||||
if ( (res/resold > 0.99d0) ) then
|
||||
exit
|
||||
endif
|
||||
resold = res
|
||||
|
||||
if(iand(k, 4095) == 0) then
|
||||
print *, "res ", k, res
|
||||
end if
|
||||
|
||||
if(res < 1d-10) exit
|
||||
end do
|
||||
dIj_unique(1:size(X), s) = X(1:size(X))
|
||||
print *, k, res, 1.d0 - res/resold
|
||||
|
||||
|
||||
do i=1,N_det_non_ref
|
||||
rho_mrcc(i,s) = 0.d0
|
||||
enddo
|
||||
|
||||
do s=1,N_states
|
||||
|
||||
do a_coll=1,n_exc_active
|
||||
a_col = active_pp_idx(a_coll)
|
||||
do j=1,N_det_non_ref
|
||||
i = active_excitation_to_determinants_idx(j,a_coll)
|
||||
if (i==0) exit
|
||||
if (rho_mrcc_inact(i) /= 0.d0) then
|
||||
call debug_det(psi_non_ref(1,1,i),N_int)
|
||||
stop
|
||||
endif
|
||||
rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * dIj_unique(a_col,s)
|
||||
enddo
|
||||
end do
|
||||
|
||||
double precision :: norm2_ref, norm2_inact, a, b, c, Delta
|
||||
! Psi = Psi_ref + Psi_inactive + f*Psi_active
|
||||
! Find f to normalize Psi
|
||||
|
||||
norm2_ref = 0.d0
|
||||
do i=1,N_det_ref
|
||||
norm2_ref = norm2_ref + psi_ref_coef(i,s)*psi_ref_coef(i,s)
|
||||
enddo
|
||||
|
||||
a = 0.d0
|
||||
do i=1,N_det_non_ref
|
||||
a = a + rho_mrcc(i,s)*rho_mrcc(i,s)
|
||||
enddo
|
||||
|
||||
norm = a + norm2_ref
|
||||
print *, "norm : ", sqrt(norm)
|
||||
|
||||
norm = sqrt((1.d0-norm2_ref)/a)
|
||||
|
||||
! Renormalize Psi+A.X
|
||||
do i=1,N_det_non_ref
|
||||
rho_mrcc(i,s) = rho_mrcc(i,s) * norm
|
||||
enddo
|
||||
|
||||
!norm = norm2_ref
|
||||
!do i=1,N_det_non_ref
|
||||
! norm = norm + rho_mrcc(i,s)**2
|
||||
!enddo
|
||||
!print *, 'check', norm
|
||||
!stop
|
||||
|
||||
|
||||
|
||||
norm = 0.d0
|
||||
double precision :: f, g, gmax
|
||||
gmax = maxval(dabs(psi_non_ref_coef(:,s)))
|
||||
do i=1,N_det_non_ref
|
||||
norm = norm + rho_mrcc(i,s)*rho_mrcc(i,s)
|
||||
enddo
|
||||
! Norm now contains the norm of A.X
|
||||
|
||||
do i=1,N_det_ref
|
||||
norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s)
|
||||
enddo
|
||||
! Norm now contains the norm of Psi + A.X
|
||||
|
||||
print *, "norm : ", sqrt(norm)
|
||||
enddo
|
||||
|
||||
|
||||
do s=1,N_states
|
||||
norm = 0.d0
|
||||
double precision :: f
|
||||
do i=1,N_det_non_ref
|
||||
if (rho_mrcc(i,s) == 0.d0) then
|
||||
rho_mrcc(i,s) = 1.d-32
|
||||
endif
|
||||
|
||||
if (lambda_type == 2) then
|
||||
f = 1.d0
|
||||
else
|
||||
if (rho_mrcc(i,s) == 0.d0) then
|
||||
cycle
|
||||
endif
|
||||
! f is such that f.\tilde{c_i} = c_i
|
||||
f = psi_non_ref_coef(i,s) / rho_mrcc(i,s)
|
||||
