Merge branch 'master' of github.com:scemama/quantum_package
Conflicts: scripts/compilation/qp_create_ninja.py
@ -1,4 +1,8 @@
|
||||
sudo: true
|
||||
#
|
||||
#cache:
|
||||
# directories:
|
||||
# - $HOME/.opam/
|
||||
|
||||
language: python
|
||||
python:
|
||||
@ -12,6 +16,7 @@ before_script:
|
||||
script:
|
||||
- ./configure --production ./config/gfortran.cfg
|
||||
- source ./quantum_package.rc
|
||||
- qp_install_module.py install Full_CI Hartree_Fock
|
||||
- ninja
|
||||
- cd ocaml ; make ; cd -
|
||||
- cd testing_no_regression ; ./unit_test.py
|
||||
|
@ -1,38 +0,0 @@
|
||||
# Compile
|
||||
|
||||
We need to create the file which contains all the tree dependencies for the
|
||||
binaries. It's not a Makefile, but a Ninja file (so don't type `make` is
|
||||
hopeless, type `ninja` instead).
|
||||
|
||||
The script to create the dependency file (aka `build.ninja`) is
|
||||
`qp_create_ninja.py`.
|
||||
|
||||
## What utilization of the code will you do?
|
||||
|
||||
* If you only want the binaries (for production workflow) use the flag
|
||||
`--production` in when calling this script. It's quicker
|
||||
* Else if you are a developer and you want to be able to compile specific
|
||||
modules use: `--development`. It will create for you the `build.ninja` in each
|
||||
module
|
||||
|
||||
## Compilation Flags
|
||||
|
||||
You need to specify all the flags useful for the compilation: like the
|
||||
optimization flags, the Lapack libary, etc. ``$QP_ROOT/config`` contains
|
||||
``ifort.cfg`` and ``gfortran.cfg`` containing the compiler flags that will be
|
||||
used. You can edit these files to modify the compiling options.
|
||||
|
||||
## Example to create the Ninja file
|
||||
|
||||
`qp_create_ninja.py create --production $QP_ROOT/config/ifort.cfg`
|
||||
|
||||
## Compiling
|
||||
|
||||
Just type `ninja` if you are in `$QP_ROOT` (or `ninja -f $QP_ROOT/build.ninja`
|
||||
elsewhere). The compilation will take approximately 3 min.
|
||||
|
||||
If you have set the `--developement` flag in a specific module you can go in
|
||||
the corresponding module directory and run `ninja` to build only this module.
|
||||
You can type `ninja all` in a module for compiling all the submodule
|
||||
|
||||
Finally, go in `$QP_ROOT/ocaml` and type `make`
|
85
INSTALL.md
@ -1,85 +0,0 @@
|
||||
# Installation
|
||||
|
||||
## Requirements
|
||||
|
||||
* curl
|
||||
* m4
|
||||
* GNU make
|
||||
* Fortran compiler (ifort or gfortran are tested)
|
||||
* Python >= 2.6
|
||||
* Bash
|
||||
* Patch (for opam)
|
||||
|
||||
## Optional
|
||||
|
||||
* graphviz
|
||||
|
||||
|
||||
## Standard installation
|
||||
|
||||
1) `./setup_environment.sh`
|
||||
|
||||
This command will download and install all the requirements.
|
||||
Installing OCaml and the Core library may take somme time
|
||||
(up to 20min on an old machine).
|
||||
|
||||
2) `source quantum_package.rc`
|
||||
|
||||
This file contains all the environement variables neeeded by the quantum package
|
||||
both to compile and run. This should also be done before running calculations.
|
||||
|
||||
3) `cp ./src/Makefile.config.gfortran ./src/Makefile.config`
|
||||
|
||||
Create the ``Makefile.config`` which contains all the flags needed by the compiler.
|
||||
The is also an example for the Intel Compiler (`Makefile.config.ifort`).
|
||||
Edit this file and tune the flags as you want.
|
||||
|
||||
4) `make build`
|
||||
|
||||
It will compile all the executables and tools.
|
||||
|
||||
5) `make binary`
|
||||
|
||||
Optional. It will build a `tar.gz` file containing everything needed to run the quantum package on a
|
||||
machine where you can't compile.
