10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-11 05:28:29 +01:00

Merge branch 'master' of github.com:scemama/quantum_package

Conflicts:
	scripts/compilation/qp_create_ninja.py
This commit is contained in:
Anthony Scemama 2015-06-22 09:43:48 +02:00
commit 01aeaffaf1
193 changed files with 458 additions and 377 deletions
.travis.ymlCOMPILE_RUN.mdINSTALL.mdREADME.md
ocaml
plugins
CAS_SD
CID
CID_SC2_selected
CID_selected
CIS
CISD
CISD_SC2_selected
CISD_selected
DDCI_selected
DensityMatrix
FCIdump
Full_CI
Generators_CAS
Generators_full
Generators_restart

View File

@ -1,4 +1,8 @@
sudo: true sudo: true
#
#cache:
# directories:
# - $HOME/.opam/
language: python language: python
python: python:
@ -12,6 +16,7 @@ before_script:
script: script:
- ./configure --production ./config/gfortran.cfg - ./configure --production ./config/gfortran.cfg
- source ./quantum_package.rc - source ./quantum_package.rc
- qp_install_module.py install Full_CI Hartree_Fock
- ninja - ninja
- cd ocaml ; make ; cd - - cd ocaml ; make ; cd -
- cd testing_no_regression ; ./unit_test.py - cd testing_no_regression ; ./unit_test.py

View File

@ -1,38 +0,0 @@
# Compile
We need to create the file which contains all the tree dependencies for the
binaries. It's not a Makefile, but a Ninja file (so don't type `make` is
hopeless, type `ninja` instead).
The script to create the dependency file (aka `build.ninja`) is
`qp_create_ninja.py`.
## What utilization of the code will you do?
* If you only want the binaries (for production workflow) use the flag
`--production` in when calling this script. It's quicker
* Else if you are a developer and you want to be able to compile specific
modules use: `--development`. It will create for you the `build.ninja` in each
module
## Compilation Flags
You need to specify all the flags useful for the compilation: like the
optimization flags, the Lapack libary, etc. ``$QP_ROOT/config`` contains
``ifort.cfg`` and ``gfortran.cfg`` containing the compiler flags that will be
used. You can edit these files to modify the compiling options.
## Example to create the Ninja file
`qp_create_ninja.py create --production $QP_ROOT/config/ifort.cfg`
## Compiling
Just type `ninja` if you are in `$QP_ROOT` (or `ninja -f $QP_ROOT/build.ninja`
elsewhere). The compilation will take approximately 3 min.
If you have set the `--developement` flag in a specific module you can go in
the corresponding module directory and run `ninja` to build only this module.
You can type `ninja all` in a module for compiling all the submodule
Finally, go in `$QP_ROOT/ocaml` and type `make`

View File

@ -1,85 +0,0 @@
# Installation
## Requirements
* curl
* m4
* GNU make
* Fortran compiler (ifort or gfortran are tested)
* Python >= 2.6
* Bash
* Patch (for opam)
## Optional
* graphviz
## Standard installation
1) `./setup_environment.sh`
This command will download and install all the requirements.
Installing OCaml and the Core library may take somme time
(up to 20min on an old machine).
2) `source quantum_package.rc`
This file contains all the environement variables neeeded by the quantum package
both to compile and run. This should also be done before running calculations.
3) `cp ./src/Makefile.config.gfortran ./src/Makefile.config`
Create the ``Makefile.config`` which contains all the flags needed by the compiler.
The is also an example for the Intel Compiler (`Makefile.config.ifort`).
Edit this file and tune the flags as you want.
4) `make build`
It will compile all the executables and tools.
5) `make binary`
Optional. It will build a `tar.gz` file containing everything needed to run the quantum package on a
machine where you can't compile.
## Installing behind a firewall
1) Download `tsocks`:
wget http://sourceforge.net/projects/tsocks/files/latest/download
mv download tsocks.tar.gz
2) Tranfer `tsocks.tar.gz` on the remote host
3) Configure `tsocks` with the proper directory for the `tsocks.conf` file:
tar -zxvf tsocks.tar.gz
cd tsocks-*
./configure --with-conf=${PWD}/tsocks.conf
4) Create the `tsocks.conf` file with the following content:
server = 127.0.0.1
server_port = 10000
5) Create the tsocks library:
make
6) Add the `libtsocks.so` to the `LD_PRELOAD` environment variable:
export LD_PRELOAD="${PWD}/libtsocks.so.1.8"
7) Create a custom curl command to set the tsocks option: open a file named
`curl`, which is accessible from your `PATH` environment variable before the
real `curl` command, and fill this file with:
#!/bin/bash
/usr/bin/curl --socks5 127.0.0.1:10000 $@
8) Start a tsocks ssh tunnel:
ssh -fN -D 10000 user@external-server.com

155
README.md
View File

@ -1,10 +1,161 @@
Quantum package Quantum package
=============== ===============
[![Build Status](https://travis-ci.org/LCPQ/quantum_package.svg?branch=master)](https://travis-ci.org/LCPQ/quantum_package) [![Build Status](https://travis-ci.org/LCPQ/quantum_package.svg?branch=master)](https://travis-ci.org/LCPQ/quantum_package)
[![Gitter](https://badges.gitter.im/Join Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Set of quantum chemistry programs and libraries. Set of quantum chemistry programs and libraries.
(under GNU GENERAL PUBLIC LICENSE v2)
For more information, you can visit the [wiki of the project](http://github.com/LCPQ/quantum_package/wiki>), or the [Install](INSTALL.md) file. For more information, you can visit the [wiki of the project](http://github.com/LCPQ/quantum_package/wiki>), or bellow for the installation instruction.
# Installation
## Requirements
* Fortran compiler (`ifort` and `gfortran` are tested)
* Python >= 2.6
* GNU make
* Bash
## Standard installation
### 1) Configure
$ ./configure <config_file> (--production | --development)
For example you can type `./configure config/gfortran.cfg --production`
This command have to purpose :
- Download and install all the requirements.
Installing OCaml and the Core library may take somme time (up to 20min on an old machine).
- And create the file which contains all the tree dependencies for the binaries.
It's not a Makefile, but a Ninja file (so don't type `make` is hopeless, type `ninja` instead)
####Compilation Flags (`<config_file>`)
`<config_file>` is the path to the file who contain all the flags useful for the compilation: like the optimization flags, the Lapack libary, etc. We have two default configure file in ``$QP_ROOT/config`` : ``ifort.cfg`` and ``gfortran.cfg``. You can edit these files to modify the compiling options.
#### What utilization of the code will you do?
* If you only want the binaries (for production workflow) use the flag
`--production` in when calling this script. It's quicker
* Else if you are a developer and you want to be able to compile specific modules use: `--development`. It will create for you the `build.ninja` in each module
### 2) Set environment variable
source quantum_package.rc
This file contains all the environment variables needed by the quantum package both to compile and run. This should also be done before running calculations.
### Optional) Add some new module
Usage: qp_install_module.py list (--installed|--avalaible-local|--avalaible-remote)
qp_install_module.py install <name>...
qp_install_module.py create -n <name> [<children_module>...]
qp_install_module.py download -n <name> [<path_folder>...]
For exemple you can type :
`qp_install_module.py install Full_CI`
### 3) Compiling the fortran
ninja
Just type `ninja` if you are in `$QP_ROOT` (or `ninja -f $QP_ROOT/build.ninja`
elsewhere). The compilation will take approximately 3 min.
If you have set the `--developement` flag in a specific module you can go in
the corresponding module directory and run `ninja` to build only this module.
You can type `ninja all` in a module for compiling all the submodule
### 4) Compiling the OCaml
cd ocaml ; make ; cd -
### 5) Testing if all is ok
cd testing_no_regression ; ./unit_test.py
## Installing behind a firewall !
1) Download `tsocks`:
wget http://sourceforge.net/projects/tsocks/files/latest/download
mv download tsocks.tar.gz
2) Tranfer `tsocks.tar.gz` on the remote host
3) Configure `tsocks` with the proper directory for the `tsocks.conf` file:
tar -zxvf tsocks.tar.gz
cd tsocks-*
./configure --with-conf=${PWD}/tsocks.conf
4) Create the `tsocks.conf` file with the following content:
server = 127.0.0.1
server_port = 10000
5) Create the tsocks library:
make
6) Add the `libtsocks.so` to the `LD_PRELOAD` environment variable:
export LD_PRELOAD="${PWD}/libtsocks.so.1.8"
7) Create a custom curl command to set the tsocks option: open a file named
`curl`, which is accessible from your `PATH` environment variable before the
real `curl` command, and fill this file with:
#!/bin/bash
/usr/bin/curl --socks5 127.0.0.1:10000 $@
8) Start a tsocks ssh tunnel:
ssh -fN -D 10000 user@external-server.com
# Note on EZFIO.cfg
##Format specification :
```
Required:
[<provider_name>] The name of the provider in irp.f90 and in the EZFIO lib
doc:<str> The plain text documentation
type:<str> A Fancy_type supported by the ocaml.
type `ei_handler.py get_supported_type` for a list
interface:<str> The interface is list of string sepeared by "," who can containt :
- ezfio (if you only whant the ezfiolib)
- provider (if you want the provider)
- ocaml (if you want the ocaml gestion)
Optional:
default: <str> The default value needed,
if 'ocaml' is in interface list.
! No list is allowed for now !
size: <str> The size information.
(by default is one)
Example : 1, =sum(ao_num); (ao_num,3)
ezfio_name: <str> The name for the EZFIO lib
(by default is <provider_name>)
ezfio_dir: <str> Will be the folder of EZFIO.
(by default is <module_lower>)
```
##Example of EZFIO.cfg:
```
[thresh_SCF]
doc: Threshold on the convergence of the Hartree Fock energy
type: Threshold
default: 1.e-10
interface: provider,ezfio,ocaml
size: 1
[energy]
type: Strictly_negative_float
doc: Calculated HF energy
interface: ezfio
```

10
ocaml/.gitignore vendored
View File

@ -38,12 +38,12 @@ qp_print
qp_run qp_run
qp_set_ddci qp_set_ddci
qp_set_mo_class qp_set_mo_class
Input_determinants.ml
Input_hartree_fock.ml
Input_integrals_bielec.ml
Input_perturbation.ml
Input_properties.ml
Input_pseudo.ml Input_pseudo.ml
Input_integrals_bielec.ml
Input_hartree_fock.ml
Input_perturbation.ml
Input_determinants.ml
Input_properties.ml
qp_edit.ml qp_edit.ml
qp_edit qp_edit
qp_edit.native qp_edit.native

View File

@ -1,10 +1,10 @@
[energy] [energy]
type: double precision type: double precision
doc: "Calculated CAS-SD energy" doc: "Calculated CAS-SD energy"
interface: output interface: ezfio
[energy_pt2] [energy_pt2]
type: double precision type: double precision
doc: "Calculated selected CAS-SD energy with PT2 correction" doc: "Calculated selected CAS-SD energy with PT2 correction"
interface: output interface: ezfio

View File

Before

(image error) Size: 101 KiB

After

(image error) Size: 101 KiB

View File

Before

(image error) Size: 88 KiB

After

(image error) Size: 88 KiB

View File

Before

(image error) Size: 112 KiB

After

(image error) Size: 112 KiB

View File

@ -33,120 +33,120 @@ Documentation
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2047>`_ `h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6631>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1529>`_ `h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6113>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1852>`_ `h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6436>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2811>`_ `h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5103>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3575>`_ `h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5867>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3057>`_ `h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5349>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3380>`_ `h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5672>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2293>`_ `h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4585>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2616>`_ `h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4908>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5867>`_ `h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4339>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5349>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3821>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5672>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4144>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5103>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3575>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4585>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3057>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4908>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3380>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4339>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2811>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3821>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2293>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4144>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2616>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6631>`_ `h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2047>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6113>`_ `h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1529>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6436>`_ `h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1852>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.

View File

Before

(image error) Size: 105 KiB

After

(image error) Size: 105 KiB

View File

Before

(image error) Size: 88 KiB

After

(image error) Size: 88 KiB

View File

Before

(image error) Size: 88 KiB

After

(image error) Size: 88 KiB

View File

@ -1,10 +1,10 @@
[energy] [energy]
type: double precision type: double precision
doc: Calculated CISD_SC2 energy of ground_state doc: Calculated CISD_SC2 energy of ground_state
interface: output interface: ezfio
[energy_pt2] [energy_pt2]
type: double precision type: double precision
doc: Calculated CISD_SC2 energy+pt2 of ground_state doc: Calculated CISD_SC2 energy+pt2 of ground_state
interface: output interface: ezfio

View File

Before

(image error) Size: 113 KiB

After

(image error) Size: 113 KiB

View File

@ -33,120 +33,120 @@ Documentation
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2047>`_ `h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6631>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1529>`_ `h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6113>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1852>`_ `h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6436>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2811>`_ `h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5103>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3575>`_ `h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5867>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3057>`_ `h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5349>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3380>`_ `h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5672>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2293>`_ `h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4585>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2616>`_ `h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4908>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5867>`_ `h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4339>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5349>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3821>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5672>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4144>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5103>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3575>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4585>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3057>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4908>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3380>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4339>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2811>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3821>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2293>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4144>`_ `h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2616>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6631>`_ `h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2047>`_
Calls H_apply on the HF determinant and selects all connected single and double Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6113>`_ `h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1529>`_
Generate all double excitations of key_in using the bit masks of holes and Generate all double excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6436>`_ `h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1852>`_
Generate all single excitations of key_in using the bit masks of holes and Generate all single excitations of key_in using the bit masks of holes and
particles. particles.
Assume N_int is already provided. Assume N_int is already provided.

View File

Before

(image error) Size: 106 KiB

After

(image error) Size: 106 KiB

View File

@ -1,4 +1,4 @@
[energy] [energy]
type: double precision type: double precision
doc: "Calculated CAS-SD energy" doc: "Calculated CAS-SD energy"
interface: output interface: ezfio

View File

Before

(image error) Size: 102 KiB

After

(image error) Size: 102 KiB

View File

Before

(image error) Size: 59 KiB

After

(image error) Size: 59 KiB

View File

@ -1,10 +1,10 @@
[energy] [energy]
type: double precision type: double precision
doc: Calculated Selected FCI energy doc: Calculated Selected FCI energy
interface: output interface: ezfio
[energy_pt2] [energy_pt2]
type: double precision type: double precision
doc: Calculated FCI energy + PT2 doc: Calculated FCI energy + PT2
interface: output interface: ezfio

View File

Before

(image error) Size: 100 KiB

After

(image error) Size: 100 KiB

View File

Before

(image error) Size: 61 KiB

After

(image error) Size: 61 KiB

View File

Before

(image error) Size: 74 KiB

After

(image error) Size: 74 KiB

View File

Before

(image error) Size: 60 KiB

After

(image error) Size: 60 KiB

Some files were not shown because too many files have changed in this diff Show More