|
||||
! Avoid numerical instabilities
|
||||
g = 2.d0+100.d0*exp(-20.d0*dabs(psi_non_ref_coef(i,s)/gmax))
|
||||
f = min(f, g)
|
||||
f = max(f,-g)
|
||||
|
||||
f = min(f,2.d0)
|
||||
f = max(f,-2.d0)
|
||||
endif
|
||||
|
||||
norm = norm + (rho_mrcc(i,s)*f)**2
|
||||
norm = norm + f*f *rho_mrcc(i,s)*rho_mrcc(i,s)
|
||||
rho_mrcc(i,s) = f
|
||||
enddo
|
||||
! rho_mrcc now contains the mu_i factors
|
||||
! norm now contains the norm of |T.Psi_0>
|
||||
! rho_mrcc now contains the f factors
|
||||
|
||||
f = 1.d0/norm
|
||||
! f now contains 1/ <T.Psi_0|T.Psi_0>
|
||||
|
||||
norm = 1.d0
|
||||
do i=1,N_det_ref
|
||||
norm = norm - psi_ref_coef(i,s)*psi_ref_coef(i,s)
|
||||
enddo
|
||||
! norm now contains <Psi_SD|Psi_SD>
|
||||
f = dsqrt(f*norm)
|
||||
! f normalises T.Psi_0 such that (1+T)|Psi> is normalized
|
||||
|
||||
norm = norm*f
|
||||
print *, 'norm of |T Psi_0> = ', dsqrt(norm)
|
||||
if (norm > 1.d0) then
|
||||
if (dsqrt(norm) > 1.d0) then
|
||||
stop 'Error : Norm of the SD larger than the norm of the reference.'
|
||||
endif
|
||||
|
||||
do i=1,N_det_ref
|
||||
norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s)
|
||||
enddo
|
||||
|
||||
do i=1,N_det_non_ref
|
||||
rho_mrcc(i,s) = rho_mrcc(i,s) * f
|
||||
enddo
|
||||
! rho_mrcc now contains the product of the scaling factors and the
|
||||
! normalization constant
|
||||
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
@ -953,58 +845,11 @@ END_PROVIDER
|
||||
|
||||
|
||||
|
||||
!double precision function f_fit(x)
|
||||
! implicit none
|
||||
! double precision :: x
|
||||
! f_fit = 0.d0
|
||||
! return
|
||||
! if (x < 0.d0) then
|
||||
! f_fit = 0.d0
|
||||
! else if (x < 1.d0) then
|
||||
! f_fit = 1.d0/0.367879441171442 * ( x**2 * exp(-x**2))
|
||||
! else
|
||||
! f_fit = 1.d0
|
||||
! endif
|
||||
!end
|
||||
!
|
||||
!double precision function get_dij_index(II, i, s, Nint)
|
||||
! integer, intent(in) :: II, i, s, Nint
|
||||
! double precision, external :: get_dij
|
||||
! double precision :: HIi, phase, c, a, b, d
|
||||
!
|
||||
! call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,i), Nint, HIi)
|
||||
! call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
|
||||
!
|
||||
! a = lambda_pert(s,i)
|
||||
! b = lambda_mrcc(s,i)
|
||||
! c = f_fit(a/b)
|
||||
!
|
||||
! d = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase* rho_mrcc(i,s)
|
||||
!
|
||||
! c = f_fit(a*HIi/d)
|
||||
!
|
||||
! get_dij_index = HIi * a * c + (1.d0 - c) * d
|
||||
! get_dij_index = d
|
||||
! return
|
||||
!
|
||||
! if(lambda_type == 0) then
|
||||
! call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
|
||||
! get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase
|
||||
! get_dij_index = get_dij_index * rho_mrcc(i,s)
|
||||
! else if(lambda_type == 1) then
|
||||
! call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,i), Nint, HIi)
|
||||
! get_dij_index = HIi * lambda_mrcc(s, i)
|
||||
! else if(lambda_type == 2) then
|
||||
! call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
|
||||
! get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase
|
||||
! get_dij_index = get_dij_index * rho_mrcc(i,s)
|
||||
! end if
|
||||
!end function
|
||||
|
||||
double precision function get_dij_index(II, i, s, Nint)
|
||||
integer, intent(in) :: II, i, s, Nint
|
||||
double precision, external :: get_dij
|
||||
double precision :: HIi, phase,delta_e_final(N_states)
|
||||
double precision :: HIi, phase
|
||||
|
||||
if(lambda_type == 0) then
|
||||
call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
|
||||
@ -1016,11 +861,7 @@ double precision function get_dij_index(II, i, s, Nint)
|
||||
else if(lambda_type == 2) then
|
||||
call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int)
|
||||
get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase
|
||||
get_dij_index = get_dij_index
|
||||
else if(lambda_type == 3) then
|
||||
call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,i), Nint, HIi)
|
||||
call get_delta_e_dyall(psi_ref(1,1,II),psi_non_ref(1,1,i),delta_e_final)
|
||||
get_dij_index = HIi * rho_mrpt(i, s) / delta_e_final(s)
|
||||
get_dij_index = get_dij_index * rho_mrcc(i,s)
|
||||
end if
|
||||
end function
|
||||
|
||||
@ -1031,11 +872,11 @@ double precision function get_dij(det1, det2, s, Nint)
|
||||
integer, intent(in) :: s, Nint
|
||||
integer(bit_kind) :: det1(Nint, 2), det2(Nint, 2)
|
||||
integer :: degree, f, exc(0:2, 2, 2), t
|
||||
integer :: h1, h2, p1, p2, s1, s2
|
||||
integer*2 :: h1, h2, p1, p2, s1, s2
|
||||
integer, external :: searchExc
|
||||
logical, external :: excEq
|
||||
double precision :: phase
|
||||
integer :: tmp_array(4)
|
||||
integer*2 :: tmp_array(4)
|
||||
|
||||
get_dij = 0d0
|
||||
call get_excitation(det1, det2, exc, degree, phase, Nint)
|
||||
@ -1044,7 +885,7 @@ double precision function get_dij(det1, det2, s, Nint)
|
||||
stop "get_dij"
|
||||
end if
|
||||
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
call decode_exc_int2(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
|
||||
if(degree == 1) then
|
||||
h2 = h1
|
||||
@ -1077,8 +918,8 @@ double precision function get_dij(det1, det2, s, Nint)
|
||||
end function
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, hh_exists, (4, N_hh_exists) ]
|
||||
&BEGIN_PROVIDER [ integer, pp_exists, (4, N_pp_exists) ]
|
||||
BEGIN_PROVIDER [ integer*2, hh_exists, (4, N_hh_exists) ]
|
||||
&BEGIN_PROVIDER [ integer*2, pp_exists, (4, N_pp_exists) ]
|
||||
&BEGIN_PROVIDER [ integer, hh_shortcut, (0:N_hh_exists + 1) ]
|
||||
&BEGIN_PROVIDER [ integer, hh_nex ]
|
||||
implicit none
|
||||
@ -1093,9 +934,9 @@ end function
|
||||
! hh_nex : Total number of excitation operators
|
||||
!
|
||||
END_DOC
|
||||
integer,allocatable :: num(:,:)
|
||||
integer*2,allocatable :: num(:,:)
|
||||
integer :: exc(0:2, 2, 2), degree, n, on, s, l, i
|
||||
integer :: h1, h2, p1, p2
|
||||
integer*2 :: h1, h2, p1, p2
|
||||
double precision :: phase
|
||||
logical, external :: excEq
|
||||
|
||||
@ -1121,40 +962,24 @@ end function
|
||||
|
||||
hh_shortcut(0) = 1
|
||||
hh_shortcut(1) = 1
|
||||
hh_exists(:,1) = (/1, num(1,1), 1, num(2,1)/)
|
||||
pp_exists(:,1) = (/1, num(3,1), 1, num(4,1)/)
|
||||
hh_exists(:,1) = (/1_2, num(1,1), 1_2, num(2,1)/)
|
||||
pp_exists(:,1) = (/1_2, num(3,1), 1_2, num(4,1)/)
|
||||
s = 1
|
||||
do i=2,n
|
||||
if(.not. excEq(num(1,i), num(1,s))) then
|
||||
s += 1
|
||||
num(:, s) = num(:, i)
|
||||
pp_exists(:,s) = (/1, num(3,s), 1, num(4,s)/)
|
||||
pp_exists(:,s) = (/1_2, num(3,s), 1_2, num(4,s)/)
|
||||
if(hh_exists(2, hh_shortcut(0)) /= num(1,s) .or. &
|
||||
hh_exists(4, hh_shortcut(0)) /= num(2,s)) then
|
||||
hh_shortcut(0) += 1
|
||||
hh_shortcut(hh_shortcut(0)) = s
|
||||
hh_exists(:,hh_shortcut(0)) = (/1, num(1,s), 1, num(2,s)/)
|
||||
hh_exists(:,hh_shortcut(0)) = (/1_2, num(1,s), 1_2, num(2,s)/)
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
hh_shortcut(hh_shortcut(0)+1) = s+1
|
||||
|
||||
if (hh_shortcut(0) > N_hh_exists) then
|
||||
print *, 'Error in ', irp_here
|
||||
print *, 'hh_shortcut(0) :', hh_shortcut(0)
|
||||
print *, 'N_hh_exists : ', N_hh_exists
|
||||
print *, 'Is your active space defined?'
|
||||
stop
|
||||
endif
|
||||
|
||||
if (hh_shortcut(hh_shortcut(0)+1)-1 > N_pp_exists) then
|
||||
print *, 'Error 1 in ', irp_here
|
||||
print *, 'hh_shortcut(hh_shortcut(0)+1)-1 :', hh_shortcut(hh_shortcut(0)+1)-1
|
||||
print *, 'N_pp_exists : ', N_pp_exists
|
||||
print *, 'Is your active space defined?'
|
||||
stop
|
||||
endif
|
||||
|
||||
do s=2,4,2
|
||||
do i=1,hh_shortcut(0)
|
||||
if(hh_exists(s, i) == 0) then
|
||||
@ -1165,7 +990,6 @@ end function
|
||||
end if
|
||||
end do
|
||||
|
||||
|
||||
do i=1,hh_shortcut(hh_shortcut(0)+1)-1
|
||||
if(pp_exists(s, i) == 0) then
|
||||
pp_exists(s-1, i) = 0
|
||||
@ -1181,7 +1005,7 @@ END_PROVIDER
|
||||
|
||||
logical function excEq(exc1, exc2)
|
||||
implicit none
|
||||
integer, intent(in) :: exc1(4), exc2(4)
|
||||
integer*2, intent(in) :: exc1(4), exc2(4)
|
||||
integer :: i
|
||||
excEq = .false.
|
||||
do i=1, 4
|
||||
@ -1193,7 +1017,7 @@ end function
|
||||
|
||||
integer function excCmp(exc1, exc2)
|
||||
implicit none
|
||||
integer, intent(in) :: exc1(4), exc2(4)
|
||||
integer*2, intent(in) :: exc1(4), exc2(4)
|
||||
integer :: i
|
||||
excCmp = 0
|
||||
do i=1, 4
|
||||
@ -1212,8 +1036,8 @@ subroutine apply_hole_local(det, exc, res, ok, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(in) :: exc(4)
|
||||
integer :: s1, s2, h1, h2
|
||||
integer*2, intent(in) :: exc(4)
|
||||
integer*2 :: s1, s2, h1, h2
|
||||
integer(bit_kind),intent(in) :: det(Nint, 2)
|
||||
integer(bit_kind),intent(out) :: res(Nint, 2)
|
||||
logical, intent(out) :: ok
|
||||
@ -1249,8 +1073,8 @@ subroutine apply_particle_local(det, exc, res, ok, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(in) :: exc(4)
|
||||
integer :: s1, s2, p1, p2
|
||||
integer*2, intent(in) :: exc(4)
|
||||
integer*2 :: s1, s2, p1, p2
|
||||
integer(bit_kind),intent(in) :: det(Nint, 2)
|
||||
integer(bit_kind),intent(out) :: res(Nint, 2)
|
||||
logical, intent(out) :: ok
|
||||
|
@ -10,42 +10,34 @@ end
|
||||
|
||||
subroutine routine_3
|
||||
implicit none
|
||||
integer :: i,j
|
||||
!provide fock_virt_total_spin_trace
|
||||
provide delta_ij
|
||||
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do i = 1, N_States
|
||||
print*,'State',i
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') ' PT2 ', i,' = ', second_order_pt_new(i)
|
||||
write(*,'(A12,X,I3,A3,XX,F22.16)') ' E ', i,' = ', psi_ref_average_value(i)
|
||||
write(*,'(A12,X,I3,A3,XX,F22.16)') ' E+PT2 ', i,' = ', psi_ref_average_value(i)+second_order_pt_new(i)
|
||||
write(*,'(A12,X,I3,A3,XX,F22.16)') ' E dressed ', i,' = ', CI_dressed_pt2_new_energy(i)
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') ' S^2 ', i,' = ', CI_dressed_pt2_new_eigenvectors_s2(i)
|
||||
print*,'coef before and after'
|
||||
do j = 1, N_det_ref
|
||||
print*,psi_ref_coef(j,i),CI_dressed_pt2_new_eigenvectors(j,i)
|
||||
enddo
|
||||
enddo
|
||||
if(save_heff_eigenvectors)then
|
||||
call save_wavefunction_general(N_det_ref,N_states,psi_ref,N_det_ref,CI_dressed_pt2_new_eigenvectors)
|
||||
endif
|
||||
if(N_states.gt.1)then
|
||||
print*, 'Energy differences : E(i) - E(0)'
|
||||
do i = 2, N_States
|
||||
print*,'State',i
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') ' S^2 ', i,' = ', CI_dressed_pt2_new_eigenvectors_s2(i)
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') 'Variational ', i,' = ', -(psi_ref_average_value(1) - psi_ref_average_value(i))
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') 'Perturbative', i,' = ', -(psi_ref_average_value(1)+second_order_pt_new(1) - (psi_ref_average_value(i)+second_order_pt_new(i)))
|
||||
write(*,'(A12,X,I3,A3,XX,F20.16)') 'Dressed ', i,' = ', -( CI_dressed_pt2_new_energy(1) - CI_dressed_pt2_new_energy(i) )
|
||||
enddo
|
||||
endif
|
||||
print *, 'PT2 = ', second_order_pt_new(1)
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'E+PT2 = ', CI_energy(1)+second_order_pt_new(1)
|
||||
print *,'****** DIAGONALIZATION OF DRESSED MATRIX ******'
|
||||
print *, 'E dressed= ', CI_dressed_pt2_new_energy(1)
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_2
|
||||
implicit none
|
||||
provide electronic_psi_ref_average_value
|
||||
integer :: i
|
||||
do i = 1, n_core_inact_orb
|
||||
print*,fock_core_inactive_total(i,1,1),fock_core_inactive(i)
|
||||
enddo
|
||||
double precision :: accu
|
||||
accu = 0.d0
|
||||
do i = 1, n_act_orb
|
||||
integer :: j_act_orb
|
||||
j_act_orb = list_act(i)
|
||||
accu += one_body_dm_mo_alpha(j_act_orb,j_act_orb,1)
|
||||
print*,one_body_dm_mo_alpha(j_act_orb,j_act_orb,1),one_body_dm_mo_beta(j_act_orb,j_act_orb,1)
|
||||
enddo
|
||||
print*,'accu = ',accu
|
||||
|
||||
end
|
||||
|
||||
|
@ -1 +1 @@
|
||||
MRPT_Utils Selectors_full Psiref_CAS Generators_CAS
|
||||
MRPT_Utils Selectors_full Generators_full
|
||||
|
@ -6,53 +6,46 @@ program print_1h2p
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
provide one_anhil_one_creat_inact_virt
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_2
|
||||
implicit none
|
||||
integer :: i,j,degree
|
||||
double precision :: hij
|
||||
do i =1, n_core_inact_orb
|
||||
write(*,'(I3,x,100(F16.10,X))')list_core_inact(i),fock_core_inactive_total_spin_trace(list_core_inact(i),1)
|
||||
enddo
|
||||
print*,''
|
||||
do i =1, n_virt_orb
|
||||
write(*,'(I3,x,100(F16.10,X))')list_virt(i),fock_virt_total_spin_trace(list_virt(i),1)
|
||||
enddo
|
||||
stop
|
||||
do i = 1, n_virt_orb
|
||||
do j = 1, n_inact_orb
|
||||
if(dabs(one_anhil_one_creat_inact_virt(j,i,1)) .lt. 1.d-10)cycle
|
||||
write(*,'(I3,x,I3,X,100(F16.10,X))')list_virt(i),list_inact(j),one_anhil_one_creat_inact_virt(j,i,1)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_3
|
||||
implicit none
|
||||
double precision,allocatable :: matrix_1h2p(:,:,:)
|
||||
double precision :: accu(2)
|
||||
allocate (matrix_1h2p(N_det_ref,N_det_ref,N_states))
|
||||
allocate (matrix_1h2p(N_det,N_det,N_states))
|
||||
integer :: i,j,istate
|
||||
accu = 0.d0
|
||||
matrix_1h2p = 0.d0
|
||||
!call H_apply_mrpt_1h2p(matrix_1h2p,N_det_ref)
|
||||
call give_1h2p_contrib(matrix_1h2p)
|
||||
do istate = 1, N_states
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
accu(istate) += matrix_1h2p(i,j,istate) * psi_coef(i,istate) * psi_coef(j,istate)
|
||||
do istate = 1, N_states
|
||||
matrix_1h2p(i,j,istate) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
print*,accu(istate)
|
||||
enddo
|
||||
call contrib_1h2p_dm_based(accu)
|
||||
print*,accu(:)
|
||||
if(.False.)then
|
||||
call give_1h2p_contrib(matrix_1h2p)
|
||||
double precision :: accu
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
accu += matrix_1h2p(i,j,1) * psi_coef(i,1) * psi_coef(j,1)
|
||||
enddo
|
||||
enddo
|
||||
print*, 'second order ', accu
|
||||
endif
|
||||
|
||||
if(.True.)then
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
do istate = 1, N_states
|
||||
matrix_1h2p(i,j,istate) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call give_1h2p_new(matrix_1h2p)
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
accu += matrix_1h2p(i,j,1) * psi_coef(i,1) * psi_coef(j,1)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
print*, 'third order ', accu
|
||||
|
||||
deallocate (matrix_1h2p)
|
||||
end
|
||||
|
@ -5,10 +5,3 @@ interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
|
||||
[save_heff_eigenvectors]
|
||||
type: logical
|
||||
doc: If true, save the eigenvectors of the dressed matrix at the end of the MRPT calculation
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
|
@ -23,7 +23,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_1h")
|
||||
s.filter_only_1h()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -44,7 +43,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_1p")
|
||||
s.filter_only_1p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -65,7 +63,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_1h1p")
|
||||
s.filter_only_1h1p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -86,7 +83,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_2p")
|
||||
s.filter_only_2p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -107,7 +103,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_2h")
|
||||
s.filter_only_2h()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -129,7 +124,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_1h2p")
|
||||
s.filter_only_1h2p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -150,7 +144,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_2h1p")
|
||||
s.filter_only_2h1p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
@ -171,7 +164,6 @@ print s
|
||||
|
||||
s = H_apply("mrpt_2h2p")
|
||||
s.filter_only_2h2p()
|
||||
s.unset_skip()
|
||||
s.data["parameters"] = ", delta_ij_, Ndet"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Ndet
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user