|
||||
|
||||
|
||||
## Installing behind a firewall
|
||||
|
||||
1) Download `tsocks`:
|
||||
|
||||
wget http://sourceforge.net/projects/tsocks/files/latest/download
|
||||
mv download tsocks.tar.gz
|
||||
|
||||
2) Tranfer `tsocks.tar.gz` on the remote host
|
||||
|
||||
3) Configure `tsocks` with the proper directory for the `tsocks.conf` file:
|
||||
|
||||
tar -zxvf tsocks.tar.gz
|
||||
cd tsocks-*
|
||||
./configure --with-conf=${PWD}/tsocks.conf
|
||||
|
||||
4) Create the `tsocks.conf` file with the following content:
|
||||
|
||||
server = 127.0.0.1
|
||||
server_port = 10000
|
||||
|
||||
5) Create the tsocks library:
|
||||
|
||||
make
|
||||
|
||||
6) Add the `libtsocks.so` to the `LD_PRELOAD` environment variable:
|
||||
|
||||
export LD_PRELOAD="${PWD}/libtsocks.so.1.8"
|
||||
|
||||
7) Create a custom curl command to set the tsocks option: open a file named
|
||||
`curl`, which is accessible from your `PATH` environment variable before the
|
||||
real `curl` command, and fill this file with:
|
||||
|
||||
#!/bin/bash
|
||||
/usr/bin/curl --socks5 127.0.0.1:10000 $@
|
||||
|
||||
8) Start a tsocks ssh tunnel:
|
||||
|
||||
ssh -fN -D 10000 user@external-server.com
|
||||
|
157
README.md
@ -1,10 +1,161 @@
|
||||
Quantum package
|
||||
===============
|
||||
|
||||
[![Build Status](https://travis-ci.org/LCPQ/quantum_package.svg?branch=master)](https://travis-ci.org/LCPQ/quantum_package)
|
||||
|
||||
[![Gitter](https://badges.gitter.im/Join Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
|
||||
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
|
||||
|
||||
|
||||
Set of quantum chemistry programs and libraries.
|
||||
Set of quantum chemistry programs and libraries.
|
||||
(under GNU GENERAL PUBLIC LICENSE v2)
|
||||
|
||||
For more information, you can visit the [wiki of the project](http://github.com/LCPQ/quantum_package/wiki>), or the [Install](INSTALL.md) file.
|
||||
For more information, you can visit the [wiki of the project](http://github.com/LCPQ/quantum_package/wiki>), or bellow for the installation instruction.
|
||||
|
||||
# Installation
|
||||
|
||||
## Requirements
|
||||
* Fortran compiler (`ifort` and `gfortran` are tested)
|
||||
* Python >= 2.6
|
||||
* GNU make
|
||||
* Bash
|
||||
|
||||
## Standard installation
|
||||
|
||||
### 1) Configure
|
||||
|
||||
$ ./configure <config_file> (--production | --development)
|
||||
|
||||
For example you can type `./configure config/gfortran.cfg --production`
|
||||
|
||||
This command have to purpose :
|
||||
|
||||
- Download and install all the requirements.
|
||||
Installing OCaml and the Core library may take somme time (up to 20min on an old machine).
|
||||
- And create the file which contains all the tree dependencies for the binaries.
|
||||
It's not a Makefile, but a Ninja file (so don't type `make` is hopeless, type `ninja` instead)
|
||||
|
||||
####Compilation Flags (`<config_file>`)
|
||||
|
||||
`<config_file>` is the path to the file who contain all the flags useful for the compilation: like the optimization flags, the Lapack libary, etc. We have two default configure file in ``$QP_ROOT/config`` : ``ifort.cfg`` and ``gfortran.cfg``. You can edit these files to modify the compiling options.
|
||||
|
||||
#### What utilization of the code will you do?
|
||||
|
||||
* If you only want the binaries (for production workflow) use the flag
|
||||
`--production` in when calling this script. It's quicker
|
||||
* Else if you are a developer and you want to be able to compile specific modules use: `--development`. It will create for you the `build.ninja` in each module
|
||||
|
||||
### 2) Set environment variable
|
||||
|
||||
source quantum_package.rc
|
||||
This file contains all the environment variables needed by the quantum package both to compile and run. This should also be done before running calculations.
|
||||
|
||||
### Optional) Add some new module
|
||||
|
||||
Usage: qp_install_module.py list (--installed|--avalaible-local|--avalaible-remote)
|
||||
qp_install_module.py install <name>...
|
||||
qp_install_module.py create -n <name> [<children_module>...]
|
||||
qp_install_module.py download -n <name> [<path_folder>...]
|
||||
|
||||
For exemple you can type :
|
||||
`qp_install_module.py install Full_CI`
|
||||
|
||||
### 3) Compiling the fortran
|
||||
|
||||
ninja
|
||||
Just type `ninja` if you are in `$QP_ROOT` (or `ninja -f $QP_ROOT/build.ninja`
|
||||
elsewhere). The compilation will take approximately 3 min.
|
||||
|
||||
If you have set the `--developement` flag in a specific module you can go in
|
||||
the corresponding module directory and run `ninja` to build only this module.
|
||||
You can type `ninja all` in a module for compiling all the submodule
|
||||
|
||||
|
||||
### 4) Compiling the OCaml
|
||||
|
||||
cd ocaml ; make ; cd -
|
||||
|
||||
### 5) Testing if all is ok
|
||||
|
||||
cd testing_no_regression ; ./unit_test.py
|
||||
|
||||
## Installing behind a firewall !
|
||||
|
||||
1) Download `tsocks`:
|
||||
|
||||
wget http://sourceforge.net/projects/tsocks/files/latest/download
|
||||
mv download tsocks.tar.gz
|
||||
|
||||
2) Tranfer `tsocks.tar.gz` on the remote host
|
||||
|
||||
3) Configure `tsocks` with the proper directory for the `tsocks.conf` file:
|
||||
|
||||
tar -zxvf tsocks.tar.gz
|
||||
cd tsocks-*
|
||||
./configure --with-conf=${PWD}/tsocks.conf
|
||||
|
||||
4) Create the `tsocks.conf` file with the following content:
|
||||
|
||||
server = 127.0.0.1
|
||||
server_port = 10000
|
||||
|
||||
5) Create the tsocks library:
|
||||
|
||||
make
|
||||
|
||||
6) Add the `libtsocks.so` to the `LD_PRELOAD` environment variable:
|
||||
|
||||
export LD_PRELOAD="${PWD}/libtsocks.so.1.8"
|
||||
|
||||
7) Create a custom curl command to set the tsocks option: open a file named
|
||||
`curl`, which is accessible from your `PATH` environment variable before the
|
||||
real `curl` command, and fill this file with:
|
||||
|
||||
#!/bin/bash
|
||||
/usr/bin/curl --socks5 127.0.0.1:10000 $@
|
||||
|
||||
8) Start a tsocks ssh tunnel:
|
||||
|
||||
ssh -fN -D 10000 user@external-server.com
|
||||
|
||||
# Note on EZFIO.cfg
|
||||
|
||||
##Format specification :
|
||||
|
||||
```
|
||||
Required:
|
||||
[<provider_name>] The name of the provider in irp.f90 and in the EZFIO lib
|
||||
doc:<str> The plain text documentation
|
||||
type:<str> A Fancy_type supported by the ocaml.
|
||||
type `ei_handler.py get_supported_type` for a list
|
||||
interface:<str> The interface is list of string sepeared by "," who can containt :
|
||||
- ezfio (if you only whant the ezfiolib)
|
||||
- provider (if you want the provider)
|
||||
- ocaml (if you want the ocaml gestion)
|
||||
Optional:
|
||||
default: <str> The default value needed,
|
||||
if 'ocaml' is in interface list.
|
||||
! No list is allowed for now !
|
||||
size: <str> The size information.
|
||||
(by default is one)
|
||||
Example : 1, =sum(ao_num); (ao_num,3)
|
||||
ezfio_name: <str> The name for the EZFIO lib
|
||||
(by default is <provider_name>)
|
||||
ezfio_dir: <str> Will be the folder of EZFIO.
|
||||
(by default is <module_lower>)
|
||||
```
|
||||
|
||||
##Example of EZFIO.cfg:
|
||||
|
||||
```
|
||||
[thresh_SCF]
|
||||
doc: Threshold on the convergence of the Hartree Fock energy
|
||||
type: Threshold
|
||||
default: 1.e-10
|
||||
interface: provider,ezfio,ocaml
|
||||
size: 1
|
||||
|
||||
[energy]
|
||||
type: Strictly_negative_float
|
||||
doc: Calculated HF energy
|
||||
interface: ezfio
|
||||
```
|
10
ocaml/.gitignore
vendored
@ -38,12 +38,12 @@ qp_print
|
||||
qp_run
|
||||
qp_set_ddci
|
||||
qp_set_mo_class
|
||||
Input_determinants.ml
|
||||
Input_hartree_fock.ml
|
||||
Input_integrals_bielec.ml
|
||||
Input_perturbation.ml
|
||||
Input_properties.ml
|
||||
Input_pseudo.ml
|
||||
Input_integrals_bielec.ml
|
||||
Input_hartree_fock.ml
|
||||
Input_perturbation.ml
|
||||
Input_determinants.ml
|
||||
Input_properties.ml
|
||||
qp_edit.ml
|
||||
qp_edit
|
||||
qp_edit.native
|
||||
|
@ -1,10 +1,10 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: "Calculated CAS-SD energy"
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: "Calculated selected CAS-SD energy with PT2 correction"
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
Before Width: | Height: | Size: 101 KiB After Width: | Height: | Size: 101 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 112 KiB |
@ -33,120 +33,120 @@ Documentation
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2047>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6631>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1529>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6113>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1852>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6436>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2811>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5103>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3575>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5867>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3057>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5349>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3380>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5672>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2293>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4585>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2616>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4908>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5867>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4339>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5349>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3821>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5672>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4144>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L5103>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3575>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4585>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3057>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4908>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3380>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4339>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2811>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L3821>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2293>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L4144>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2616>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6631>`_
|
||||
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L2047>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6113>`_
|
||||
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1529>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L6436>`_
|
||||
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f_shell_10#L1852>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 105 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 88 KiB |
@ -1,10 +1,10 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated CISD_SC2 energy of ground_state
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated CISD_SC2 energy+pt2 of ground_state
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
Before Width: | Height: | Size: 113 KiB After Width: | Height: | Size: 113 KiB |
@ -33,120 +33,120 @@ Documentation
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2047>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6631>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1529>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6113>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1852>`_
|
||||
`h_apply_cisd_selection_dipole_moment_z_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6436>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2811>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5103>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3575>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5867>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3057>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5349>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3380>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5672>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2293>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4585>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2616>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4908>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5867>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4339>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5349>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3821>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5672>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4144>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L5103>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3575>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4585>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3057>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4908>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3380>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4339>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2811>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L3821>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2293>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L4144>`_
|
||||
`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2616>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6631>`_
|
||||
`h_apply_cisd_selection_h_core <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L2047>`_
|
||||
Calls H_apply on the HF determinant and selects all connected single and double
|
||||
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6113>`_
|
||||
`h_apply_cisd_selection_h_core_diexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1529>`_
|
||||
Generate all double excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
||||
|
||||
|
||||
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L6436>`_
|
||||
`h_apply_cisd_selection_h_core_monoexc <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f_shell_10#L1852>`_
|
||||
Generate all single excitations of key_in using the bit masks of holes and
|
||||
particles.
|
||||
Assume N_int is already provided.
|
Before Width: | Height: | Size: 106 KiB After Width: | Height: | Size: 106 KiB |
@ -1,4 +1,4 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: "Calculated CAS-SD energy"
|
||||
interface: output
|
||||
interface: ezfio
|
Before Width: | Height: | Size: 102 KiB After Width: | Height: | Size: 102 KiB |
Before Width: | Height: | Size: 59 KiB After Width: | Height: | Size: 59 KiB |
@ -1,10 +1,10 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated Selected FCI energy
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated FCI energy + PT2
|
||||
interface: output
|
||||
interface: ezfio
|
||||
|
Before Width: | Height: | Size: 100 KiB After Width: | Height: | Size: 100 KiB |
Before Width: | Height: | Size: 61 KiB After Width: | Height: | Size: 61 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB |