From 38c10bd3906d270ed8dd6213cabfc227e8e1612a Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Sat, 11 Apr 2015 13:13:44 +0200 Subject: [PATCH 01/20] psi_svd_matrix built in parallel --- src/Dets/determinants.irp.f | 22 +++++++++++++++++++--- 1 file changed, 19 insertions(+), 3 deletions(-) diff --git a/src/Dets/determinants.irp.f b/src/Dets/determinants.irp.f index 00e683fc..9267ee0f 100644 --- a/src/Dets/determinants.irp.f +++ b/src/Dets/determinants.irp.f @@ -718,7 +718,12 @@ BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_bet integer, external :: get_index_in_psi_det_sorted_bit logical, external :: is_in_wavefunction + + PROVIDE psi_coef_sorted_bit + psi_svd_matrix = 0.d0 + !$OMP PARALLEL DO DEFAULT(SHARED) & + !$OMP PRIVATE(i,j,k,tmp_det,idx) do j=1,N_det_beta_unique do k=1,N_int tmp_det(k,2) = psi_det_beta_unique(k,j) @@ -735,6 +740,7 @@ BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_bet endif enddo enddo + !$OMP END PARALLEL DO END_PROVIDER @@ -799,12 +805,19 @@ subroutine generate_all_alpha_beta_det_products ! Create a wave function from all possible alpha x beta determinants END_DOC integer :: i,j,k,l - integer :: idx + integer :: idx, iproc integer, external :: get_index_in_psi_det_sorted_bit - integer(bit_kind), allocatable :: tmp_det(:,:,:) + integer(bit_kind), allocatable :: tmp_det(:,:,:) logical, external :: is_in_wavefunction + integer, external :: omp_get_thread_num + !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& + !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& + !$OMP N_det) & + !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) + !$ iproc = omp_get_thread_num() allocate (tmp_det(N_int,2,N_det_alpha_unique)) + !$OMP DO do j=1,N_det_beta_unique l = 1 do i=1,N_det_alpha_unique @@ -816,8 +829,11 @@ subroutine generate_all_alpha_beta_det_products l = l+1 endif enddo - call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, 1) + call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) enddo + !$OMP END DO NOWAIT + deallocate(tmp_det) + !$OMP END PARALLEL deallocate (tmp_det) call copy_H_apply_buffer_to_wf SOFT_TOUCH psi_det psi_coef N_det From 2b4f760e34e4609412d469093bb5feff79270af2 Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Tue, 14 Apr 2015 02:00:58 +0200 Subject: [PATCH 02/20] Accelerated spindeterminants --- src/Dets/README.rst | 134 ++++--- src/Dets/connected_to_ref.irp.f | 67 +--- src/Dets/determinants.irp.f | 313 --------------- src/Dets/spindeterminants.ezfio_config | 5 +- src/Dets/spindeterminants.irp.f | 528 ++++++++++++++++++++++++- src/FCIdump/README.rst | 3 - src/Makefile.config.ifort | 30 -- 7 files changed, 603 insertions(+), 477 deletions(-) delete mode 100644 src/Makefile.config.ifort diff --git a/src/Dets/README.rst b/src/Dets/README.rst index f03df8da..e9077510 100644 --- a/src/Dets/README.rst +++ b/src/Dets/README.rst @@ -90,10 +90,6 @@ Documentation `connected_to_ref_by_mono `_ Undocumented -`det_is_not_or_may_be_in_ref `_ - If true, det is not in ref - If false, det may be in ref - `det_search_key `_ Return an integer*8 corresponding to a determinant index for searching @@ -103,9 +99,6 @@ Documentation `is_in_wavefunction `_ True if the determinant ``det`` is in the wave function -`key_pattern_not_in_ref `_ - Min and max values of the integers of the keys of the reference - `occ_pattern_search_key `_ Return an integer*8 corresponding to a determinant index for searching @@ -200,16 +193,10 @@ Documentation `det_svd `_ Computes the SVD of the Alpha x Beta determinant coefficient matrix -`create_wf_of_psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`filter_3_highest_electrons `_ +`filter_3_highest_electrons `_ Returns a determinant with only the 3 highest electrons -`generate_all_alpha_beta_det_products `_ - Create a wave function from all possible alpha x beta determinants - -`int_of_3_highest_electrons `_ +`int_of_3_highest_electrons `_ Returns an integer*8 as : .br |_<--- 21 bits ---><--- 21 bits ---><--- 21 bits --->| @@ -226,32 +213,26 @@ Documentation `n_det `_ Number of determinants in the wave function -`n_det_alpha_unique `_ - Unique alpha determinants - -`n_det_beta_unique `_ - Unique beta determinants - `psi_average_norm_contrib `_ Contribution of determinants to the state-averaged density -`psi_average_norm_contrib_sorted `_ +`psi_average_norm_contrib_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) `psi_coef `_ The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file is empty -`psi_coef_sorted `_ +`psi_coef_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) -`psi_coef_sorted_ab `_ +`psi_coef_sorted_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_coef_sorted_bit `_ +`psi_coef_sorted_bit `_ Determinants on which we apply for perturbation. They are sorted by determinants interpreted as integers. Useful to accelerate the search of a random determinant in the wave @@ -261,80 +242,53 @@ Documentation The wave function determinants. Initialized with Hartree-Fock if the EZFIO file is empty -`psi_det_alpha `_ - List of alpha determinants of psi_det - -`psi_det_alpha_unique `_ - Unique alpha determinants - -`psi_det_beta `_ - List of beta determinants of psi_det - -`psi_det_beta_unique `_ - Unique beta determinants - `psi_det_size `_ Size of the psi_det/psi_coef arrays -`psi_det_sorted `_ +`psi_det_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) -`psi_det_sorted_ab `_ +`psi_det_sorted_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_det_sorted_bit `_ +`psi_det_sorted_bit `_ Determinants on which we apply for perturbation. They are sorted by determinants interpreted as integers. Useful to accelerate the search of a random determinant in the wave function. -`psi_det_sorted_next_ab `_ +`psi_det_sorted_next_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_svd_alpha `_ - SVD wave function - -`psi_svd_beta `_ - SVD wave function - -`psi_svd_coefs `_ - SVD wave function - -`psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`read_dets `_ +`read_dets `_ Reads the determinants from the EZFIO file -`save_wavefunction `_ +`save_wavefunction `_ Save the wave function into the EZFIO file -`save_wavefunction_general `_ +`save_wavefunction_general `_ Save the wave function into the EZFIO file -`save_wavefunction_unsorted `_ +`save_wavefunction_unsorted `_ Save the wave function into the EZFIO file -`sort_dets_by_3_highest_electrons `_ +`sort_dets_by_3_highest_electrons `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`sort_dets_by_det_search_key `_ +`sort_dets_by_det_search_key `_ Determinants are sorted are sorted according to their det_search_key. Useful to accelerate the search of a random determinant in the wave function. -`spin_det_search_key `_ - Return an integer*8 corresponding to a determinant index for searching - `double_exc_bitmask `_ double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 @@ -675,7 +629,61 @@ Documentation `n_con_int `_ Number of integers to represent the connections between determinants -`write_spindeterminants `_ +`create_wf_of_psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`generate_all_alpha_beta_det_products `_ + Create a wave function from all possible alpha x beta determinants + +`get_index_in_psi_det_alpha_unique `_ + Returns the index of the determinant in the ``psi_det_alpha_unique`` array + +`get_index_in_psi_det_beta_unique `_ + Returns the index of the determinant in the ``psi_det_beta_unique`` array + +`n_det_alpha_unique `_ + Unique alpha determinants + +`n_det_beta_unique `_ + Unique beta determinants + +`psi_det_alpha `_ + List of alpha determinants of psi_det + +`psi_det_alpha_unique `_ + Unique alpha determinants + +`psi_det_beta `_ + List of beta determinants of psi_det + +`psi_det_beta_unique `_ + Unique beta determinants + +`psi_svd_alpha `_ + SVD wave function + +`psi_svd_beta `_ + SVD wave function + +`psi_svd_coefs `_ + SVD wave function + +`psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_columns `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_rows `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_values `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`spin_det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`write_spindeterminants `_ Undocumented `cisd `_ diff --git a/src/Dets/connected_to_ref.irp.f b/src/Dets/connected_to_ref.irp.f index 3c7eb581..2d40b621 100644 --- a/src/Dets/connected_to_ref.irp.f +++ b/src/Dets/connected_to_ref.irp.f @@ -162,7 +162,7 @@ integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet) integer :: N_past integer :: i, l integer :: degree_x2 - logical :: det_is_not_or_may_be_in_ref, t + logical :: t double precision :: hij_elec ! output : 0 : not connected @@ -260,7 +260,7 @@ integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) integer :: N_past integer :: i, l integer :: degree_x2 - logical :: det_is_not_or_may_be_in_ref, t + logical :: t double precision :: hij_elec ! output : 0 : not connected @@ -355,66 +355,3 @@ integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) end - -logical function det_is_not_or_may_be_in_ref(key,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! If true, det is not in ref - ! If false, det may be in ref - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key(Nint,2) - integer(bit_kind) :: key_int - integer*1 :: key_short(bit_kind) - !DIR$ ATTRIBUTES ALIGN : 32 :: key_short - equivalence (key_int,key_short) - - integer :: i, ispin, k - - det_is_not_or_may_be_in_ref = .False. - do ispin=1,2 - do i=1,Nint - key_int = key(i,ispin) - do k=1,bit_kind - det_is_not_or_may_be_in_ref = & - det_is_not_or_may_be_in_ref .or. & - key_pattern_not_in_ref(key_short(k), i, ispin) - enddo - if(det_is_not_or_may_be_in_ref) then - return - endif - enddo - enddo - -end - - -BEGIN_PROVIDER [ logical, key_pattern_not_in_ref, (-128:127,N_int,2) ] - use bitmasks - implicit none - BEGIN_DOC - ! Min and max values of the integers of the keys of the reference - END_DOC - - integer :: i, j, ispin - integer(bit_kind) :: key - integer*1 :: key_short(bit_kind) - equivalence (key,key_short) - integer :: idx, k - - key_pattern_not_in_ref = .True. - - do j=1,N_det - do ispin=1,2 - do i=1,N_int - key = psi_det(i,ispin,j) - do k=1,bit_kind - key_pattern_not_in_ref( key_short(k), i, ispin ) = .False. - enddo - enddo - enddo - enddo - -END_PROVIDER - diff --git a/src/Dets/determinants.irp.f b/src/Dets/determinants.irp.f index 9267ee0f..104b868e 100644 --- a/src/Dets/determinants.irp.f +++ b/src/Dets/determinants.irp.f @@ -294,132 +294,6 @@ END_PROVIDER -!==============================================================================! -! ! -! Independent alpha/beta parts ! -! ! -!==============================================================================! - -integer*8 function spin_det_search_key(det,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Return an integer*8 corresponding to a determinant index for searching - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det(Nint) - integer :: i - spin_det_search_key = det(1) - do i=2,Nint - spin_det_search_key = ieor(spin_det_search_key,det(i)) - enddo -end - - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of alpha determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_alpha(k,i) = psi_det(k,1,i) - enddo - enddo -END_PROVIDER - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of beta determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_beta(k,i) = psi_det(k,2,i) - enddo - enddo -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] - implicit none - BEGIN_DOC - ! Unique alpha determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_alpha_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_alpha_unique += 1 - do k=1,N_int - psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_beta_unique ] - implicit none - BEGIN_DOC - ! Unique beta determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_beta_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_beta_unique += 1 - do k=1,N_int - psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - - !==============================================================================! ! ! ! Sorting providers ! @@ -700,193 +574,6 @@ subroutine sort_dets_by_3_highest_electrons(det_in,coef_in,det_out,coef_out, & end -!==============================================================================! -! ! -! Alpha x Beta Matrix ! -! ! -!==============================================================================! - -BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - - - PROVIDE psi_coef_sorted_bit - - psi_svd_matrix = 0.d0 - !$OMP PARALLEL DO DEFAULT(SHARED) & - !$OMP PRIVATE(i,j,k,tmp_det,idx) - do j=1,N_det_beta_unique - do k=1,N_int - tmp_det(k,2) = psi_det_beta_unique(k,j) - enddo - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1) = psi_det_alpha_unique(k,i) - enddo - idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) - if (idx > 0) then - do k=1,N_states - psi_svd_matrix(i,j,k) = psi_coef_sorted_bit(idx,k) - enddo - endif - enddo - enddo - !$OMP END PARALLEL DO - -END_PROVIDER - -subroutine create_wf_of_psi_svd_matrix - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - double precision :: norm(N_states) - - call generate_all_alpha_beta_det_products - norm = 0.d0 - do j=1,N_det_beta_unique - do k=1,N_int - tmp_det(k,2) = psi_det_beta_unique(k,j) - enddo - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1) = psi_det_alpha_unique(k,i) - enddo - idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) - if (idx > 0) then - do k=1,N_states - psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) - norm(k) += psi_svd_matrix(i,j,k) - enddo - endif - enddo - enddo - do k=1,N_states - norm(k) = 1.d0/dsqrt(norm(k)) - do i=1,N_det - psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) - enddo - enddo - psi_det = psi_det_sorted_bit - psi_coef = psi_coef_sorted_bit - TOUCH psi_det psi_coef - psi_det = psi_det_sorted - psi_coef = psi_coef_sorted - norm(1) = 0.d0 - do i=1,N_det - norm(1) += psi_average_norm_contrib_sorted(i) - if (norm(1) >= 0.999999d0) then - exit - endif - enddo - N_det = min(i,N_det) - SOFT_TOUCH psi_det psi_coef N_det - -end - -subroutine generate_all_alpha_beta_det_products - implicit none - BEGIN_DOC -! Create a wave function from all possible alpha x beta determinants - END_DOC - integer :: i,j,k,l - integer :: idx, iproc - integer, external :: get_index_in_psi_det_sorted_bit - integer(bit_kind), allocatable :: tmp_det(:,:,:) - logical, external :: is_in_wavefunction - integer, external :: omp_get_thread_num - - !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& - !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& - !$OMP N_det) & - !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) - !$ iproc = omp_get_thread_num() - allocate (tmp_det(N_int,2,N_det_alpha_unique)) - !$OMP DO - do j=1,N_det_beta_unique - l = 1 - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1,l) = psi_det_alpha_unique(k,i) - tmp_det(k,2,l) = psi_det_beta_unique (k,j) - enddo - if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then - l = l+1 - endif - enddo - call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) - enddo - !$OMP END DO NOWAIT - deallocate(tmp_det) - !$OMP END PARALLEL - deallocate (tmp_det) - call copy_H_apply_buffer_to_wf - SOFT_TOUCH psi_det psi_coef N_det -end - - BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] - implicit none - BEGIN_DOC - ! SVD wave function - END_DOC - - integer :: lwork, info, istate - double precision, allocatable :: work(:), tmp(:,:), copy(:,:) - allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & - copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) - - do istate = 1,N_states - copy(:,:) = psi_svd_matrix(:,:,istate) - lwork=-1 - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - lwork = work(1) - deallocate(work) - allocate(work(lwork)) - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - deallocate(work) - if (info /= 0) then - print *, irp_here//': error in det SVD' - stop 1 - endif - integer :: i,j - do j=1,N_det_beta_unique - do i=1,N_det_beta_unique - psi_svd_beta(i,j,istate) = tmp(j,i) - enddo - enddo - deallocate(tmp,copy) - enddo - -END_PROVIDER - - !==============================================================================! ! ! ! Read/write routines ! diff --git a/src/Dets/spindeterminants.ezfio_config b/src/Dets/spindeterminants.ezfio_config index 1c7d81e3..39ccb82b 100644 --- a/src/Dets/spindeterminants.ezfio_config +++ b/src/Dets/spindeterminants.ezfio_config @@ -1,12 +1,15 @@ spindeterminants n_det_alpha integer n_det_beta integer + n_det integer n_int integer bit_kind integer n_states integer psi_det_alpha integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_alpha) psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta) - psi_coef_matrix double precision (spindeterminants_n_det_alpha,spindeterminants_n_det_beta,spindeterminants_n_states) + psi_coef_matrix_rows integer (spindeterminants_n_det) + psi_coef_matrix_columns integer (spindeterminants_n_det) + psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states) n_svd_coefs integer psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states) psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states) diff --git a/src/Dets/spindeterminants.irp.f b/src/Dets/spindeterminants.irp.f index 4b426faa..ffd28f85 100644 --- a/src/Dets/spindeterminants.irp.f +++ b/src/Dets/spindeterminants.irp.f @@ -1,3 +1,296 @@ +!==============================================================================! +! ! +! Independent alpha/beta parts ! +! ! +!==============================================================================! + +use bitmasks + +integer*8 function spin_det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint) + integer :: i + spin_det_search_key = det(1) + do i=2,Nint + spin_det_search_key = ieor(spin_det_search_key,det(i)) + enddo +end + + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of alpha determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_alpha(k,i) = psi_det(k,1,i) + enddo + enddo +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of beta determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_beta(k,i) = psi_det(k,2,i) + enddo + enddo +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] + implicit none + BEGIN_DOC + ! Unique alpha determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_alpha_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_alpha_unique += 1 + do k=1,N_int + psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_beta_unique ] + implicit none + BEGIN_DOC + ! Unique beta determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_beta_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_beta_unique += 1 + do k=1,N_int + psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + + + + +integer function get_index_in_psi_det_alpha_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_alpha_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_alpha_unique = 0 + ibegin = 1 + iend = N_det_alpha_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_alpha_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_alpha_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_alpha_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_alpha_unique = i + return + endif + endif + i += 1 + if (i > N_det_alpha_unique) then + return + endif + + enddo + +end + +integer function get_index_in_psi_det_beta_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_beta_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_beta_unique = 0 + ibegin = 1 + iend = N_det_beta_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_beta_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_beta_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_beta_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_beta_unique = i + return + endif + endif + i += 1 + if (i > N_det_beta_unique) then + return + endif + + enddo + +end + + subroutine write_spindeterminants use bitmasks implicit none @@ -11,6 +304,7 @@ subroutine write_spindeterminants N_int2 = (N_int*bit_kind)/8 call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique) call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique) + call ezfio_set_spindeterminants_n_det(N_det) call ezfio_set_spindeterminants_n_int(N_int) call ezfio_set_spindeterminants_bit_kind(bit_kind) call ezfio_set_spindeterminants_n_states(N_states) @@ -39,7 +333,9 @@ subroutine write_spindeterminants call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique) deallocate(tmpdet) - call ezfio_set_spindeterminants_psi_coef_matrix(psi_svd_matrix) + call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_svd_matrix_values) + call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_svd_matrix_rows) + call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_svd_matrix_columns) integer :: n_svd_coefs double precision :: norm, f @@ -49,7 +345,7 @@ subroutine write_spindeterminants do k=1,N_states norm -= psi_svd_coefs(n_svd_coefs,k)*psi_svd_coefs(n_svd_coefs,k) enddo - if (norm < 1.d-6) then + if (norm < 1.d-4) then exit endif enddo @@ -89,3 +385,231 @@ subroutine write_spindeterminants deallocate(dtmp) end + + +!==============================================================================! +! ! +! Alpha x Beta Matrix ! +! ! +!==============================================================================! + +BEGIN_PROVIDER [ double precision, psi_svd_matrix_values, (N_det,N_states) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_rows, (N_det) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_columns, (N_det) ] + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k, l + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + + + PROVIDE psi_coef_sorted_bit + +! l=0 +! do j=1,N_det_beta_unique +! do k=1,N_int +! tmp_det(k,2) = psi_det_beta_unique(k,j) +! enddo +! do i=1,N_det_alpha_unique +! do k=1,N_int +! tmp_det(k,1) = psi_det_alpha_unique(k,i) +! enddo +! idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) +! if (idx > 0) then +! l += 1 +! psi_svd_matrix_rows(l) = i +! psi_svd_matrix_columns(l) = j +! do k=1,N_states +! psi_svd_matrix_values(l,k) = psi_coef_sorted_bit(idx,k) +! enddo +! endif +! enddo +! enddo +! ASSERT (l == N_det) + + integer, allocatable :: iorder(:), to_sort(:) + integer, external :: get_index_in_psi_det_alpha_unique + integer, external :: get_index_in_psi_det_beta_unique + allocate(iorder(N_det), to_sort(N_det)) + do k=1,N_det + i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int) + j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int) + do l=1,N_states + psi_svd_matrix_values(k,l) = psi_coef(k,l) + enddo + psi_svd_matrix_rows(k) = i + psi_svd_matrix_columns(k) = j + to_sort(k) = N_det_alpha_unique * (j-1) + i + iorder(k) = k + enddo + call isort(to_sort, iorder, N_det) + call iset_order(psi_svd_matrix_rows,iorder,N_det) + call iset_order(psi_svd_matrix_columns,iorder,N_det) + call dset_order(psi_svd_matrix_values,iorder,N_det) + deallocate(iorder,to_sort) +END_PROVIDER + +BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k,istate + psi_svd_matrix = 0.d0 + do k=1,N_det + i = psi_svd_matrix_rows(k) + j = psi_svd_matrix_columns(k) + do istate=1,N_states + psi_svd_matrix(i,j,istate) = psi_svd_matrix_values(k,istate) + enddo + enddo +END_PROVIDER + +subroutine create_wf_of_psi_svd_matrix + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + double precision :: norm(N_states) + + call generate_all_alpha_beta_det_products + norm = 0.d0 + do j=1,N_det_beta_unique + do k=1,N_int + tmp_det(k,2) = psi_det_beta_unique(k,j) + enddo + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1) = psi_det_alpha_unique(k,i) + enddo + idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) + if (idx > 0) then + do k=1,N_states + psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) + norm(k) += psi_svd_matrix(i,j,k) + enddo + endif + enddo + enddo + do k=1,N_states + norm(k) = 1.d0/dsqrt(norm(k)) + do i=1,N_det + psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) + enddo + enddo + psi_det = psi_det_sorted_bit + psi_coef = psi_coef_sorted_bit + TOUCH psi_det psi_coef + psi_det = psi_det_sorted + psi_coef = psi_coef_sorted + norm(1) = 0.d0 + do i=1,N_det + norm(1) += psi_average_norm_contrib_sorted(i) + if (norm(1) >= 0.999999d0) then + exit + endif + enddo + N_det = min(i,N_det) + SOFT_TOUCH psi_det psi_coef N_det + +end + +subroutine generate_all_alpha_beta_det_products + implicit none + BEGIN_DOC +! Create a wave function from all possible alpha x beta determinants + END_DOC + integer :: i,j,k,l + integer :: idx, iproc + integer, external :: get_index_in_psi_det_sorted_bit + integer(bit_kind), allocatable :: tmp_det(:,:,:) + logical, external :: is_in_wavefunction + integer, external :: omp_get_thread_num + + !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& + !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& + !$OMP N_det) & + !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) + !$ iproc = omp_get_thread_num() + allocate (tmp_det(N_int,2,N_det_alpha_unique)) + !$OMP DO + do j=1,N_det_beta_unique + l = 1 + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1,l) = psi_det_alpha_unique(k,i) + tmp_det(k,2,l) = psi_det_beta_unique (k,j) + enddo + if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then + l = l+1 + endif + enddo + call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) + enddo + !$OMP END DO NOWAIT + deallocate(tmp_det) + !$OMP END PARALLEL + deallocate (tmp_det) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH psi_det psi_coef N_det +end + + BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC + ! SVD wave function + END_DOC + + integer :: lwork, info, istate + double precision, allocatable :: work(:), tmp(:,:), copy(:,:) + allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & + copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) + + do istate = 1,N_states + copy(:,:) = psi_svd_matrix(:,:,istate) + lwork=-1 + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + lwork = work(1) + deallocate(work) + allocate(work(lwork)) + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + deallocate(work) + if (info /= 0) then + print *, irp_here//': error in det SVD' + stop 1 + endif + integer :: i,j + do j=1,N_det_beta_unique + do i=1,N_det_beta_unique + psi_svd_beta(i,j,istate) = tmp(j,i) + enddo + enddo + deallocate(tmp,copy) + enddo + +END_PROVIDER + + diff --git a/src/FCIdump/README.rst b/src/FCIdump/README.rst index 1fdd9660..580d0016 100644 --- a/src/FCIdump/README.rst +++ b/src/FCIdump/README.rst @@ -10,9 +10,6 @@ Documentation .. Do not edit this section. It was auto-generated from the .. NEEDED_MODULES file. -`fcidump `_ - Undocumented - Needed Modules diff --git a/src/Makefile.config.ifort b/src/Makefile.config.ifort deleted file mode 100644 index 164d348e..00000000 --- a/src/Makefile.config.ifort +++ /dev/null @@ -1,30 +0,0 @@ -OPENMP =1 -PROFILE =0 -DEBUG = 0 - -IRPF90_FLAGS+= --align=32 -FC = ifort -g -FCFLAGS= -FCFLAGS+= -axAVX,SSE4.2 -FCFLAGS+= -O2 -FCFLAGS+= -ip -FCFLAGS+= -opt-prefetch -FCFLAGS+= -ftz -MKL=-mkl=parallel - -ifeq ($(PROFILE),1) -FC += -p -g -CXX += -pg -endif - -ifeq ($(OPENMP),1) -FC += -openmp -IRPF90_FLAGS += --openmp -CXX += -fopenmp -endif - -ifeq ($(DEBUG),1) -FC += -C -traceback -fpe0 -IRPF90_FLAGS += -a -#FCFLAGS =-O0 -endif From 989fd4bc076504494648c26f4700ab103f709416 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Tue, 14 Apr 2015 09:38:51 +0200 Subject: [PATCH 03/20] Add qp_convert_ezfio_v1_to_v2.sh --- .../qp_convert_ezfio_v1_to_v2.sh | 36 +++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100755 scripts/ezfio_interface/qp_convert_ezfio_v1_to_v2.sh diff --git a/scripts/ezfio_interface/qp_convert_ezfio_v1_to_v2.sh b/scripts/ezfio_interface/qp_convert_ezfio_v1_to_v2.sh new file mode 100755 index 00000000..3ef9a5f3 --- /dev/null +++ b/scripts/ezfio_interface/qp_convert_ezfio_v1_to_v2.sh @@ -0,0 +1,36 @@ +#!/bin/bash +# Convert a old ezfio file (with option.irp.f ezfio_default) +# into a new EZFIO.cfg type + +# Hartree Fock +# Changin the case, don't know if is needed or not + +echo "Will tranform qp_v1.*_ezfio to qp_v2.*_ezfio" +echo "All action are irrevocable! And is by choice" +echo "You need to stop to use a old version! Plz..." + +echo "Change thresh_SCF > thresh_scf0" +mv $1/hartree_Fock/thresh_SCF $1/hartree_fock/thresh_scf 2> /dev/null + +# Set disk_acess +echo "Change {read,write}_ao_integrals > disk_access_ao_integrals" + +biint=$1/bielec_integrals + +if [[ -f $biint/read_ao_integrals ]]; then + if [[ `cat $1/bielec_integrals/read_ao_integrals` -eq "T" ]] + then + echo "Read" > $biint/disk_access_ao_integrals + + elif [[ `cat $biint/write_ao_integrals` -eq "T" ]] + then + echo "Write" > $biint/disk_access_ao_integrals + + else + echo "None" > $biint/disk_access_ao_integrals + + fi + rm $biint/read_ao_integrals $biint/write_ao_integrals $biint/write_ao_intergals 2> /dev/null +fi + +echo "Done" \ No newline at end of file From 374c2c003ceccd3243043861c06ddefbc1803376 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 10:59:45 +0200 Subject: [PATCH 04/20] Rename qp_convert and major cleaning in it --- .../ezfio_interface/ezfio_generate_ocaml.py | 8 +- .../qp_convert_output_to_ezfio.py | 292 ++++++++++++++++++ scripts/qp_convert.py | 210 ------------- 3 files changed, 299 insertions(+), 211 deletions(-) create mode 100755 scripts/ezfio_interface/qp_convert_output_to_ezfio.py delete mode 100755 scripts/qp_convert.py diff --git a/scripts/ezfio_interface/ezfio_generate_ocaml.py b/scripts/ezfio_interface/ezfio_generate_ocaml.py index 25b6c55f..37b6c6ad 100755 --- a/scripts/ezfio_interface/ezfio_generate_ocaml.py +++ b/scripts/ezfio_interface/ezfio_generate_ocaml.py @@ -1,7 +1,13 @@ #!/usr/bin/env python +""" +This programme generate all the +ocaml template needed by qp_edit + +You can see `ezfio_generate_provider.py` +for an example of utilisation +""" import sys -import os # If type in **kwargs from ei_handler import Type diff --git a/scripts/ezfio_interface/qp_convert_output_to_ezfio.py b/scripts/ezfio_interface/qp_convert_output_to_ezfio.py new file mode 100755 index 00000000..6b5c5fcd --- /dev/null +++ b/scripts/ezfio_interface/qp_convert_output_to_ezfio.py @@ -0,0 +1,292 @@ +#!/usr/bin/env python +""" +This function acceep + +Usage: + qp_convert_output_to_ezfio.py [--ezfio=] + +Option: + file.out is the file to check (like gamess.out) + folder.ezfio is the name you whant for the ezfio + (by default is file.out.ezfio) + +""" + + +import sys +import os +from functools import reduce + + +# ~#~#~#~#~#~#~#~ # +# Add to the path # +# ~#~#~#~#~#~#~#~ # + + +try: + QPACKAGE_ROOT = os.environ["QPACKAGE_ROOT"] +except: + print "Error: QPACKAGE_ROOT environment variable not found." + sys.exit(1) +else: + sys.path = [QPACKAGE_ROOT + "/EZFIO/Python", + QPACKAGE_ROOT + "/resultsFile", + QPACKAGE_ROOT + "/scripts"] + sys.path + +# ~#~#~#~#~#~ # +# I m p o r t # +# ~#~#~#~#~#~ # + +from ezfio import ezfio + + +try: + from resultsFile import * +except: + print "Error: resultsFile Python library not installed" + sys.exit(1) + +from docopt import docopt + +# _ +# |_ ._ _ _|_ o _ ._ +# | |_| | | (_ |_ | (_) | | +# + + +def write_ezfio(res, filename): + + res.clean_uncontractions() + ezfio.set_file(filename) + + # _ + # |_ | _ _ _|_ ._ _ ._ _ + # |_ | (/_ (_ |_ | (_) | | _> + # + ezfio.set_electrons_elec_alpha_num(res.num_alpha) + ezfio.set_electrons_elec_beta_num(res.num_beta) + + # + # |\ | _ | _ o + # | \| |_| (_ | (/_ | + # + + # ~#~#~#~ # + # I n i t # + # ~#~#~#~ # + + charge = [] + coord_x = [] + coord_y = [] + coord_z = [] + + # ~#~#~#~#~#~#~ # + # P a r s i n g # + # ~#~#~#~#~#~#~ # + + for a in res.geometry: + charge.append(a.charge) + if res.units == 'BOHR': + coord_x.append(a.coord[0]) + coord_y.append(a.coord[1]) + coord_z.append(a.coord[2]) + else: + coord_x.append(a.coord[0] / a0) + coord_y.append(a.coord[1] / a0) + coord_z.append(a.coord[2] / a0) + + # ~#~#~#~#~ # + # W r i t e # + # ~#~#~#~#~ # + + ezfio.set_nuclei_nucl_num(len(res.geometry)) + ezfio.set_nuclei_nucl_charge(charge) + + # Transformt H1 into H + import re + p = re.compile(ur'(\d*)$') + label = [p.sub("", x.name) for x in res.geometry] + ezfio.set_nuclei_nucl_label(label) + + ezfio.set_nuclei_nucl_coord(coord_x + coord_y + coord_z) + + # _ + # /\ _ _ |_) _. _ o _ + # /--\ (_) _> |_) (_| _> | _> + # + + # ~#~#~#~ # + # I n i t # + # ~#~#~#~ # + + import string + at = [] + num_prim = [] + power_x = [] + power_y = [] + power_z = [] + coefficient = [] + exponent = [] + + res.clean_contractions() + res.convert_to_cartesian() + + # ~#~#~#~#~#~#~ # + # P a r s i n g # + # ~#~#~#~#~#~#~ # + + for b in res.basis: + c = b.center + for i, atom in enumerate(res.geometry): + if atom.coord == c: + at.append(i + 1) + num_prim.append(len(b.prim)) + s = b.sym + power_x.append(string.count(s, "x")) + power_y.append(string.count(s, "y")) + power_z.append(string.count(s, "z")) + coefficient.append(b.coef) + exponent.append([p.expo for p in b.prim]) + + # ~#~#~#~#~ # + # W r i t e # + # ~#~#~#~#~ # + + ezfio.set_ao_basis_ao_num(len(res.basis)) + ezfio.set_ao_basis_ao_nucl(at) + ezfio.set_ao_basis_ao_prim_num(num_prim) + ezfio.set_ao_basis_ao_power(power_x + power_y + power_z) + + # ~#~#~#~#~#~#~ # + # P a r s i n g # + # ~#~#~#~#~#~#~ # + + prim_num_max = ezfio.get_ao_basis_ao_prim_num_max() + + for i in range(len(res.basis)): + coefficient[ + i] += [0. for j in range(len(coefficient[i]), prim_num_max)] + exponent[i] += [0. for j in range(len(exponent[i]), prim_num_max)] + + coefficient = reduce(lambda x, y: x + y, coefficient, []) + exponent = reduce(lambda x, y: x + y, exponent, []) + + coef = [] + expo = [] + for i in range(prim_num_max): + for j in range(i, len(coefficient), prim_num_max): + coef.append(coefficient[j]) + expo.append(exponent[j]) + + # ~#~#~#~#~ # + # W r i t e # + # ~#~#~#~#~ # + + ezfio.set_ao_basis_ao_coef(coef) + ezfio.set_ao_basis_ao_expo(expo) + ezfio.set_ao_basis_ao_basis("Read by resultsFile") + + # _ + # |\/| _ _ |_) _. _ o _ + # | | (_) _> |_) (_| _> | _> + # + + # ~#~#~#~ # + # I n i t # + # ~#~#~#~ # + + MoTag = res.determinants_mo_type + ezfio.set_mo_basis_mo_label('Orthonormalized') + MO_type = MoTag + allMOs = res.mo_sets[MO_type] + + # ~#~#~#~#~#~#~ # + # P a r s i n g # + # ~#~#~#~#~#~#~ # + + try: + closed = [(allMOs[i].eigenvalue, i) for i in res.closed_mos] + active = [(allMOs[i].eigenvalue, i) for i in res.active_mos] + virtual = [(allMOs[i].eigenvalue, i) for i in res.virtual_mos] + except: + closed = [] + virtual = [] + active = [(allMOs[i].eigenvalue, i) for i in range(len(allMOs))] + + closed = map(lambda x: x[1], closed) + active = map(lambda x: x[1], active) + virtual = map(lambda x: x[1], virtual) + MOindices = closed + active + virtual + + MOs = [] + for i in MOindices: + MOs.append(allMOs[i]) + + mo_tot_num = len(MOs) + while len(MOindices) < mo_tot_num: + MOindices.append(len(MOindices)) + + MOmap = list(MOindices) + for i in range(len(MOindices)): + MOmap[i] = MOindices.index(i) + + energies = [] + for i in xrange(mo_tot_num): + energies.append(MOs[i].eigenvalue) + + if res.occ_num is not None: + OccNum = [] + for i in MOindices: + OccNum.append(res.occ_num[MO_type][i]) + + while len(OccNum) < mo_tot_num: + OccNum.append(0.) + + MoMatrix = [] + sym0 = [i.sym for i in res.mo_sets[MO_type]] + sym = [i.sym for i in res.mo_sets[MO_type]] + for i in xrange(len(sym)): + sym[MOmap[i]] = sym0[i] + + MoMatrix = [] + for i in xrange(len(MOs)): + m = MOs[i] + for coef in m.vector: + MoMatrix.append(coef) + + while len(MoMatrix) < len(MOs[0].vector) ** 2: + MoMatrix.append(0.) + + # ~#~#~#~#~ # + # W r i t e # + # ~#~#~#~#~ # + + ezfio.set_mo_basis_mo_tot_num(mo_tot_num) + ezfio.set_mo_basis_mo_occ(OccNum) + ezfio.set_mo_basis_mo_coef(MoMatrix) + + +def get_full_path(file_path): + file_path = os.path.expanduser(file_path) + file_path = os.path.expandvars(file_path) + file_path = os.path.abspath(file_path) + return file_path + +if __name__ == '__main__': + arguments = docopt(__doc__) + + file_ = get_full_path(arguments['']) + + if arguments["--ezfio"]: + ezfio_file = get_full_path(arguments["--ezfio"]) + else: + ezfio_file = "{0}.ezfio".format(file_) + + try: + res_file = getFile(file_) + except: + raise + else: + print file_, 'recognized as', str(res_file).split('.')[-1].split()[0] + + write_ezfio(res_file, ezfio_file) diff --git a/scripts/qp_convert.py b/scripts/qp_convert.py deleted file mode 100755 index ab008e9e..00000000 --- a/scripts/qp_convert.py +++ /dev/null @@ -1,210 +0,0 @@ -#!/usr/bin/env python - -import sys,os -try: - QPACKAGE_ROOT = os.environ["QPACKAGE_ROOT"] -except: - print "Error: QPACKAGE_ROOT environment variable not found." - sys.exit(1) - -sys.path = [ QPACKAGE_ROOT+"/EZFIO/Python", QPACKAGE_ROOT+"/resultsFile" ]+sys.path -from ezfio import ezfio -import ezfio as ez -print "EZFIO: ", os.path.dirname(ez.__file__) - -try: - from resultsFile import * -except: - print "Error: resultsFile Python library not installed" - sys.exit(1) - - -def write_ezfioFile(res,filename): - res.clean_uncontractions() - ezfio.set_file(filename) - -# Electrons - ezfio.set_electrons_elec_alpha_num(res.num_alpha) - ezfio.set_electrons_elec_beta_num(res.num_beta) - -# Nuclei - ezfio.set_nuclei_nucl_num(len(res.geometry)) - charge = [] - coord = [] - coord_x = [] - coord_y = [] - coord_z = [] - for a in res.geometry: - charge.append(a.charge) - if res.units == 'BOHR': - coord_x.append(a.coord[0]) - coord_y.append(a.coord[1]) - coord_z.append(a.coord[2]) - else: - coord_x.append(a.coord[0]/a0) - coord_y.append(a.coord[1]/a0) - coord_z.append(a.coord[2]/a0) - ezfio.set_nuclei_nucl_charge(charge) - label = map(lambda x: x.name, res.geometry) - ezfio.set_nuclei_nucl_label(label) - ezfio.set_nuclei_nucl_coord(coord_x+coord_y+coord_z) - -# Basis - basis = res.uncontracted_basis - geom = res.geometry - - res.clean_contractions() - # AO Basis - import string - at = [] - num_prim = [] - magnetic_number = [] - angular_number = [] - power_x = [] - power_y = [] - power_z = [] - coefficient = [] - exponent = [] - res.convert_to_cartesian() - for b in res.basis: - c = b.center - for i,atom in enumerate(res.geometry): - if atom.coord == c: - at.append(i+1) - num_prim.append(len(b.prim)) - s = b.sym - power_x.append( string.count(s,"x") ) - power_y.append( string.count(s,"y") ) - power_z.append( string.count(s,"z") ) - coefficient.append( b.coef ) - exponent.append( [ p.expo for p in b.prim ] ) - ezfio.set_ao_basis_ao_num(len(res.basis)) - ezfio.set_ao_basis_ao_nucl(at) - ezfio.set_ao_basis_ao_prim_num(num_prim) - ezfio.set_ao_basis_ao_power(power_x+power_y+power_z) - prim_num_max = ezfio.get_ao_basis_ao_prim_num_max() - len_res_basis = len(res.basis) - for i in range(len(res.basis)): - coefficient[i] += [ 0. for j in range(len(coefficient[i]),prim_num_max) ] - exponent[i] += [ 0. for j in range(len(exponent[i]),prim_num_max) ] - coefficient = reduce(lambda x, y: x+y, coefficient, []) - exponent = reduce(lambda x, y: x+y, exponent, []) - coef = [] - expo = [] - for i in range(prim_num_max): - for j in range(i,len(coefficient),prim_num_max): - coef.append ( coefficient[j] ) - expo.append ( exponent[j] ) - ezfio.set_ao_basis_ao_coef(coef) - ezfio.set_ao_basis_ao_expo(expo) - ezfio.set_ao_basis_ao_basis("Read by resultsFile") - - -# MO - MoTag = res.determinants_mo_type - ezfio.set_mo_basis_mo_label('Orthonormalized') - MO_type = MoTag - allMOs = res.mo_sets[MO_type] - - - try: - closed = [ (allMOs[i].eigenvalue,i) for i in res.closed_mos ] - active = [ (allMOs[i].eigenvalue,i) for i in res.active_mos ] - virtual =[ (allMOs[i].eigenvalue,i) for i in res.virtual_mos ] - except: - closed = [] - virtual = [] - active = [ (allMOs[i].eigenvalue,i) for i in range(len(allMOs)) ] - -# closed.sort() -# active.sort() -# virtual.sort() - closed = map( lambda x: x[1], closed) - active = map( lambda x: x[1], active) - virtual = map( lambda x: x[1], virtual) - MOindices = closed + active + virtual - - MOs = [] - for i in MOindices: - MOs.append(allMOs[i]) - - mo_tot_num = len(MOs) - while len(MOindices) < mo_tot_num: - MOindices.append(len(MOindices)) - - MOmap = list(MOindices) - for i in range(len(MOindices)): - MOmap[i] = MOindices.index(i) - - energies = [] - for i in xrange(mo_tot_num): - energies.append(MOs[i].eigenvalue) - - if res.occ_num is not None: - OccNum = [] - for i in MOindices: - OccNum.append(res.occ_num[MO_type][i]) - - while len(OccNum) < mo_tot_num: - OccNum.append(0.) - - MoMatrix = [] - sym0 = [ i.sym for i in res.mo_sets[MO_type] ] - sym = [ i.sym for i in res.mo_sets[MO_type] ] - for i in xrange(len(sym)): - sym[MOmap[i]] = sym0[i] - - MoMatrix = [] - for i in xrange(len(MOs)): - m = MOs[i] - for coef in m.vector: - MoMatrix.append(coef) - - while len(MoMatrix) < len(MOs[0].vector)**2: - MoMatrix.append(0.) - - mo = [] - for i in MOindices: - mo.append(res.mo_sets[MoTag][i]) - - if len(mo) < mo_tot_num: - newmo = orbital() - newmo.eigenvalue = 0. - newmo.vector = [0. for i in range(mo_tot_num)] - newmo.vector[len(mo)] = 1. - while len(mo) < mo_tot_num: - mo.append(newmo) - Energies = [ m.eigenvalue for m in mo ] - - ezfio.set_mo_basis_mo_tot_num(mo_tot_num) - ezfio.set_mo_basis_mo_occ(OccNum) - ezfio.set_mo_basis_mo_coef(MoMatrix) - - - - -if __name__ == '__main__': - # Check command line - - det_threshold = 0. - - if len(sys.argv) == 2: - State=0 - elif len(sys.argv) == 3: - State=int(sys.argv[2]) - else: - print "usage: "+sys.argv[0]+" file.out [state]" - sys.exit(2) - - firstArg = sys.argv[1] - - file = getFile(firstArg) - print firstArg, 'recognized as', str(file).split('.')[-1].split()[0] - - filename = firstArg+".ezfio" - write_ezfioFile(file,filename) - - - - - From d71be0bb7c47afa030e88de1ea1a115561858c4a Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 11:34:26 +0200 Subject: [PATCH 05/20] Add qp_convert_from_output to test --- tests/HBO.out | 619 +++++++++++++++++++++++++++++++++++ tests/unit_test/unit_test.py | 56 +++- 2 files changed, 672 insertions(+), 3 deletions(-) create mode 100644 tests/HBO.out diff --git a/tests/HBO.out b/tests/HBO.out new file mode 100644 index 00000000..ab71c53f --- /dev/null +++ b/tests/HBO.out @@ -0,0 +1,619 @@ +----- GAMESS execution script ----- +This job is running on host LPQLX15 +under operating system Linux at jeudi 16 avril 2015, 11:11:32 (UTC+0200) +Available scratch disk space (Kbyte units) at beginning of the job is +Filesystem 1K-blocks Used Available Use% Mounted on +/dev/sda1 464085784 81207016 359281456 19% / + + Distributed Data Interface kickoff program. + Initiating 1 compute processes on 1 nodes to run the following command: + /usr/local/gamess/gamess.01.x HBO + + ****************************************************** + * GAMESS VERSION = 22 FEB 2006 (R5) * + * FROM IOWA STATE UNIVERSITY * + * M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, * + * M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, * + * K.A.NGUYEN, S.J.SU, T.L.WINDUS, * + * TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY * + * J.COMPUT.CHEM. 14, 1347-1363(1993) * + ***************** AMD 64 BIT VERSION ***************** + + SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY + AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT + CONTRIBUTIONS TO THE CODE: + IVANA ADAMOVIC, CHRISTINE AIKENS, YURI ALEXEEV, POOJA ARORA, ROB BELL, + PRADIPTA BANDYOPADHYAY, BRETT BODE, GALINA CHABAN, WEI CHEN, + CHEOL HO CHOI, PAUL DAY, TIM DUDLEY, DMITRI FEDOROV, GRAHAM FLETCHER, + MARK FREITAG, KURT GLAESEMANN, GRANT MERRILL, TAKESHI NAGATA, + HEATHER NETZLOFF, BOSILJKA NJEGIC, RYAN OLSON, MIKE PAK, JIM SHOEMAKER, + LYUDMILA SLIPCHENKO, JIE SONG, TETSUYA TAKETSUGU, SIMON WEBB. + + ADDITIONAL CODE HAS BEEN PROVIDED BY COLLABORATORS IN OTHER GROUPS: + IOWA STATE UNIVERSITY: JOE IVANIC, KLAUS RUEDENBERG + UNIVERSITY OF TOKYO: KIMIHIKO HIRAO, HARUYUKI NAKANO, TAKAHITO + NAKAJIMA, TAKAO TSUNEDA, MUNEAKI KAMIYA, SUSUMU YANAGISAWA, + KIYOSHI YAGI + UNIVERSITY OF SOUTHERN DENMARK: FRANK JENSEN + UNIVERSITY OF IOWA: VISVALDAS KAIRYS, HUI LI + NATIONAL INST. OF STANDARDS AND TECHNOLOGY: WALT STEVENS, DAVID GARMER + UNIVERSITY OF PISA: BENEDETTA MENNUCCI, JACOPO TOMASI + UNIVERSITY OF MEMPHIS: HENRY KURTZ, PRAKASHAN KORAMBATH + UNIVERSITY OF ALBERTA: MARIUSZ KLOBUKOWSKI + UNIVERSITY OF NEW ENGLAND: MARK SPACKMAN + MIE UNIVERSITY: HIROAKI UMEDA + MICHIGAN STATE UNIVERSITY: + KAROL KOWALSKI, MARTA WLOCH, PIOTR PIECUCH + UNIVERSITY OF SILESIA: MONIKA MUSIAL, STANISLAW KUCHARSKI + FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX: + OLIVIER QUINET, BENOIT CHAMPAGNE + UNIVERSITY OF CALIFORNIA - SANTA BARBARA: BERNARD KIRTMAN + INSTITUTE FOR MOLECULAR SCIENCE: KAZUYA ISHIMURA AND SHIGERU NAGASE + UNIVERSITY OF NOTRE DAME: DAN CHIPMAN + KYUSHU UNIVERSITY: + FENG LONG GU, JACEK KORCHOWIEC, MARCIN MAKOWSKI, AND YURIKO AOKI + PENNSYLVANIA STATE UNIVERSITY: + TZVETELIN IORDANOV, CHET SWALINA, SHARON HAMMES-SCHIFFER + + EXECUTION OF GAMESS BEGUN Thu Apr 16 11:11:32 2015 + + ECHO OF THE FIRST FEW INPUT CARDS - + INPUT CARD> + INPUT CARD> $CONTRL + INPUT CARD> RUNTYP=ENERGY + INPUT CARD> MULT=1 + INPUT CARD> SCFTYP=ROHF + INPUT CARD> $END + INPUT CARD> + INPUT CARD> $GUESS + INPUT CARD> GUESS=HCORE + INPUT CARD> $END + INPUT CARD> + INPUT CARD> $DATA + INPUT CARD> HBO + INPUT CARD>C1 + INPUT CARD>H 1.0 0. 0. 0. + INPUT CARD>S 3 + INPUT CARD> 1 18.7311370 0.0334946 + INPUT CARD> 2 2.8253944 0.2347269 + INPUT CARD> 3 0.6401217 0.8137573 + INPUT CARD>S 1 + INPUT CARD> 1 0.1612778 1.0000000 + INPUT CARD> + INPUT CARD>B 5.0 1.1660 0. 0. + INPUT CARD>S 4 + INPUT CARD> 1 330.7528500 0.0179942 + INPUT CARD> 2 49.8438650 0.1246937 + INPUT CARD> 3 11.1170540 0.4343354 + INPUT CARD> 4 2.9227243 0.5609794 + INPUT CARD>L 3 + INPUT CARD> 1 5.6812646 -0.1303871 0.0637429 + INPUT CARD> 2 1.4544046 -0.2514344 0.2761331 + INPUT CARD> 3 0.4283786 1.2051292 0.7773866 + INPUT CARD>L 1 + INPUT CARD> 1 0.1442192 1.0000000 1.0000000 + INPUT CARD> + INPUT CARD>B 8.0 2.3660 0. 0. + INPUT CARD>S 4 + INPUT CARD> 1 883.2728600 0.0175506 + INPUT CARD> 2 133.1292800 0.1228292 + INPUT CARD> 3 29.9064080 0.4348836 + INPUT CARD> 4 7.9786772 0.5600108 + INPUT CARD>L 3 + INPUT CARD> 1 16.1944470 -0.1134010 0.0685453 + INPUT CARD> 2 3.7800860 -0.1772865 0.3312254 + INPUT CARD> 3 1.0709836 1.1504079 0.7346079 + INPUT CARD>L 1 + INPUT CARD> 1 0.2838798 1.0000000 1.0000000 + INPUT CARD> + INPUT CARD> $END + + ..... DONE SETTING UP THE RUN ..... + 1000000 WORDS OF MEMORY AVAILABLE + + + RUN TITLE + --------- + HBO + + THE POINT GROUP OF THE MOLECULE IS C1 + THE ORDER OF THE PRINCIPAL AXIS IS 0 + + ATOM ATOMIC COORDINATES (BOHR) + CHARGE X Y Z + H 1.0 0.0000000000 0.0000000000 0.0000000000 + B 5.0 2.2034205017 0.0000000000 0.0000000000 + B 8.0 4.4710916869 0.0000000000 0.0000000000 + + INTERNUCLEAR DISTANCES (ANGS.) + ------------------------------ + + H B B + + 1 H 0.0000000 1.1660000 * 2.3660000 * + 2 B 1.1660000 * 0.0000000 1.2000000 * + 3 B 2.3660000 * 1.2000000 * 0.0000000 + + ATOMIC BASIS SET + ---------------- + THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED + THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY + + SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S) + + H + + 1 S 1 18.7311370 0.033494602358 + 1 S 2 2.8253944 0.234726916524 + 1 S 3 0.6401217 0.813757357284 + + 2 S 4 0.1612778 1.000000000000 + + B + + 3 S 5 330.7528500 0.017994199122 + 3 S 6 49.8438650 0.124693693914 + 3 S 7 11.1170540 0.434335378802 + 3 S 8 2.9227243 0.560979372621 + + 4 L 9 5.6812646 -0.130387101955 0.063742897507 + 4 L 10 1.4544046 -0.251434403769 0.276133089199 + 4 L 11 0.4283786 1.205129218067 0.777386569593 + + 5 L 12 0.1442192 1.000000000000 1.000000000000 + + B + + 6 S 13 883.2728600 0.017550600144 + 6 S 14 133.1292800 0.122829201010 + 6 S 15 29.9064080 0.434883603578 + 6 S 16 7.9786772 0.560010804607 + + 7 L 17 16.1944470 -0.113401005792 0.068545299729 + 7 L 18 3.7800860 -0.177286509055 0.331225398691 + 7 L 19 1.0709836 1.150407958755 0.734607897097 + + 8 L 20 0.2838798 1.000000000000 1.000000000000 + + TOTAL NUMBER OF BASIS SET SHELLS = 8 + NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 20 + NUMBER OF ELECTRONS = 14 + CHARGE OF MOLECULE = 0 + SPIN MULTIPLICITY = 1 + NUMBER OF OCCUPIED ORBITALS (ALPHA) = 7 + NUMBER OF OCCUPIED ORBITALS (BETA ) = 7 + TOTAL NUMBER OF ATOMS = 3 + THE NUCLEAR REPULSION ENERGY IS 21.6977130101 + + THIS MOLECULE IS RECOGNIZED AS BEING LINEAR. + + $CONTRL OPTIONS + --------------- + SCFTYP=ROHF RUNTYP=ENERGY EXETYP=RUN + MPLEVL= 0 CITYP =NONE CCTYP =NONE VBTYP =NONE + MULT = 1 ICHARG= 0 NZVAR = 0 COORD =UNIQUE + PP =NONE RELWFN=NONE LOCAL =NONE NUMGRD= F + ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS + PLTORB= F MOLPLT= F AIMPAC= F FRIEND= + NPRINT= 7 IREST = 0 GEOM =INPUT + NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9 + INTTYP=BEST GRDTYP=BEST QMTTOL= 1.0E-06 + + $SYSTEM OPTIONS + --------------- + REPLICATED MEMORY= 1000000 WORDS (ON EVERY NODE). + DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE, + MEMDDI DISTRIBUTED OVER 1 PROCESSORS IS 0 WORDS/PROCESSOR. + TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 1000000 WORDS. + TIMLIM= 525600.00 MINUTES, OR 365.00 DAYS. + PARALL= F BALTYP= NXTVAL KDIAG= 0 COREFL= F + + ---------------- + PROPERTIES INPUT + ---------------- + + MOMENTS FIELD POTENTIAL DENSITY + IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 0 + WHERE =COMASS WHERE =NUCLEI WHERE =NUCLEI WHERE =NUCLEI + OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH + IEMINT= 0 IEFINT= 0 IEDINT= 0 + MORB = 0 + EXTRAPOLATION IN EFFECT + SOSCF IN EFFECT + ORBITAL PRINTING OPTION: NPREO= 1 20 2 1 + + ------------------------------- + INTEGRAL TRANSFORMATION OPTIONS + ------------------------------- + NWORD = 0 CUTOFF = 1.0E-09 + MPTRAN = 0 DIRTRF = F + AOINTS =DUP + + ---------------------- + INTEGRAL INPUT OPTIONS + ---------------------- + NOPK = 1 NORDER= 0 SCHWRZ= F + + ------------------------------------------ + THE POINT GROUP IS C1 , NAXIS= 0, ORDER= 1 + ------------------------------------------ + + DIMENSIONS OF THE SYMMETRY SUBSPACES ARE + A = 20 + + ..... DONE SETTING UP THE RUN ..... + STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + + ******************** + 1 ELECTRON INTEGRALS + ******************** + ...... END OF ONE-ELECTRON INTEGRALS ...... + STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + + ------------- + GUESS OPTIONS + ------------- + GUESS =HCORE NORB = 0 NORDER= 0 + MIX = F PRTMO = F PUNMO = F + TOLZ = 1.0E-08 TOLE = 1.0E-05 + SYMDEN= F PURIFY= F + + INITIAL GUESS ORBITALS GENERATED BY HCORE ROUTINE. + + SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. ALPHA SET(S). + 7 ORBITALS ARE OCCUPIED ( 2 CORE ORBITALS). + 3=A 4=A 5=A 6=A 7=A 8=A 9=A + 10=A 11=A 12=A 13=A 14=A 15=A 16=A + 17=A + + SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BETA SET(S). + 7 ORBITALS ARE OCCUPIED ( 2 CORE ORBITALS). + 3=A 4=A 5=A 6=A 7=A 8=A 9=A + 10=A 11=A 12=A 13=A 14=A 15=A 16=A + 17=A + ...... END OF INITIAL ORBITAL SELECTION ...... + STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + + ---------------------- + AO INTEGRAL TECHNOLOGY + ---------------------- + S,P,L SHELL ROTATED AXIS INTEGRALS, REPROGRAMMED BY + KAZUYA ISHIMURA (IMS) AND JOSE SIERRA (SYNSTAR). + S,P,D,L SHELL ROTATED AXIS INTEGRALS PROGRAMMED BY + KAZUYA ISHIMURA (INSTITUTE FOR MOLECULAR SCIENCE). + S,P,D,F,G SHELL TO TOTAL QUARTET ANGULAR MOMENTUM SUM 5, + ERIC PROGRAM BY GRAHAM FLETCHER (ELORET AND NASA ADVANCED + SUPERCOMPUTING DIVISION, AMES RESEARCH CENTER). + S,P,D,F,G,L SHELL GENERAL RYS QUADRATURE PROGRAMMED BY + MICHEL DUPUIS (PACIFIC NORTHWEST NATIONAL LABORATORY). + + -------------------- + 2 ELECTRON INTEGRALS + -------------------- + + THE -PK- OPTION IS OFF, THE INTEGRALS ARE NOT IN SUPERMATRIX FORM. + STORING 15000 INTEGRALS/RECORD ON DISK, USING 12 BYTES/INTEGRAL. + TWO ELECTRON INTEGRAL EVALUATION REQUIRES 89392 WORDS OF MEMORY. + II,JST,KST,LST = 1 1 1 1 NREC = 1 INTLOC = 1 + II,JST,KST,LST = 2 1 1 1 NREC = 1 INTLOC = 2 + II,JST,KST,LST = 3 1 1 1 NREC = 1 INTLOC = 7 + II,JST,KST,LST = 4 1 1 1 NREC = 1 INTLOC = 22 + II,JST,KST,LST = 5 1 1 1 NREC = 1 INTLOC = 169 + II,JST,KST,LST = 6 1 1 1 NREC = 1 INTLOC = 678 + II,JST,KST,LST = 7 1 1 1 NREC = 1 INTLOC = 1045 + II,JST,KST,LST = 8 1 1 1 NREC = 1 INTLOC = 3095 + TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 7058 + 1 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. + ...... END OF TWO-ELECTRON INTEGRALS ..... + STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + + --------------------------- + ROHF SCF CALCULATION + --------------------------- + + NUCLEAR ENERGY = 21.6977130101 + MAXIT = 30 NPUNCH= 2 MULT= 1 + EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F SOSCF=T + DENSITY MATRIX CONV= 1.00E-05 + ROHF CANONICALIZATION PARAMETERS + C-C O-O V-V + ALPHA -0.5000 0.5000 1.5000 + BETA 1.5000 0.5000 -0.5000 + SOSCF WILL OPTIMIZE 91 ORBITAL ROTATION ANGLES. SOGTOL= 2.500E-01 + MEMORY REQUIRED FOR UHF/ROHF STEP= 34446 WORDS. + + ITER EX TOTAL ENERGY E CHANGE DENSITY CHANGE ORB. GRAD + 1 0 -89.6780199978 -89.6780199978 13.802827629 0.000000000 + 2 1 -86.8672057689 2.8108142288 13.697658380 1.147034737 + 3 2 -90.7237904418 -3.8565846728 6.184375907 0.885015488 + 4 3 -88.5602746012 2.1635158406 6.139277282 0.784307787 + 5 0 -90.8787176080 -2.3184430069 2.371801774 0.897367372 + ---------------START SECOND ORDER SCF--------------- + 6 1 -99.6901335684 -8.8114159604 0.589370704 0.247448832 + 7 2 -99.6027127341 0.0874208344 0.282419417 0.261235193 + 8 3 -100.0104700579 -0.4077573239 0.097896975 0.028403161 + 9 4 -100.0166758568 -0.0062057989 0.041892588 0.022623440 + 10 5 -100.0185127886 -0.0018369318 0.005554114 0.004257220 + 11 6 -100.0185731832 -0.0000603946 0.002182788 0.001537483 + 12 7 -100.0185817542 -0.0000085710 0.000686329 0.000164155 + 13 8 -100.0185822279 -0.0000004737 0.000159733 0.000052231 + 14 9 -100.0185822583 -0.0000000304 0.000031771 0.000009807 + 15 10 -100.0185822589 -0.0000000006 0.000003729 0.000001197 + 16 11 -100.0185822589 -0.0000000000 0.000000462 0.000000205 + + ----------------- + DENSITY CONVERGED + ----------------- + + FINAL ROHF ENERGY IS -100.0185822589 AFTER 16 ITERATIONS + + -------------------- + SPIN SZ = 0.000 + S-SQUARED = -0.000 + -------------------- + + ------------ + EIGENVECTORS + ------------ + + 1 2 3 4 5 + -20.5358 -7.6507 -1.3450 -0.6694 -0.6084 + A A A A A + 1 H 1 S 0.000344 -0.001283 0.014215 0.292154 0.137956 + 2 H 1 S 0.009984 0.010621 -0.040706 0.189877 0.183728 + 3 B 2 S 0.001078 0.993835 -0.103615 -0.167500 0.038365 + 4 B 2 S 0.003671 0.056948 0.125777 0.229996 -0.092389 + 5 B 2 X 0.000735 0.002873 0.178961 -0.173521 -0.351664 + 6 B 2 Y 0.000000 0.000000 0.000000 0.000000 0.000000 + 7 B 2 Z 0.000000 0.000000 0.000000 0.000000 0.000000 + 8 B 2 S 0.007386 -0.022682 0.028991 0.265728 0.011974 + 9 B 2 X 0.019131 0.008736 -0.072950 -0.150274 0.027354 + 10 B 2 Y 0.000000 0.000000 0.000000 0.000000 0.000000 + 11 B 2 Z 0.000000 0.000000 0.000000 0.000000 0.000000 + 12 O 3 S 0.992054 -0.001164 -0.212590 0.045561 -0.066200 + 13 O 3 S 0.053959 0.001671 0.432154 -0.104949 0.138600 + 14 O 3 X -0.002799 -0.001577 -0.143624 -0.191121 0.522743 + 15 O 3 Y 0.000000 0.000000 0.000000 0.000000 0.000000 + 16 O 3 Z 0.000000 0.000000 0.000000 0.000000 0.000000 + 17 O 3 S -0.038715 -0.006953 0.509977 -0.099891 0.303790 + 18 O 3 X 0.008857 0.005154 -0.052386 -0.130143 0.293535 + 19 O 3 Y 0.000000 0.000000 0.000000 0.000000 0.000000 + 20 O 3 Z 0.000000 0.000000 0.000000 0.000000 0.000000 + + 6 7 8 9 10 + -0.5169 -0.5169 0.1699 0.1699 0.2267 + A A A A A + 1 H 1 S 0.000000 0.000000 0.000000 0.000000 -0.150419 + 2 H 1 S 0.000000 0.000000 0.000000 0.000000 -1.466998 + 3 B 2 S 0.000000 0.000000 0.000000 0.000000 -0.144359 + 4 B 2 S 0.000000 0.000000 0.000000 0.000000 -0.048306 + 5 B 2 X 0.000000 0.000000 0.000000 0.000000 -0.139034 + 6 B 2 Y -0.083449 0.221695 0.137663 0.278557 0.000000 + 7 B 2 Z 0.221695 0.083449 0.278557 -0.137663 0.000000 + 8 B 2 S 0.000000 0.000000 0.000000 0.000000 2.027943 + 9 B 2 X 0.000000 0.000000 0.000000 0.000000 -0.144405 + 10 B 2 Y -0.050412 0.133928 0.379815 0.768545 0.000000 + 11 B 2 Z 0.133928 0.050412 0.768545 -0.379815 0.000000 + 12 O 3 S 0.000000 0.000000 0.000000 0.000000 0.053464 + 13 O 3 S 0.000000 0.000000 0.000000 0.000000 -0.086787 + 14 O 3 X 0.000000 0.000000 0.000000 0.000000 0.153448 + 15 O 3 Y -0.190568 0.506276 -0.136229 -0.275656 0.000000 + 16 O 3 Z 0.506276 0.190568 -0.275656 0.136229 0.000000 + 17 O 3 S 0.000000 0.000000 0.000000 0.000000 -0.606405 + 18 O 3 X 0.000000 0.000000 0.000000 0.000000 0.320500 + 19 O 3 Y -0.148054 0.393331 -0.221558 -0.448317 0.000000 + 20 O 3 Z 0.393331 0.148054 -0.448317 0.221558 0.000000 + + 11 12 13 14 15 + 0.4316 0.7045 0.7045 0.7350 1.1048 + A A A A A + 1 H 1 S -0.197856 0.000000 0.000000 0.585371 -0.661822 + 2 H 1 S 2.428044 0.000000 0.000000 1.162180 1.538010 + 3 B 2 S 0.027852 0.000000 0.000000 0.045321 0.010878 + 4 B 2 S -0.331748 0.000000 0.000000 0.814476 1.936129 + 5 B 2 X 0.288153 0.000000 0.000000 -0.704191 0.333782 + 6 B 2 Y 0.000000 0.097971 1.207126 0.000000 0.000000 + 7 B 2 Z 0.000000 1.207126 -0.097971 0.000000 0.000000 + 8 B 2 S 0.216139 0.000000 0.000000 -1.451072 -1.909797 + 9 B 2 X 2.635346 0.000000 0.000000 2.283710 0.676105 + 10 B 2 Y 0.000000 -0.085320 -1.051252 0.000000 0.000000 + 11 B 2 Z 0.000000 -1.051252 0.085320 0.000000 0.000000 + 12 O 3 S 0.086152 0.000000 0.000000 0.027095 0.050912 + 13 O 3 S -0.030658 0.000000 0.000000 -0.048038 -0.187902 + 14 O 3 X 0.005711 0.000000 0.000000 -0.124028 0.248507 + 15 O 3 Y 0.000000 -0.002880 -0.035481 0.000000 0.000000 + 16 O 3 Z 0.000000 -0.035481 0.002880 0.000000 0.000000 + 17 O 3 S -1.936881 0.000000 0.000000 -0.740239 -0.345357 + 18 O 3 X 0.485099 0.000000 0.000000 -0.079803 0.535249 + 19 O 3 Y 0.000000 0.000732 0.009020 0.000000 0.000000 + 20 O 3 Z 0.000000 0.009020 -0.000732 0.000000 0.000000 + + 16 17 18 19 20 + 1.2423 1.3557 1.3557 1.4100 2.2399 + A A A A A + 1 H 1 S 0.719124 0.000000 0.000000 0.725323 -0.157789 + 2 H 1 S -1.191244 0.000000 0.000000 -0.477445 -1.225214 + 3 B 2 S 0.105177 0.000000 0.000000 -0.060885 -0.141177 + 4 B 2 S 0.511585 0.000000 0.000000 0.050787 -0.875118 + 5 B 2 X 1.035905 0.000000 0.000000 0.780799 -0.452459 + 6 B 2 Y 0.000000 0.002283 0.015609 0.000000 0.000000 + 7 B 2 Z 0.000000 0.015609 -0.002283 0.000000 0.000000 + 8 B 2 S 1.010217 0.000000 0.000000 0.112107 -0.746938 + 9 B 2 X -0.643431 0.000000 0.000000 -0.134607 -2.362585 + 10 B 2 Y 0.000000 -0.058566 -0.400461 0.000000 0.000000 + 11 B 2 Z 0.000000 -0.400461 0.058566 0.000000 0.000000 + 12 O 3 S 0.065107 0.000000 0.000000 0.020195 0.012799 + 13 O 3 S -0.268804 0.000000 0.000000 -0.067586 -1.977025 + 14 O 3 X -0.440790 0.000000 0.000000 0.885097 0.119422 + 15 O 3 Y 0.000000 -0.143987 -0.984542 0.000000 0.000000 + 16 O 3 Z 0.000000 -0.984542 0.143987 0.000000 0.000000 + 17 O 3 S -0.423279 0.000000 0.000000 -0.263857 4.377413 + 18 O 3 X 1.480677 0.000000 0.000000 -0.527277 -1.336333 + 19 O 3 Y 0.000000 0.174511 1.193260 0.000000 0.000000 + 20 O 3 Z 0.000000 1.193260 -0.174511 0.000000 0.000000 + ...... END OF ROHF CALCULATION ...... + STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + + ---------------------------------------------------------------- + PROPERTY VALUES FOR THE ROHF SELF-CONSISTENT FIELD WAVEFUNCTION + ---------------------------------------------------------------- + + ----------------- + ENERGY COMPONENTS + ----------------- + + WAVEFUNCTION NORMALIZATION = 1.0000000000 + + ONE ELECTRON ENERGY = -179.7468005131 + TWO ELECTRON ENERGY = 58.0305052441 + NUCLEAR REPULSION ENERGY = 21.6977130101 + ------------------ + TOTAL ENERGY = -100.0185822589 + + ELECTRON-ELECTRON POTENTIAL ENERGY = 58.0305052441 + NUCLEUS-ELECTRON POTENTIAL ENERGY = -279.7201121919 + NUCLEUS-NUCLEUS POTENTIAL ENERGY = 21.6977130101 + ------------------ + TOTAL POTENTIAL ENERGY = -199.9918939377 + TOTAL KINETIC ENERGY = 99.9733116788 + VIRIAL RATIO (V/T) = 2.0004528267 + + ...... PI ENERGY ANALYSIS ...... + + ENERGY ANALYSIS: + FOCK ENERGY= -63.6857886983 + BARE H ENERGY= -179.7468005131 + ELECTRONIC ENERGY = -121.7162946057 + KINETIC ENERGY= 99.9733116788 + N-N REPULSION= 21.6977130101 + TOTAL ENERGY= -100.0185815956 + SIGMA PART(1+2)= -104.7962806542 + (K,V1,2)= 92.4442005381 -240.4183928275 43.1779116353 + PI PART(1+2)= -16.9200139514 + (K,V1,2)= 7.5291111407 -39.3017193643 14.8525942722 + SIGMA SKELETON, ERROR= -83.0985676441 -0.0000000000 + MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 + ...... END OF PI ENERGY ANALYSIS ...... + + --------------------------------------- + MULLIKEN AND LOWDIN POPULATION ANALYSES + --------------------------------------- + + MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL + + 1 2 3 4 5 + + 2.000000 2.000000 2.000000 2.000000 2.000000 + + 1 0.000109 0.002431 -0.009540 0.732140 0.208060 + 2 0.004773 2.000884 0.269059 0.988894 0.366310 + 3 1.995118 -0.003315 1.740481 0.278967 1.425630 + + 6 7 + + 2.000000 2.000000 + + 1 0.000000 0.000000 + 2 0.420558 0.420558 + 3 1.579442 1.579442 + + ATOMIC SPIN POPULATION (ALPHA MINUS BETA) + ATOM MULL.POP. LOW.POP. + 1 H 0.000000 0.000000 + 2 B 0.000000 0.000000 + 3 B 0.000000 0.000000 + + ----- POPULATIONS IN EACH AO ----- + MULLIKEN LOWDIN + 1 H 1 S 0.51411 0.47971 + 2 H 1 S 0.41909 0.48591 + 3 B 2 S 1.99770 1.98102 + 4 B 2 S 0.45972 0.43762 + 5 B 2 X 0.70045 0.64124 + 6 B 2 Y 0.25163 0.23600 + 7 B 2 Z 0.25163 0.23600 + 8 B 2 S 0.37344 0.43074 + 9 B 2 X 0.09860 0.36418 + 10 B 2 Y 0.16892 0.22234 + 11 B 2 Z 0.16892 0.22234 + 12 O 3 S 1.99590 1.99380 + 13 O 3 S 0.85319 0.83536 + 14 O 3 X 0.99185 0.94649 + 15 O 3 Y 0.86458 0.82908 + 16 O 3 Z 0.86458 0.82908 + 17 O 3 S 1.06945 0.76118 + 18 O 3 X 0.52649 0.64275 + 19 O 3 Y 0.71487 0.71259 + 20 O 3 Z 0.71487 0.71259 + + ----- MULLIKEN ATOMIC OVERLAP POPULATIONS ----- + (OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2) + + 1 2 3 + + 1 0.5637982 + 2 0.3833280 3.4279422 + 3 -0.0139266 0.6597650 7.9499266 + + TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS + ATOM MULL.POP. CHARGE LOW.POP. CHARGE + 1 H 0.933200 0.066800 0.965622 0.034378 + 2 B 4.471035 0.528965 4.771474 0.228526 + 3 B 8.595765 -0.595765 8.262905 -0.262905 + + ------------------------------- + BOND ORDER AND VALENCE ANALYSIS BOND ORDER THRESHOLD=0.050 + ------------------------------- + + BOND BOND BOND + ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER + 1 2 1.166 0.974 2 3 1.200 2.151 + + TOTAL BONDED FREE + ATOM VALENCE VALENCE VALENCE + 1 H 0.969 0.969 -0.000 + 2 B 3.125 3.125 -0.000 + 3 B 2.145 2.145 -0.000 + + ----------------------------------------- + ATOMIC SPIN DENSITY AT THE NUCLEUS (A.U.) + ----------------------------------------- + SPIN DENS ALPHA DENS BETA DENS + 1 H 1.0 0.0000000 0.19961 0.19961 + 2 B 5.0 0.0000000 30.17561 30.17561 + 3 B 8.0 0.0000000 131.78303 131.78303 + + --------------------- + ELECTROSTATIC MOMENTS + --------------------- + + POINT 1 X Y Z (BOHR) CHARGE + 3.418988 0.000000 0.000000 -0.00 (A.U.) + DX DY DZ /D/ (DEBYE) + -3.311042 0.000000 0.000000 3.311042 + ...... END OF PROPERTY EVALUATION ...... + STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN) + TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00% + 440000 WORDS OF DYNAMIC MEMORY USED + EXECUTION OF GAMESS TERMINATED NORMALLY Thu Apr 16 11:11:32 2015 + DDI: 1128 bytes (0.0 MB / 0 MWords) used by master data server. + + ---------------------------------------- + CPU timing information for all processes + ======================================== + 0: 0.029395 + 0.008325 = 0.037720 + ---------------------------------------- + ddikick.x: exited gracefully. +----- accounting info ----- +jeudi 16 avril 2015, 11:11:35 (UTC+0200) +Files used on the master node LPQLX15 were: +-rw-rw-r-- 1 razoa razoa 8438 avril 16 11:11 /tmp/gamess/HBO.dat +-rw-r--r-- 1 razoa razoa 1404 avril 16 11:11 /tmp/gamess/HBO.F05 +-rw-rw-r-- 1 razoa razoa 180016 avril 16 11:11 /tmp/gamess/HBO.F08 +-rw-rw-r-- 1 razoa razoa 4711680 avril 16 11:11 /tmp/gamess/HBO.F10 +0.104u 0.077s 0:03.22 5.2% 0+0k 0+16io 0pf+0w diff --git a/tests/unit_test/unit_test.py b/tests/unit_test/unit_test.py index eb9b1e79..c01b4974 100755 --- a/tests/unit_test/unit_test.py +++ b/tests/unit_test/unit_test.py @@ -62,7 +62,6 @@ def get_error_message(l_exepected, l_cur): # / |_ _ _ | o ._ ._ _|_ # \_ | | (/_ (_ |< | | | |_) |_| |_ # | - def check_disk_acess(geo, basis, mult=1): import uuid @@ -147,8 +146,6 @@ def check_mo_guess(geo, basis, mult=1): # / |_ _ _ | _. | _ _ # \_ | | (/_ (_ |< \/ (_| | |_| (/_ _> # - - def run_hf(geo, basis, mult=1): """ Run a simle by default hf @@ -286,6 +283,56 @@ def hf_then_10k_test(geo, basis): return return_code +# _ +# / |_ _ _ | _. ._ _ _ ._ _ ._ _|_ +# \_ | | (/_ (_ |< (_| |_) (_ (_) | | \/ (/_ | |_ +# | | __ +def check_convert(path_out): + ''' + Path_out is the out_file + ''' + + # ~#~#~#~#~#~#~#~#~#~ # + # R e f _ e n e r g y # + # ~#~#~#~#~#~#~#~#~#~ # + + ref_energy = defaultdict(dict) + + ref_energy["HBO.out"] = -100.0185822589 + + # ~#~#~#~#~#~#~#~#~#~#~#~#~ # + # S e t _ p a r a m e t e r # + # ~#~#~#~#~#~#~#~#~#~#~#~#~ # + + cmd = "cp {0}/tests/{1} .".format(qpackage_root, path_out) + subprocess.check_call([cmd], shell=True) + + cmd = "qp_convert_output_to_ezfio.py {0}".format(path_out) + subprocess.check_call([cmd], shell=True) + + # Test 2 + cmd = "qp_edit -c {0}.ezfio".format(path_out) + subprocess.check_call([cmd], shell=True) + + cmd = "qp_run SCF {0}.ezfio".format(path_out) + subprocess.check_call([cmd], shell=True) + + # ~#~#~#~#~ # + # C h e c k # + # ~#~#~#~#~ # + + ezfio.set_file("{0}.ezfio".format(path_out)) + + cur_e = ezfio.get_hartree_fock_energy() + ref_e = ref_energy[path_out] + + if abs(cur_e - ref_e) <= precision: + subprocess.call(["rm {0}".format(path_out)], shell=True) + subprocess.call(["rm -R {0}.ezfio".format(path_out)], shell=True) + return True + else: + raise ValueError(get_error_message([ref_e], [cur_e])) + # ___ # | _ _ _|_ # | (/_ _> |_ @@ -295,6 +342,9 @@ class ValueTest(unittest.TestCase): def test_full_ci_10k_pt2_end(self): self.assertTrue(hf_then_10k_test("methane", "sto-3g")) + def test_check_convert_hf_energy(self): + self.assertTrue(check_convert("HBO.out")) + class InputTest(unittest.TestCase): From 74c9e03e2a4cad0403854b6ea3384de53bbd37af Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 13:35:29 +0200 Subject: [PATCH 06/20] Try to solve the 'Bool.of_string: expected true or false but got True' --- scripts/ezfio_interface/ei_handler.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index a02b13d5..a940c584 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -70,9 +70,9 @@ def is_bool(str_): Take a string, if is a bool return the conversion into fortran and ocaml. """ - if "true" in str_.lower(): + if "true" in str_.stirp().lower(): return Type(None, "true", ".True.") - elif "false" in str_.lower(): + elif "false" in str_.stirp().lower(): return Type(None, "false", ".False") else: raise TypeError From 654b190506bf35a7a2bc32569412c19d80fe8ac2 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 13:57:00 +0200 Subject: [PATCH 07/20] stirp to strip() --- scripts/ezfio_interface/ei_handler.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index a940c584..220d368c 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -70,9 +70,9 @@ def is_bool(str_): Take a string, if is a bool return the conversion into fortran and ocaml. """ - if "true" in str_.stirp().lower(): + if "true" in str_.strip().lower(): return Type(None, "true", ".True.") - elif "false" in str_.stirp().lower(): + elif "false" in str_.strip().lower(): return Type(None, "false", ".False") else: raise TypeError From d45e611dadf92da9c7bba12c9145d8776bef5f3f Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 14:31:28 +0200 Subject: [PATCH 08/20] Print is_bool() to debug in travis ci, canot see the bug in my machine --- scripts/ezfio_interface/ei_handler.py | 1 + 1 file changed, 1 insertion(+) diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index 220d368c..54b41197 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -278,6 +278,7 @@ def get_dict_config_file(config_file_path, module_lower): try: d[pvd]["default"] = is_bool(default_raw) + print is_bool(default_raw) except TypeError: d[pvd]["default"] = Type(None, default_raw, default_raw) From 030c89b957fa4d9df3fa3365ed5dec01577af198 Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Sun, 19 Apr 2015 16:45:31 +0200 Subject: [PATCH 09/20] Solved True/true problem --- .../WILL_BE_DELETED.ezfio_default | 30 +++++++++---------- src/FCIdump/README.rst | 3 ++ 2 files changed, 18 insertions(+), 15 deletions(-) diff --git a/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default b/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default index cf54a1dd..0d9489d5 100644 --- a/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default +++ b/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default @@ -1,19 +1,19 @@ bielec_integrals - read_ao_integrals False - read_mo_integrals False - write_ao_integrals False - write_mo_integrals False + read_ao_integrals false + read_mo_integrals false + write_ao_integrals false + write_mo_integrals false threshold_ao 1.e-15 threshold_mo 1.e-15 - direct False + direct false cis_dressed n_state_cis 10 n_core_cis 0 n_act_cis mo_basis_mo_tot_num - mp2_dressing False - standard_doubles True - en_2_2 False + mp2_dressing false + standard_doubles true + en_2_2 false determinants n_states 1 @@ -21,27 +21,27 @@ determinants n_det_max_jacobi 1000 threshold_generators 0.99 threshold_selectors 0.999 - read_wf False - s2_eig False - only_single_double_dm False + read_wf false + s2_eig false + only_single_double_dm false full_ci n_det_max_fci 10000 n_det_max_fci_property 50000 pt2_max 1.e-4 - do_pt2_end True + do_pt2_end true var_pt2_ratio 0.75 cas_sd n_det_max_cas_sd 100000 pt2_max 1.e-4 - do_pt2_end True + do_pt2_end true var_pt2_ratio 0.75 all_singles n_det_max_fci 50000 pt2_max 1.e-8 - do_pt2_end False + do_pt2_end false hartree_fock n_it_scf_max 200 @@ -55,7 +55,7 @@ cisd_selected cisd_sc2_selected n_det_max_cisd_sc2 10000 pt2_max 1.e-4 - do_pt2_end True + do_pt2_end true properties z_one_point 3.9 diff --git a/src/FCIdump/README.rst b/src/FCIdump/README.rst index 580d0016..1fdd9660 100644 --- a/src/FCIdump/README.rst +++ b/src/FCIdump/README.rst @@ -10,6 +10,9 @@ Documentation .. Do not edit this section. It was auto-generated from the .. NEEDED_MODULES file. +`fcidump `_ + Undocumented + Needed Modules From db558258b21a2c0f52e4edefc54da72374608d5f Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Thu, 16 Apr 2015 13:57:00 +0200 Subject: [PATCH 10/20] Remove WILL be DELETED and change ezfio_with_default in concequance --- .../WILL_BE_DELETED.ezfio_default | 61 -- scripts/ezfio_interface/ei_handler.py | 4 +- scripts/ezfio_with_default.py | 18 +- src/Dets/README.rst | 134 ++--- src/Dets/connected_to_ref.irp.f | 67 +-- src/Dets/determinants.irp.f | 297 ---------- src/Dets/spindeterminants.ezfio_config | 5 +- src/Dets/spindeterminants.irp.f | 528 +++++++++++++++++- src/Makefile.config.ifort | 30 - 9 files changed, 617 insertions(+), 527 deletions(-) delete mode 100644 data/ezfio_defaults/WILL_BE_DELETED.ezfio_default delete mode 100644 src/Makefile.config.ifort diff --git a/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default b/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default deleted file mode 100644 index cf54a1dd..00000000 --- a/data/ezfio_defaults/WILL_BE_DELETED.ezfio_default +++ /dev/null @@ -1,61 +0,0 @@ -bielec_integrals - read_ao_integrals False - read_mo_integrals False - write_ao_integrals False - write_mo_integrals False - threshold_ao 1.e-15 - threshold_mo 1.e-15 - direct False - -cis_dressed - n_state_cis 10 - n_core_cis 0 - n_act_cis mo_basis_mo_tot_num - mp2_dressing False - standard_doubles True - en_2_2 False - -determinants - n_states 1 - n_states_diag determinants_n_states - n_det_max_jacobi 1000 - threshold_generators 0.99 - threshold_selectors 0.999 - read_wf False - s2_eig False - only_single_double_dm False - -full_ci - n_det_max_fci 10000 - n_det_max_fci_property 50000 - pt2_max 1.e-4 - do_pt2_end True - var_pt2_ratio 0.75 - -cas_sd - n_det_max_cas_sd 100000 - pt2_max 1.e-4 - do_pt2_end True - var_pt2_ratio 0.75 - -all_singles - n_det_max_fci 50000 - pt2_max 1.e-8 - do_pt2_end False - -hartree_fock - n_it_scf_max 200 - thresh_scf 1.e-10 - guess "Huckel" - -cisd_selected - n_det_max_cisd 10000 - pt2_max 1.e-4 - -cisd_sc2_selected - n_det_max_cisd_sc2 10000 - pt2_max 1.e-4 - do_pt2_end True - -properties - z_one_point 3.9 diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index a940c584..220d368c 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -70,9 +70,9 @@ def is_bool(str_): Take a string, if is a bool return the conversion into fortran and ocaml. """ - if "true" in str_.stirp().lower(): + if "true" in str_.strip().lower(): return Type(None, "true", ".True.") - elif "false" in str_.stirp().lower(): + elif "false" in str_.strip().lower(): return Type(None, "false", ".False") else: raise TypeError diff --git a/scripts/ezfio_with_default.py b/scripts/ezfio_with_default.py index 1b5f01a8..a2dfa430 100755 --- a/scripts/ezfio_with_default.py +++ b/scripts/ezfio_with_default.py @@ -90,13 +90,19 @@ END_PROVIDER self.default = t def get_default(self): - filename = '/'.join( [os.environ['QPACKAGE_ROOT'], 'data', - 'ezfio_defaults', - 'WILL_BE_DELETED.ezfio_default'] ) + mypath = '/'.join( [os.environ['QPACKAGE_ROOT'], 'data', + 'ezfio_defaults'] ) + + from os import listdir + from os.path import isfile, join + onlyfiles = [ join(mypath,f) for f in listdir(mypath) if isfile(join(mypath,f)) ] + + lines = [] + for filename in onlyfiles: + file = open(filename,'r') + lines.extend(file.readlines()) + file.close() - file = open(filename,'r') - lines = file.readlines() - file.close() k=-1 # Search directory for k,line in enumerate(lines): diff --git a/src/Dets/README.rst b/src/Dets/README.rst index f03df8da..e9077510 100644 --- a/src/Dets/README.rst +++ b/src/Dets/README.rst @@ -90,10 +90,6 @@ Documentation `connected_to_ref_by_mono `_ Undocumented -`det_is_not_or_may_be_in_ref `_ - If true, det is not in ref - If false, det may be in ref - `det_search_key `_ Return an integer*8 corresponding to a determinant index for searching @@ -103,9 +99,6 @@ Documentation `is_in_wavefunction `_ True if the determinant ``det`` is in the wave function -`key_pattern_not_in_ref `_ - Min and max values of the integers of the keys of the reference - `occ_pattern_search_key `_ Return an integer*8 corresponding to a determinant index for searching @@ -200,16 +193,10 @@ Documentation `det_svd `_ Computes the SVD of the Alpha x Beta determinant coefficient matrix -`create_wf_of_psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`filter_3_highest_electrons `_ +`filter_3_highest_electrons `_ Returns a determinant with only the 3 highest electrons -`generate_all_alpha_beta_det_products `_ - Create a wave function from all possible alpha x beta determinants - -`int_of_3_highest_electrons `_ +`int_of_3_highest_electrons `_ Returns an integer*8 as : .br |_<--- 21 bits ---><--- 21 bits ---><--- 21 bits --->| @@ -226,32 +213,26 @@ Documentation `n_det `_ Number of determinants in the wave function -`n_det_alpha_unique `_ - Unique alpha determinants - -`n_det_beta_unique `_ - Unique beta determinants - `psi_average_norm_contrib `_ Contribution of determinants to the state-averaged density -`psi_average_norm_contrib_sorted `_ +`psi_average_norm_contrib_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) `psi_coef `_ The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file is empty -`psi_coef_sorted `_ +`psi_coef_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) -`psi_coef_sorted_ab `_ +`psi_coef_sorted_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_coef_sorted_bit `_ +`psi_coef_sorted_bit `_ Determinants on which we apply for perturbation. They are sorted by determinants interpreted as integers. Useful to accelerate the search of a random determinant in the wave @@ -261,80 +242,53 @@ Documentation The wave function determinants. Initialized with Hartree-Fock if the EZFIO file is empty -`psi_det_alpha `_ - List of alpha determinants of psi_det - -`psi_det_alpha_unique `_ - Unique alpha determinants - -`psi_det_beta `_ - List of beta determinants of psi_det - -`psi_det_beta_unique `_ - Unique beta determinants - `psi_det_size `_ Size of the psi_det/psi_coef arrays -`psi_det_sorted `_ +`psi_det_sorted `_ Wave function sorted by determinants contribution to the norm (state-averaged) -`psi_det_sorted_ab `_ +`psi_det_sorted_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_det_sorted_bit `_ +`psi_det_sorted_bit `_ Determinants on which we apply for perturbation. They are sorted by determinants interpreted as integers. Useful to accelerate the search of a random determinant in the wave function. -`psi_det_sorted_next_ab `_ +`psi_det_sorted_next_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_svd_alpha `_ - SVD wave function - -`psi_svd_beta `_ - SVD wave function - -`psi_svd_coefs `_ - SVD wave function - -`psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`read_dets `_ +`read_dets `_ Reads the determinants from the EZFIO file -`save_wavefunction `_ +`save_wavefunction `_ Save the wave function into the EZFIO file -`save_wavefunction_general `_ +`save_wavefunction_general `_ Save the wave function into the EZFIO file -`save_wavefunction_unsorted `_ +`save_wavefunction_unsorted `_ Save the wave function into the EZFIO file -`sort_dets_by_3_highest_electrons `_ +`sort_dets_by_3_highest_electrons `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`sort_dets_by_det_search_key `_ +`sort_dets_by_det_search_key `_ Determinants are sorted are sorted according to their det_search_key. Useful to accelerate the search of a random determinant in the wave function. -`spin_det_search_key `_ - Return an integer*8 corresponding to a determinant index for searching - `double_exc_bitmask `_ double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 @@ -675,7 +629,61 @@ Documentation `n_con_int `_ Number of integers to represent the connections between determinants -`write_spindeterminants `_ +`create_wf_of_psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`generate_all_alpha_beta_det_products `_ + Create a wave function from all possible alpha x beta determinants + +`get_index_in_psi_det_alpha_unique `_ + Returns the index of the determinant in the ``psi_det_alpha_unique`` array + +`get_index_in_psi_det_beta_unique `_ + Returns the index of the determinant in the ``psi_det_beta_unique`` array + +`n_det_alpha_unique `_ + Unique alpha determinants + +`n_det_beta_unique `_ + Unique beta determinants + +`psi_det_alpha `_ + List of alpha determinants of psi_det + +`psi_det_alpha_unique `_ + Unique alpha determinants + +`psi_det_beta `_ + List of beta determinants of psi_det + +`psi_det_beta_unique `_ + Unique beta determinants + +`psi_svd_alpha `_ + SVD wave function + +`psi_svd_beta `_ + SVD wave function + +`psi_svd_coefs `_ + SVD wave function + +`psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_columns `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_rows `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_values `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`spin_det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`write_spindeterminants `_ Undocumented `cisd `_ diff --git a/src/Dets/connected_to_ref.irp.f b/src/Dets/connected_to_ref.irp.f index 3c7eb581..2d40b621 100644 --- a/src/Dets/connected_to_ref.irp.f +++ b/src/Dets/connected_to_ref.irp.f @@ -162,7 +162,7 @@ integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet) integer :: N_past integer :: i, l integer :: degree_x2 - logical :: det_is_not_or_may_be_in_ref, t + logical :: t double precision :: hij_elec ! output : 0 : not connected @@ -260,7 +260,7 @@ integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) integer :: N_past integer :: i, l integer :: degree_x2 - logical :: det_is_not_or_may_be_in_ref, t + logical :: t double precision :: hij_elec ! output : 0 : not connected @@ -355,66 +355,3 @@ integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) end - -logical function det_is_not_or_may_be_in_ref(key,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! If true, det is not in ref - ! If false, det may be in ref - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key(Nint,2) - integer(bit_kind) :: key_int - integer*1 :: key_short(bit_kind) - !DIR$ ATTRIBUTES ALIGN : 32 :: key_short - equivalence (key_int,key_short) - - integer :: i, ispin, k - - det_is_not_or_may_be_in_ref = .False. - do ispin=1,2 - do i=1,Nint - key_int = key(i,ispin) - do k=1,bit_kind - det_is_not_or_may_be_in_ref = & - det_is_not_or_may_be_in_ref .or. & - key_pattern_not_in_ref(key_short(k), i, ispin) - enddo - if(det_is_not_or_may_be_in_ref) then - return - endif - enddo - enddo - -end - - -BEGIN_PROVIDER [ logical, key_pattern_not_in_ref, (-128:127,N_int,2) ] - use bitmasks - implicit none - BEGIN_DOC - ! Min and max values of the integers of the keys of the reference - END_DOC - - integer :: i, j, ispin - integer(bit_kind) :: key - integer*1 :: key_short(bit_kind) - equivalence (key,key_short) - integer :: idx, k - - key_pattern_not_in_ref = .True. - - do j=1,N_det - do ispin=1,2 - do i=1,N_int - key = psi_det(i,ispin,j) - do k=1,bit_kind - key_pattern_not_in_ref( key_short(k), i, ispin ) = .False. - enddo - enddo - enddo - enddo - -END_PROVIDER - diff --git a/src/Dets/determinants.irp.f b/src/Dets/determinants.irp.f index 00e683fc..104b868e 100644 --- a/src/Dets/determinants.irp.f +++ b/src/Dets/determinants.irp.f @@ -294,132 +294,6 @@ END_PROVIDER -!==============================================================================! -! ! -! Independent alpha/beta parts ! -! ! -!==============================================================================! - -integer*8 function spin_det_search_key(det,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Return an integer*8 corresponding to a determinant index for searching - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det(Nint) - integer :: i - spin_det_search_key = det(1) - do i=2,Nint - spin_det_search_key = ieor(spin_det_search_key,det(i)) - enddo -end - - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of alpha determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_alpha(k,i) = psi_det(k,1,i) - enddo - enddo -END_PROVIDER - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of beta determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_beta(k,i) = psi_det(k,2,i) - enddo - enddo -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] - implicit none - BEGIN_DOC - ! Unique alpha determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_alpha_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_alpha_unique += 1 - do k=1,N_int - psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_beta_unique ] - implicit none - BEGIN_DOC - ! Unique beta determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_beta_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_beta_unique += 1 - do k=1,N_int - psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - - !==============================================================================! ! ! ! Sorting providers ! @@ -700,177 +574,6 @@ subroutine sort_dets_by_3_highest_electrons(det_in,coef_in,det_out,coef_out, & end -!==============================================================================! -! ! -! Alpha x Beta Matrix ! -! ! -!==============================================================================! - -BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - - psi_svd_matrix = 0.d0 - do j=1,N_det_beta_unique - do k=1,N_int - tmp_det(k,2) = psi_det_beta_unique(k,j) - enddo - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1) = psi_det_alpha_unique(k,i) - enddo - idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) - if (idx > 0) then - do k=1,N_states - psi_svd_matrix(i,j,k) = psi_coef_sorted_bit(idx,k) - enddo - endif - enddo - enddo - -END_PROVIDER - -subroutine create_wf_of_psi_svd_matrix - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - double precision :: norm(N_states) - - call generate_all_alpha_beta_det_products - norm = 0.d0 - do j=1,N_det_beta_unique - do k=1,N_int - tmp_det(k,2) = psi_det_beta_unique(k,j) - enddo - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1) = psi_det_alpha_unique(k,i) - enddo - idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) - if (idx > 0) then - do k=1,N_states - psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) - norm(k) += psi_svd_matrix(i,j,k) - enddo - endif - enddo - enddo - do k=1,N_states - norm(k) = 1.d0/dsqrt(norm(k)) - do i=1,N_det - psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) - enddo - enddo - psi_det = psi_det_sorted_bit - psi_coef = psi_coef_sorted_bit - TOUCH psi_det psi_coef - psi_det = psi_det_sorted - psi_coef = psi_coef_sorted - norm(1) = 0.d0 - do i=1,N_det - norm(1) += psi_average_norm_contrib_sorted(i) - if (norm(1) >= 0.999999d0) then - exit - endif - enddo - N_det = min(i,N_det) - SOFT_TOUCH psi_det psi_coef N_det - -end - -subroutine generate_all_alpha_beta_det_products - implicit none - BEGIN_DOC -! Create a wave function from all possible alpha x beta determinants - END_DOC - integer :: i,j,k,l - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - integer(bit_kind), allocatable :: tmp_det(:,:,:) - logical, external :: is_in_wavefunction - - allocate (tmp_det(N_int,2,N_det_alpha_unique)) - do j=1,N_det_beta_unique - l = 1 - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1,l) = psi_det_alpha_unique(k,i) - tmp_det(k,2,l) = psi_det_beta_unique (k,j) - enddo - if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then - l = l+1 - endif - enddo - call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, 1) - enddo - deallocate (tmp_det) - call copy_H_apply_buffer_to_wf - SOFT_TOUCH psi_det psi_coef N_det -end - - BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] - implicit none - BEGIN_DOC - ! SVD wave function - END_DOC - - integer :: lwork, info, istate - double precision, allocatable :: work(:), tmp(:,:), copy(:,:) - allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & - copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) - - do istate = 1,N_states - copy(:,:) = psi_svd_matrix(:,:,istate) - lwork=-1 - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - lwork = work(1) - deallocate(work) - allocate(work(lwork)) - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - deallocate(work) - if (info /= 0) then - print *, irp_here//': error in det SVD' - stop 1 - endif - integer :: i,j - do j=1,N_det_beta_unique - do i=1,N_det_beta_unique - psi_svd_beta(i,j,istate) = tmp(j,i) - enddo - enddo - deallocate(tmp,copy) - enddo - -END_PROVIDER - - !==============================================================================! ! ! ! Read/write routines ! diff --git a/src/Dets/spindeterminants.ezfio_config b/src/Dets/spindeterminants.ezfio_config index 1c7d81e3..39ccb82b 100644 --- a/src/Dets/spindeterminants.ezfio_config +++ b/src/Dets/spindeterminants.ezfio_config @@ -1,12 +1,15 @@ spindeterminants n_det_alpha integer n_det_beta integer + n_det integer n_int integer bit_kind integer n_states integer psi_det_alpha integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_alpha) psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta) - psi_coef_matrix double precision (spindeterminants_n_det_alpha,spindeterminants_n_det_beta,spindeterminants_n_states) + psi_coef_matrix_rows integer (spindeterminants_n_det) + psi_coef_matrix_columns integer (spindeterminants_n_det) + psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states) n_svd_coefs integer psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states) psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states) diff --git a/src/Dets/spindeterminants.irp.f b/src/Dets/spindeterminants.irp.f index 4b426faa..ffd28f85 100644 --- a/src/Dets/spindeterminants.irp.f +++ b/src/Dets/spindeterminants.irp.f @@ -1,3 +1,296 @@ +!==============================================================================! +! ! +! Independent alpha/beta parts ! +! ! +!==============================================================================! + +use bitmasks + +integer*8 function spin_det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint) + integer :: i + spin_det_search_key = det(1) + do i=2,Nint + spin_det_search_key = ieor(spin_det_search_key,det(i)) + enddo +end + + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of alpha determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_alpha(k,i) = psi_det(k,1,i) + enddo + enddo +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of beta determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_beta(k,i) = psi_det(k,2,i) + enddo + enddo +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] + implicit none + BEGIN_DOC + ! Unique alpha determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_alpha_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_alpha_unique += 1 + do k=1,N_int + psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_beta_unique ] + implicit none + BEGIN_DOC + ! Unique beta determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_beta_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_beta_unique += 1 + do k=1,N_int + psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + + + + +integer function get_index_in_psi_det_alpha_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_alpha_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_alpha_unique = 0 + ibegin = 1 + iend = N_det_alpha_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_alpha_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_alpha_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_alpha_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_alpha_unique = i + return + endif + endif + i += 1 + if (i > N_det_alpha_unique) then + return + endif + + enddo + +end + +integer function get_index_in_psi_det_beta_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_beta_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_beta_unique = 0 + ibegin = 1 + iend = N_det_beta_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_beta_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_beta_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_beta_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_beta_unique = i + return + endif + endif + i += 1 + if (i > N_det_beta_unique) then + return + endif + + enddo + +end + + subroutine write_spindeterminants use bitmasks implicit none @@ -11,6 +304,7 @@ subroutine write_spindeterminants N_int2 = (N_int*bit_kind)/8 call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique) call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique) + call ezfio_set_spindeterminants_n_det(N_det) call ezfio_set_spindeterminants_n_int(N_int) call ezfio_set_spindeterminants_bit_kind(bit_kind) call ezfio_set_spindeterminants_n_states(N_states) @@ -39,7 +333,9 @@ subroutine write_spindeterminants call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique) deallocate(tmpdet) - call ezfio_set_spindeterminants_psi_coef_matrix(psi_svd_matrix) + call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_svd_matrix_values) + call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_svd_matrix_rows) + call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_svd_matrix_columns) integer :: n_svd_coefs double precision :: norm, f @@ -49,7 +345,7 @@ subroutine write_spindeterminants do k=1,N_states norm -= psi_svd_coefs(n_svd_coefs,k)*psi_svd_coefs(n_svd_coefs,k) enddo - if (norm < 1.d-6) then + if (norm < 1.d-4) then exit endif enddo @@ -89,3 +385,231 @@ subroutine write_spindeterminants deallocate(dtmp) end + + +!==============================================================================! +! ! +! Alpha x Beta Matrix ! +! ! +!==============================================================================! + +BEGIN_PROVIDER [ double precision, psi_svd_matrix_values, (N_det,N_states) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_rows, (N_det) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_columns, (N_det) ] + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k, l + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + + + PROVIDE psi_coef_sorted_bit + +! l=0 +! do j=1,N_det_beta_unique +! do k=1,N_int +! tmp_det(k,2) = psi_det_beta_unique(k,j) +! enddo +! do i=1,N_det_alpha_unique +! do k=1,N_int +! tmp_det(k,1) = psi_det_alpha_unique(k,i) +! enddo +! idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) +! if (idx > 0) then +! l += 1 +! psi_svd_matrix_rows(l) = i +! psi_svd_matrix_columns(l) = j +! do k=1,N_states +! psi_svd_matrix_values(l,k) = psi_coef_sorted_bit(idx,k) +! enddo +! endif +! enddo +! enddo +! ASSERT (l == N_det) + + integer, allocatable :: iorder(:), to_sort(:) + integer, external :: get_index_in_psi_det_alpha_unique + integer, external :: get_index_in_psi_det_beta_unique + allocate(iorder(N_det), to_sort(N_det)) + do k=1,N_det + i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int) + j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int) + do l=1,N_states + psi_svd_matrix_values(k,l) = psi_coef(k,l) + enddo + psi_svd_matrix_rows(k) = i + psi_svd_matrix_columns(k) = j + to_sort(k) = N_det_alpha_unique * (j-1) + i + iorder(k) = k + enddo + call isort(to_sort, iorder, N_det) + call iset_order(psi_svd_matrix_rows,iorder,N_det) + call iset_order(psi_svd_matrix_columns,iorder,N_det) + call dset_order(psi_svd_matrix_values,iorder,N_det) + deallocate(iorder,to_sort) +END_PROVIDER + +BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k,istate + psi_svd_matrix = 0.d0 + do k=1,N_det + i = psi_svd_matrix_rows(k) + j = psi_svd_matrix_columns(k) + do istate=1,N_states + psi_svd_matrix(i,j,istate) = psi_svd_matrix_values(k,istate) + enddo + enddo +END_PROVIDER + +subroutine create_wf_of_psi_svd_matrix + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + double precision :: norm(N_states) + + call generate_all_alpha_beta_det_products + norm = 0.d0 + do j=1,N_det_beta_unique + do k=1,N_int + tmp_det(k,2) = psi_det_beta_unique(k,j) + enddo + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1) = psi_det_alpha_unique(k,i) + enddo + idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) + if (idx > 0) then + do k=1,N_states + psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) + norm(k) += psi_svd_matrix(i,j,k) + enddo + endif + enddo + enddo + do k=1,N_states + norm(k) = 1.d0/dsqrt(norm(k)) + do i=1,N_det + psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) + enddo + enddo + psi_det = psi_det_sorted_bit + psi_coef = psi_coef_sorted_bit + TOUCH psi_det psi_coef + psi_det = psi_det_sorted + psi_coef = psi_coef_sorted + norm(1) = 0.d0 + do i=1,N_det + norm(1) += psi_average_norm_contrib_sorted(i) + if (norm(1) >= 0.999999d0) then + exit + endif + enddo + N_det = min(i,N_det) + SOFT_TOUCH psi_det psi_coef N_det + +end + +subroutine generate_all_alpha_beta_det_products + implicit none + BEGIN_DOC +! Create a wave function from all possible alpha x beta determinants + END_DOC + integer :: i,j,k,l + integer :: idx, iproc + integer, external :: get_index_in_psi_det_sorted_bit + integer(bit_kind), allocatable :: tmp_det(:,:,:) + logical, external :: is_in_wavefunction + integer, external :: omp_get_thread_num + + !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& + !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& + !$OMP N_det) & + !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) + !$ iproc = omp_get_thread_num() + allocate (tmp_det(N_int,2,N_det_alpha_unique)) + !$OMP DO + do j=1,N_det_beta_unique + l = 1 + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1,l) = psi_det_alpha_unique(k,i) + tmp_det(k,2,l) = psi_det_beta_unique (k,j) + enddo + if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then + l = l+1 + endif + enddo + call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) + enddo + !$OMP END DO NOWAIT + deallocate(tmp_det) + !$OMP END PARALLEL + deallocate (tmp_det) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH psi_det psi_coef N_det +end + + BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC + ! SVD wave function + END_DOC + + integer :: lwork, info, istate + double precision, allocatable :: work(:), tmp(:,:), copy(:,:) + allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & + copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) + + do istate = 1,N_states + copy(:,:) = psi_svd_matrix(:,:,istate) + lwork=-1 + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + lwork = work(1) + deallocate(work) + allocate(work(lwork)) + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + deallocate(work) + if (info /= 0) then + print *, irp_here//': error in det SVD' + stop 1 + endif + integer :: i,j + do j=1,N_det_beta_unique + do i=1,N_det_beta_unique + psi_svd_beta(i,j,istate) = tmp(j,i) + enddo + enddo + deallocate(tmp,copy) + enddo + +END_PROVIDER + + diff --git a/src/Makefile.config.ifort b/src/Makefile.config.ifort deleted file mode 100644 index 164d348e..00000000 --- a/src/Makefile.config.ifort +++ /dev/null @@ -1,30 +0,0 @@ -OPENMP =1 -PROFILE =0 -DEBUG = 0 - -IRPF90_FLAGS+= --align=32 -FC = ifort -g -FCFLAGS= -FCFLAGS+= -axAVX,SSE4.2 -FCFLAGS+= -O2 -FCFLAGS+= -ip -FCFLAGS+= -opt-prefetch -FCFLAGS+= -ftz -MKL=-mkl=parallel - -ifeq ($(PROFILE),1) -FC += -p -g -CXX += -pg -endif - -ifeq ($(OPENMP),1) -FC += -openmp -IRPF90_FLAGS += --openmp -CXX += -fopenmp -endif - -ifeq ($(DEBUG),1) -FC += -C -traceback -fpe0 -IRPF90_FLAGS += -a -#FCFLAGS =-O0 -endif From 78d42e245529e0bce6202c66d097fcba4cf4e0b5 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 09:22:28 +0200 Subject: [PATCH 11/20] Add ezfio_dir to optional keyword in EZFIO.cfg --- data/ezfio_defaults/properties.ezfio_default | 2 -- scripts/ezfio_interface/ei_handler.py | 11 +++++------ scripts/ezfio_interface/ezfio_generate_provider.py | 2 +- src/Properties/options.irp.f | 13 ------------- src/Properties/properties.ezfio_config | 2 -- 5 files changed, 6 insertions(+), 24 deletions(-) delete mode 100644 data/ezfio_defaults/properties.ezfio_default delete mode 100644 src/Properties/options.irp.f delete mode 100644 src/Properties/properties.ezfio_config diff --git a/data/ezfio_defaults/properties.ezfio_default b/data/ezfio_defaults/properties.ezfio_default deleted file mode 100644 index ce06d413..00000000 --- a/data/ezfio_defaults/properties.ezfio_default +++ /dev/null @@ -1,2 +0,0 @@ -properties - z_one_point 3.9 diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index 220d368c..dcfb394c 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -203,7 +203,7 @@ def get_dict_config_file(config_file_path, module_lower): - ezfio_name : Will be the name of the file - ezfio_dir : Will be the folder who containt the ezfio_name * /ezfio_dir/ezfio_name - * equal to MODULE_lower name for the moment. + * equal to MODULE_lower name by default. - interface : The provider is a imput or a output - default : The default value /!\ stored in a Type named type! if interface == output @@ -216,7 +216,7 @@ def get_dict_config_file(config_file_path, module_lower): d = defaultdict(dict) l_info_required = ["doc", "interface"] - l_info_optional = ["ezfio_name", "size"] + l_info_optional = ["ezfio_dir", "ezfio_name", "size"] # ~#~#~#~#~#~#~#~#~#~#~ # # L o a d _ C o n f i g # @@ -238,10 +238,8 @@ def get_dict_config_file(config_file_path, module_lower): pvd = section.lower() # Create the dictionary who containt the value per default - d_default = {"ezfio_name": pvd} - - # Set the ezfio_dir - d[pvd]["ezfio_dir"] = module_lower + d_default = {"ezfio_name": pvd, + "ezfio_dir": module_lower} # Check if type if avalaible type_ = config_file.get(section, "type") @@ -294,6 +292,7 @@ def create_ezfio_provider(dict_ezfio_cfg): default size} create the a list who containt all the code for the provider + output = output_dict_info['ezfio_dir' return [code, ...] """ from ezfio_generate_provider import EZFIO_Provider diff --git a/scripts/ezfio_interface/ezfio_generate_provider.py b/scripts/ezfio_interface/ezfio_generate_provider.py index af4fcd6a..7f3c8441 100755 --- a/scripts/ezfio_interface/ezfio_generate_provider.py +++ b/scripts/ezfio_interface/ezfio_generate_provider.py @@ -45,7 +45,7 @@ END_PROVIDER self.set_write() for v in self.values: if not v: - msg = "Error : %s is not set in ezfio_with_default.py" % (v) + msg = "Error : %s is not set in EZFIO.cfg" % (v) print >>sys.stderr, msg sys.exit(1) return self.data % self.__dict__ diff --git a/src/Properties/options.irp.f b/src/Properties/options.irp.f deleted file mode 100644 index 0fd5a4c1..00000000 --- a/src/Properties/options.irp.f +++ /dev/null @@ -1,13 +0,0 @@ -BEGIN_SHELL [ /usr/bin/python ] -from ezfio_with_default import EZFIO_Provider -T = EZFIO_Provider() -T.set_type ( "double precision" ) -T.set_name ( "z_one_point" ) -T.set_doc ( "z point on which the integrated delta rho is calculated" ) -T.set_ezfio_dir ( "properties" ) -T.set_ezfio_name( "z_one_point" ) -T.set_output ( "output_full_ci" ) -print T - -END_SHELL - diff --git a/src/Properties/properties.ezfio_config b/src/Properties/properties.ezfio_config deleted file mode 100644 index 018b56d0..00000000 --- a/src/Properties/properties.ezfio_config +++ /dev/null @@ -1,2 +0,0 @@ -properties - z_one_point double precision From 3b59fca0c73d606fdebddc10ee69f4a73d61d40b Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 10:12:08 +0200 Subject: [PATCH 12/20] Add EZFIO.cfg in determinants --- .../ezfio_defaults/determinants.ezfio_default | 9 - ocaml/Input.ml | 2 +- ocaml/Input_determinants.ml | 756 +++------- ocaml/Input_determinants_by_hand.ml | 447 ++++++ scripts/clean_modules.sh | 2 +- scripts/ezfio_interface/ei_handler.py | 6 +- scripts/ezfio_interface/qp_edit_template | 24 +- scripts/generate_h_apply.py | 12 +- src/CAS_SD/NEEDED_MODULES | 2 +- src/CAS_SD/README.rst | 2 +- src/CID/NEEDED_MODULES | 2 +- src/CID/README.rst | 2 +- src/CID_SC2_selected/NEEDED_MODULES | 2 +- src/CID_SC2_selected/README.rst | 2 +- src/CID_selected/NEEDED_MODULES | 2 +- src/CID_selected/README.rst | 2 +- src/CIS/NEEDED_MODULES | 2 +- src/CIS/README.rst | 2 +- src/CISD/NEEDED_MODULES | 2 +- src/CISD/README.rst | 2 +- src/CISD_SC2_selected/NEEDED_MODULES | 2 +- src/CISD_SC2_selected/README.rst | 2 +- src/CISD_selected/NEEDED_MODULES | 2 +- src/CISD_selected/README.rst | 2 +- src/DDCI_selected/NEEDED_MODULES | 2 +- src/DDCI_selected/README.rst | 2 +- src/{Dets => Determinants}/determinants.irp.f | 15 +- src/Dets/ASSUMPTIONS.rst | 7 - src/Dets/H_apply.irp.f | 229 --- src/Dets/H_apply_template.f | 542 ------- src/Dets/Makefile | 6 - src/Dets/NEEDED_MODULES | 1 - src/Dets/README.rst | 696 --------- src/Dets/SC2.irp.f | 215 --- src/Dets/connected_to_ref.irp.f | 357 ----- src/Dets/create_excitations.irp.f | 36 - src/Dets/davidson.irp.f | 418 ------ src/Dets/density_matrix.irp.f | 214 --- src/Dets/det_svd.irp.f | 61 - src/Dets/determinants.ezfio_config | 20 - src/Dets/determinants_bitmasks.irp.f | 57 - src/Dets/diagonalize_CI.irp.f | 109 -- src/Dets/diagonalize_CI_SC2.irp.f | 59 - src/Dets/diagonalize_CI_mono.irp.f | 72 - src/Dets/excitations_utils.irp.f | 16 - src/Dets/filter_connected.irp.f | 611 -------- src/Dets/guess_doublet.irp.f | 79 - src/Dets/guess_singlet.irp.f | 44 - src/Dets/guess_triplet.irp.f | 48 - src/Dets/occ_pattern.irp.f | 339 ----- src/Dets/options.irp.f | 61 - src/Dets/program_beginer_determinants.irp.f | 138 -- src/Dets/psi_cas.irp.f | 114 -- src/Dets/ref_bitmask.irp.f | 57 - src/Dets/s2.irp.f | 106 -- src/Dets/save_for_casino.irp.f | 268 ---- src/Dets/save_for_qmcchem.irp.f | 51 - src/Dets/save_natorb.irp.f | 6 - src/Dets/slater_rules.irp.f | 1301 ----------------- src/Dets/spindeterminants.ezfio_config | 17 - src/Dets/spindeterminants.irp.f | 615 -------- src/Dets/truncate_wf.irp.f | 18 - src/Dets/utils.irp.f | 20 - src/FCIdump/NEEDED_MODULES | 2 +- src/FCIdump/README.rst | 2 +- src/Full_CI/NEEDED_MODULES | 2 +- src/Full_CI/README.rst | 2 +- src/Generators_CAS/NEEDED_MODULES | 2 +- src/Generators_CAS/README.rst | 2 +- src/Generators_CAS/generators.irp.f | 4 +- src/Generators_full/NEEDED_MODULES | 2 +- src/Generators_full/README.rst | 14 +- src/Generators_full/generators.irp.f | 16 +- src/Generators_restart/NEEDED_MODULES | 2 +- src/Generators_restart/generators.irp.f | 2 +- src/MP2/NEEDED_MODULES | 2 +- src/MP2/README.rst | 2 +- src/MRCC/NEEDED_MODULES | 2 +- src/MRCC/README.rst | 2 +- src/MRCC/mrcc_utils.irp.f | 4 +- src/NEEDED_MODULES | 2 +- src/Perturbation/NEEDED_MODULES | 2 +- src/Perturbation/selection.irp.f | 2 +- src/Properties/NEEDED_MODULES | 2 +- src/Selectors_full/NEEDED_MODULES | 2 +- src/Selectors_full/README.rst | 18 +- src/Selectors_full/selectors.irp.f | 16 +- src/Selectors_no_sorted/NEEDED_MODULES | 2 +- src/Selectors_no_sorted/selectors.irp.f | 4 +- 89 files changed, 749 insertions(+), 7682 deletions(-) delete mode 100644 data/ezfio_defaults/determinants.ezfio_default create mode 100644 ocaml/Input_determinants_by_hand.ml rename src/{Dets => Determinants}/determinants.irp.f (98%) delete mode 100644 src/Dets/ASSUMPTIONS.rst delete mode 100644 src/Dets/H_apply.irp.f delete mode 100644 src/Dets/H_apply_template.f delete mode 100644 src/Dets/Makefile delete mode 100644 src/Dets/NEEDED_MODULES delete mode 100644 src/Dets/README.rst delete mode 100644 src/Dets/SC2.irp.f delete mode 100644 src/Dets/connected_to_ref.irp.f delete mode 100644 src/Dets/create_excitations.irp.f delete mode 100644 src/Dets/davidson.irp.f delete mode 100644 src/Dets/density_matrix.irp.f delete mode 100644 src/Dets/det_svd.irp.f delete mode 100644 src/Dets/determinants.ezfio_config delete mode 100644 src/Dets/determinants_bitmasks.irp.f delete mode 100644 src/Dets/diagonalize_CI.irp.f delete mode 100644 src/Dets/diagonalize_CI_SC2.irp.f delete mode 100644 src/Dets/diagonalize_CI_mono.irp.f delete mode 100644 src/Dets/excitations_utils.irp.f delete mode 100644 src/Dets/filter_connected.irp.f delete mode 100644 src/Dets/guess_doublet.irp.f delete mode 100644 src/Dets/guess_singlet.irp.f delete mode 100644 src/Dets/guess_triplet.irp.f delete mode 100644 src/Dets/occ_pattern.irp.f delete mode 100644 src/Dets/options.irp.f delete mode 100644 src/Dets/program_beginer_determinants.irp.f delete mode 100644 src/Dets/psi_cas.irp.f delete mode 100644 src/Dets/ref_bitmask.irp.f delete mode 100644 src/Dets/s2.irp.f delete mode 100644 src/Dets/save_for_casino.irp.f delete mode 100644 src/Dets/save_for_qmcchem.irp.f delete mode 100644 src/Dets/save_natorb.irp.f delete mode 100644 src/Dets/slater_rules.irp.f delete mode 100644 src/Dets/spindeterminants.ezfio_config delete mode 100644 src/Dets/spindeterminants.irp.f delete mode 100644 src/Dets/truncate_wf.irp.f delete mode 100644 src/Dets/utils.irp.f diff --git a/data/ezfio_defaults/determinants.ezfio_default b/data/ezfio_defaults/determinants.ezfio_default deleted file mode 100644 index 2cfbe3ea..00000000 --- a/data/ezfio_defaults/determinants.ezfio_default +++ /dev/null @@ -1,9 +0,0 @@ -determinants - n_states 1 - n_states_diag determinants_n_states - n_det_max_jacobi 1000 - threshold_generators 0.99 - threshold_selectors 0.999 - read_wf false - s2_eig false - only_single_double_dm false diff --git a/ocaml/Input.ml b/ocaml/Input.ml index 01bb54a0..2da3ba59 100644 --- a/ocaml/Input.ml +++ b/ocaml/Input.ml @@ -4,7 +4,7 @@ open Core.Std;; include Input_ao_basis;; include Input_bitmasks;; -include Input_determinants;; +include Input_determinants_by_hand;; include Input_electrons;; include Input_mo_basis;; include Input_nuclei;; diff --git a/ocaml/Input_determinants.ml b/ocaml/Input_determinants.ml index 9af2b7c0..df046231 100644 --- a/ocaml/Input_determinants.ml +++ b/ocaml/Input_determinants.ml @@ -1,603 +1,251 @@ +(* =~=~ *) +(* Init *) +(* =~=~ *) + open Qptypes;; open Qputils;; open Core.Std;; module Determinants : sig - type t = - { n_int : N_int_number.t; - bit_kind : Bit_kind.t; - mo_label : MO_label.t; - n_det : Det_number.t; - n_states : States_number.t; - n_states_diag : States_number.t; - n_det_max_jacobi : Strictly_positive_int.t; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - read_wf : bool; - expected_s2 : Positive_float.t; - s2_eig : bool; - psi_coef : Det_coef.t array; - psi_det : Determinant.t array; - } with sexp +(* Generate type *) + type t = + { + n_det_max_jacobi : Strictly_positive_int.t; + threshold_generators : Threshold.t; + threshold_selectors : Threshold.t; + n_states : Strictly_positive_int.t; + s2_eig : bool; + read_wf : bool; + only_single_double_dm : bool; + } with sexp + ;; val read : unit -> t option - val write : t -> unit + val write : t-> unit val to_string : t -> string val to_rst : t -> Rst_string.t val of_rst : Rst_string.t -> t option end = struct - type t = - { n_int : N_int_number.t; - bit_kind : Bit_kind.t; - mo_label : MO_label.t; - n_det : Det_number.t; - n_states : States_number.t; - n_states_diag : States_number.t; - n_det_max_jacobi : Strictly_positive_int.t; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - read_wf : bool; - expected_s2 : Positive_float.t; - s2_eig : bool; - psi_coef : Det_coef.t array; - psi_det : Determinant.t array; - } with sexp - ;; +(* Generate type *) + type t = + { + n_det_max_jacobi : Strictly_positive_int.t; + threshold_generators : Threshold.t; + threshold_selectors : Threshold.t; + n_states : Strictly_positive_int.t; + s2_eig : bool; + read_wf : bool; + only_single_double_dm : bool; + } with sexp + ;; let get_default = Qpackage.get_ezfio_default "determinants";; - let read_n_int () = - if not (Ezfio.has_determinants_n_int()) then - Ezfio.get_mo_basis_mo_tot_num () - |> Bitlist.n_int_of_mo_tot_num - |> N_int_number.to_int - |> Ezfio.set_determinants_n_int - ; - Ezfio.get_determinants_n_int () - |> N_int_number.of_int - ;; - - let write_n_int n = - N_int_number.to_int n - |> Ezfio.set_determinants_n_int - ;; - - - let read_bit_kind () = - if not (Ezfio.has_determinants_bit_kind ()) then - Lazy.force Qpackage.bit_kind - |> Bit_kind.to_int - |> Ezfio.set_determinants_bit_kind - ; - Ezfio.get_determinants_bit_kind () - |> Bit_kind.of_int - ;; - - let write_bit_kind b = - Bit_kind.to_int b - |> Ezfio.set_determinants_bit_kind - ;; - - - let read_mo_label () = - if (not (Ezfio.has_determinants_mo_label ())) then - Ezfio.get_mo_basis_mo_label () - |> Ezfio.set_determinants_mo_label - ; - Ezfio.get_determinants_mo_label () - |> MO_label.of_string - ;; - - let write_mo_label l = - MO_label.to_string l - |> Ezfio.set_determinants_mo_label - ;; - - - let read_n_det () = - if not (Ezfio.has_determinants_n_det ()) then - Ezfio.set_determinants_n_det 1 - ; - Ezfio.get_determinants_n_det () - |> Det_number.of_int - ;; - - let write_n_det n = - Det_number.to_int n - |> Ezfio.set_determinants_n_det - ;; - - - let read_n_states () = - if not (Ezfio.has_determinants_n_states ()) then - Ezfio.set_determinants_n_states 1 - ; - Ezfio.get_determinants_n_states () - |> States_number.of_int - ;; - - let write_n_states n = - States_number.to_int n - |> Ezfio.set_determinants_n_states - ;; - - - let read_n_states_diag () = - if not (Ezfio.has_determinants_n_states_diag ()) then - read_n_states () - |> States_number.to_int - |> Ezfio.set_determinants_n_states_diag - ; - Ezfio.get_determinants_n_states_diag () - |> States_number.of_int - ;; - - let write_n_states_diag ~n_states n = - let n_states = States_number.to_int n_states - and n = States_number.to_int n - in - Ezfio.set_determinants_n_states_diag (max n_states n) - ;; - +(* =~=~=~=~=~=~==~=~=~=~=~=~ *) +(* Generate Special Function *) +(* =~=~=~==~=~~=~=~=~=~=~=~=~ *) +(* Read snippet for n_det_max_jacobi *) let read_n_det_max_jacobi () = if not (Ezfio.has_determinants_n_det_max_jacobi ()) then - get_default "n_det_max_jacobi" - |> Int.of_string - |> Ezfio.set_determinants_n_det_max_jacobi + get_default "n_det_max_jacobi" + |> Int.of_string + |> Ezfio.set_determinants_n_det_max_jacobi ; Ezfio.get_determinants_n_det_max_jacobi () - |> Strictly_positive_int.of_int + |> Strictly_positive_int.of_int ;; - - let write_n_det_max_jacobi n = - Strictly_positive_int.to_int n +(* Write snippet for n_det_max_jacobi *) + let write_n_det_max_jacobi var = + Strictly_positive_int.to_int var |> Ezfio.set_determinants_n_det_max_jacobi ;; - - let read_threshold_generators () = - if not (Ezfio.has_determinants_threshold_generators ()) then - get_default "threshold_generators" - |> Float.of_string - |> Ezfio.set_determinants_threshold_generators +(* Read snippet for n_states *) + let read_n_states () = + if not (Ezfio.has_determinants_n_states ()) then + get_default "n_states" + |> Int.of_string + |> Ezfio.set_determinants_n_states ; - Ezfio.get_determinants_threshold_generators () - |> Threshold.of_float + Ezfio.get_determinants_n_states () + |> Strictly_positive_int.of_int + ;; +(* Write snippet for n_states *) + let write_n_states var = + Strictly_positive_int.to_int var + |> Ezfio.set_determinants_n_states ;; - let write_threshold_generators t = - Threshold.to_float t - |> Ezfio.set_determinants_threshold_generators - ;; - - - let read_threshold_selectors () = - if not (Ezfio.has_determinants_threshold_selectors ()) then - get_default "threshold_selectors" - |> Float.of_string - |> Ezfio.set_determinants_threshold_selectors +(* Read snippet for only_single_double_dm *) + let read_only_single_double_dm () = + if not (Ezfio.has_determinants_only_single_double_dm ()) then + get_default "only_single_double_dm" + |> Bool.of_string + |> Ezfio.set_determinants_only_single_double_dm ; - Ezfio.get_determinants_threshold_selectors () - |> Threshold.of_float + Ezfio.get_determinants_only_single_double_dm () + ;; +(* Write snippet for only_single_double_dm *) + let write_only_single_double_dm = + Ezfio.set_determinants_only_single_double_dm ;; - let write_threshold_selectors t = - Threshold.to_float t - |> Ezfio.set_determinants_threshold_selectors - ;; - - +(* Read snippet for read_wf *) let read_read_wf () = if not (Ezfio.has_determinants_read_wf ()) then - get_default "read_wf" - |> Bool.of_string - |> Ezfio.set_determinants_read_wf + get_default "read_wf" + |> Bool.of_string + |> Ezfio.set_determinants_read_wf ; Ezfio.get_determinants_read_wf () ;; - - let write_read_wf = Ezfio.set_determinants_read_wf ;; - - - let read_expected_s2 () = - if not (Ezfio.has_determinants_expected_s2 ()) then - begin - let na = Ezfio.get_electrons_elec_alpha_num () - and nb = Ezfio.get_electrons_elec_beta_num () - in - let s = 0.5 *. (Float.of_int (na - nb)) - in - Ezfio.set_determinants_expected_s2 ( s *. (s +. 1.) ) - end - ; - Ezfio.get_determinants_expected_s2 () - |> Positive_float.of_float +(* Write snippet for read_wf *) + let write_read_wf = + Ezfio.set_determinants_read_wf ;; - let write_expected_s2 s2 = - Positive_float.to_float s2 - |> Ezfio.set_determinants_expected_s2 - ;; - - +(* Read snippet for s2_eig *) let read_s2_eig () = if not (Ezfio.has_determinants_s2_eig ()) then - get_default "s2_eig" - |> Bool.of_string - |> Ezfio.set_determinants_s2_eig + get_default "s2_eig" + |> Bool.of_string + |> Ezfio.set_determinants_s2_eig ; Ezfio.get_determinants_s2_eig () ;; - - let write_s2_eig = Ezfio.set_determinants_s2_eig ;; - - - let read_psi_coef () = - if not (Ezfio.has_determinants_psi_coef ()) then - begin - let n_states = - read_n_states () - |> States_number.to_int - in - Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| 1 ; n_states |] - ~data:(List.init n_states ~f:(fun i -> if (i=0) then 1. else 0. )) - |> Ezfio.set_determinants_psi_coef - end; - Ezfio.get_determinants_psi_coef () - |> Ezfio.flattened_ezfio - |> Array.map ~f:Det_coef.of_float +(* Write snippet for s2_eig *) + let write_s2_eig = + Ezfio.set_determinants_s2_eig ;; - let write_psi_coef ~n_det ~n_states c = - let n_det = Det_number.to_int n_det - and c = Array.to_list c - |> List.map ~f:Det_coef.to_float - and n_states = States_number.to_int n_states - in - Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| n_det ; n_states |] ~data:c - |> Ezfio.set_determinants_psi_coef +(* Read snippet for threshold_generators *) + let read_threshold_generators () = + if not (Ezfio.has_determinants_threshold_generators ()) then + get_default "threshold_generators" + |> Float.of_string + |> Ezfio.set_determinants_threshold_generators + ; + Ezfio.get_determinants_threshold_generators () + |> Threshold.of_float + ;; +(* Write snippet for threshold_generators *) + let write_threshold_generators var = + Threshold.to_float var + |> Ezfio.set_determinants_threshold_generators ;; - - let read_psi_det () = - let n_int = read_n_int () - and n_alpha = Ezfio.get_electrons_elec_alpha_num () - |> Elec_alpha_number.of_int - and n_beta = Ezfio.get_electrons_elec_beta_num () - |> Elec_beta_number.of_int - in - if not (Ezfio.has_determinants_psi_det ()) then - begin - let mo_tot_num = MO_number.get_max () in - let rec build_data accu = function - | 0 -> accu - | n -> build_data ((MO_number.of_int ~max:mo_tot_num n)::accu) (n-1) - in - let det_a = build_data [] (Elec_alpha_number.to_int n_alpha) - |> Bitlist.of_mo_number_list n_int - and det_b = build_data [] (Elec_beta_number.to_int n_beta) - |> Bitlist.of_mo_number_list n_int - in - let data = ( (Bitlist.to_int64_list det_a) @ - (Bitlist.to_int64_list det_b) ) - in - Ezfio.ezfio_array_of_list ~rank:3 ~dim:[| N_int_number.to_int n_int ; 2 ; 1 |] ~data:data - |> Ezfio.set_determinants_psi_det ; - end ; - let n_int = N_int_number.to_int n_int in - let psi_det_array = Ezfio.get_determinants_psi_det () in - let dim = psi_det_array.Ezfio.dim - and data = Ezfio.flattened_ezfio psi_det_array - in - assert (n_int = dim.(0)); - assert (dim.(1) = 2); - assert (dim.(2) = (Det_number.to_int (read_n_det ()))); - List.init dim.(2) ~f:(fun i -> - Array.sub ~pos:(2*n_int*i) ~len:(2*n_int) data) - |> List.map ~f:(Determinant.of_int64_array - ~n_int:(N_int_number.of_int n_int) - ~alpha:n_alpha ~beta:n_beta ) - |> Array.of_list +(* Read snippet for threshold_selectors *) + let read_threshold_selectors () = + if not (Ezfio.has_determinants_threshold_selectors ()) then + get_default "threshold_selectors" + |> Float.of_string + |> Ezfio.set_determinants_threshold_selectors + ; + Ezfio.get_determinants_threshold_selectors () + |> Threshold.of_float + ;; +(* Write snippet for threshold_selectors *) + let write_threshold_selectors var = + Threshold.to_float var + |> Ezfio.set_determinants_threshold_selectors ;; - let write_psi_det ~n_int ~n_det d = - let data = Array.to_list d - |> Array.concat - |> Array.to_list - in - Ezfio.ezfio_array_of_list ~rank:3 ~dim:[| N_int_number.to_int n_int ; 2 ; Det_number.to_int n_det |] ~data:data - |> Ezfio.set_determinants_psi_det - ;; +(* =~=~=~=~=~=~=~=~=~=~=~=~ *) +(* Generate Global Function *) +(* =~=~=~=~=~=~=~=~=~=~=~=~ *) - - let read () = - if (Ezfio.has_mo_basis_mo_tot_num ()) then - Some - { n_int = read_n_int () ; - bit_kind = read_bit_kind () ; - mo_label = read_mo_label () ; - n_det = read_n_det () ; - n_states = read_n_states () ; - n_states_diag = read_n_states_diag () ; - n_det_max_jacobi = read_n_det_max_jacobi () ; - threshold_generators = read_threshold_generators () ; - threshold_selectors = read_threshold_selectors () ; - read_wf = read_read_wf () ; - expected_s2 = read_expected_s2 () ; - s2_eig = read_s2_eig () ; - psi_coef = read_psi_coef () ; - psi_det = read_psi_det () ; - } - else - None - ;; - - let write { n_int ; - bit_kind ; - mo_label ; - n_det ; - n_states ; - n_states_diag ; - n_det_max_jacobi ; - threshold_generators ; - threshold_selectors ; - read_wf ; - expected_s2 ; - s2_eig ; - psi_coef ; - psi_det ; +(* Read all *) + let read() = + Some + { + n_det_max_jacobi = read_n_det_max_jacobi (); + threshold_generators = read_threshold_generators (); + threshold_selectors = read_threshold_selectors (); + n_states = read_n_states (); + s2_eig = read_s2_eig (); + read_wf = read_read_wf (); + only_single_double_dm = read_only_single_double_dm (); + } + ;; +(* Write all *) + let write{ + n_det_max_jacobi; + threshold_generators; + threshold_selectors; + n_states; + s2_eig; + read_wf; + only_single_double_dm; } = - write_n_int n_int ; - write_bit_kind bit_kind; - write_mo_label mo_label; - write_n_det n_det; - write_n_states n_states; - write_n_states_diag ~n_states:n_states n_states_diag; - write_n_det_max_jacobi n_det_max_jacobi; - write_threshold_generators threshold_generators; - write_threshold_selectors threshold_selectors; - write_read_wf read_wf; - write_expected_s2 expected_s2; - write_s2_eig s2_eig; - write_psi_coef ~n_det:n_det psi_coef ~n_states:n_states; - write_psi_det ~n_int:n_int ~n_det:n_det psi_det; - ;; - - - let to_rst b = - let mo_tot_num = Ezfio.get_mo_basis_mo_tot_num () in - let mo_tot_num = MO_number.of_int mo_tot_num ~max:mo_tot_num in - let det_text = - let nstates = - States_number.to_int b.n_states - and ndet = - Det_number.to_int b.n_det - in - let coefs_string i = - Array.init nstates (fun j -> - let ishift = - j*ndet - in - if (ishift < Array.length b.psi_coef) then - b.psi_coef.(i+ishift) - |> Det_coef.to_float - |> Float.to_string - else - "0." - ) - |> String.concat_array ~sep:"\t" - in - Array.init ndet ~f:(fun i -> - Printf.sprintf " %s\n%s\n" - (coefs_string i) - (Determinant.to_string ~mo_tot_num:mo_tot_num b.psi_det.(i) - |> String.split ~on:'\n' - |> List.map ~f:(fun x -> " "^x) - |> String.concat ~sep:"\n" - ) - ) - |> String.concat_array ~sep:"\n" - in - Printf.sprintf " -Read the current wave function :: - - read_wf = %s - -Label of the MOs on which the determinants were computed :: - - mo_label = %s - -Force the selected wave function to be an eigenfunction of S^2. -If true, input the expected value of S^2 :: - - s2_eig = %s - expected_s2 = %s - -Thresholds on generators and selectors (fraction of the norm) :: - - threshold_generators = %s - threshold_selectors = %s - -Number of requested states, and number of states used for the -Davidson diagonalization :: - - n_states = %s - n_states_diag = %s - -Maximum size of the Hamiltonian matrix that will be fully diagonalized :: - - n_det_max_jacobi = %s - -Number of determinants :: - - n_det = %s - -Determinants :: - -%s -" - (b.read_wf |> Bool.to_string) - (b.mo_label |> MO_label.to_string) - (b.s2_eig |> Bool.to_string) - (b.expected_s2 |> Positive_float.to_string) - (b.threshold_generators |> Threshold.to_string) - (b.threshold_selectors |> Threshold.to_string) - (b.n_states |> States_number.to_string) - (b.n_states_diag |> States_number.to_string) - (b.n_det_max_jacobi |> Strictly_positive_int.to_string) - (b.n_det |> Det_number.to_string) - det_text - |> Rst_string.of_string - ;; - - let to_string b = - let mo_tot_num = Ezfio.get_mo_basis_mo_tot_num () in - let mo_tot_num = MO_number.of_int mo_tot_num ~max:mo_tot_num in - Printf.sprintf " -n_int = %s -bit_kind = %s -mo_label = \"%s\" -n_det = %s -n_states = %s -n_states_diag = %s -n_det_max_jacobi = %s -threshold_generators = %s -threshold_selectors = %s -read_wf = %s -expected_s2 = %s -s2_eig = %s -psi_coef = %s -psi_det = %s -" - (b.n_int |> N_int_number.to_string) - (b.bit_kind |> Bit_kind.to_string) - (b.mo_label |> MO_label.to_string) - (b.n_det |> Det_number.to_string) - (b.n_states |> States_number.to_string) - (b.n_states_diag |> States_number.to_string) - (b.n_det_max_jacobi |> Strictly_positive_int.to_string) - (b.threshold_generators |> Threshold.to_string) - (b.threshold_selectors |> Threshold.to_string) - (b.read_wf |> Bool.to_string) - (b.expected_s2 |> Positive_float.to_string) - (b.s2_eig |> Bool.to_string) - (b.psi_coef |> Array.to_list |> List.map ~f:Det_coef.to_string - |> String.concat ~sep:", ") - (b.psi_det |> Array.to_list |> List.map ~f:(Determinant.to_string - ~mo_tot_num:mo_tot_num) |> String.concat ~sep:"\n\n") - ;; - - let of_rst r = - let r = Rst_string.to_string r - in - - (* Split into header and determinants data *) - let idx = String.substr_index_exn r ~pos:0 ~pattern:"\nDeterminants" - in - let (header, dets) = - (String.prefix r idx, String.suffix r ((String.length r)-idx) ) - in - - (* Handle header *) - let header = r - |> String.split ~on:'\n' - |> List.filter ~f:(fun line -> - if (line = "") then - false - else - ( (String.contains line '=') && (line.[0] = ' ') ) - ) - |> List.map ~f:(fun line -> - "("^( - String.tr line ~target:'=' ~replacement:' ' - |> String.strip - )^")" ) - |> String.concat - in - - (* Handle determinant coefs *) - let dets = match ( dets - |> String.split ~on:'\n' - |> List.map ~f:(String.strip) - ) with - | _::lines -> lines - | _ -> failwith "Error in determinants" - in - - let psi_coef = - let rec read_coefs accu = function - | [] -> List.rev accu - | ""::""::tail -> read_coefs accu tail - | ""::c::tail -> - let c = - String.split ~on:'\t' c - |> List.map ~f:(fun x -> Det_coef.of_float (Float.of_string x)) - |> Array.of_list - in - read_coefs (c::accu) tail - | _::tail -> read_coefs accu tail - in - let a = - let buffer = - read_coefs [] dets - in - let nstates = - List.hd_exn buffer - |> Array.length - in - let extract_state i = - let i = - i-1 - in - List.map ~f:(fun x -> Det_coef.to_string x.(i)) buffer - |> String.concat ~sep:" " - in - let rec build_result = function - | 1 -> extract_state 1 - | i -> (build_result (i-1))^" "^(extract_state i) - in - build_result nstates - in - "(psi_coef ("^a^"))" - in - - (* Handle determinants *) - let psi_det = - let n_alpha = Ezfio.get_electrons_elec_alpha_num () - |> Elec_alpha_number.of_int - and n_beta = Ezfio.get_electrons_elec_beta_num () - |> Elec_beta_number.of_int - in - let rec read_dets accu = function - | [] -> List.rev accu - | ""::c::alpha::beta::tail -> - begin - let alpha = String.rev alpha |> Bitlist.of_string ~zero:'-' ~one:'+' - and beta = String.rev beta |> Bitlist.of_string ~zero:'-' ~one:'+' - in - let newdet = Determinant.of_bitlist_couple - ~alpha:n_alpha ~beta:n_beta (alpha,beta) - |> Determinant.sexp_of_t |> Sexplib.Sexp.to_string - in - read_dets (newdet::accu) tail - end - | _::tail -> read_dets accu tail - in - let a = read_dets [] dets - |> String.concat - in - "(psi_det ("^a^"))" - in - - let bitkind = Printf.sprintf "(bit_kind %d)" (Lazy.force Qpackage.bit_kind - |> Bit_kind.to_int) - and n_int = Printf.sprintf "(n_int %d)" (N_int_number.get_max ()) in - let s = String.concat [ header ; bitkind ; n_int ; psi_coef ; psi_det] - in - - Generic_input_of_rst.evaluate_sexp t_of_sexp s - ;; - -end - + write_n_det_max_jacobi n_det_max_jacobi; + write_threshold_generators threshold_generators; + write_threshold_selectors threshold_selectors; + write_n_states n_states; + write_s2_eig s2_eig; + write_read_wf read_wf; + write_only_single_double_dm only_single_double_dm; + ;; +(* to_string*) + let to_string b = + Printf.sprintf " + n_det_max_jacobi = %s + threshold_generators = %s + threshold_selectors = %s + n_states = %s + s2_eig = %s + read_wf = %s + only_single_double_dm = %s + " + (Strictly_positive_int.to_string b.n_det_max_jacobi) + (Threshold.to_string b.threshold_generators) + (Threshold.to_string b.threshold_selectors) + (Strictly_positive_int.to_string b.n_states) + (Bool.to_string b.s2_eig) + (Bool.to_string b.read_wf) + (Bool.to_string b.only_single_double_dm) + ;; +(* to_rst*) + let to_rst b = + Printf.sprintf " + Maximum number of determinants diagonalized by Jacobi :: + + n_det_max_jacobi = %s + + Percentage of the norm of the state-averaged wave function to consider for the generators :: + + threshold_generators = %s + + Percentage of the norm of the state-averaged wave function to consider for the selectors :: + + threshold_selectors = %s + + Number of states to consider :: + + n_states = %s + + Force the wave function to be an eigenfunction of S^2 :: + + s2_eig = %s + + If true, read the wave function from the EZFIO file :: + + read_wf = %s + + If true, The One body DM is calculated with ignoing the Double <-> Doubles extra diag elements :: + + only_single_double_dm = %s + + " + (Strictly_positive_int.to_string b.n_det_max_jacobi) + (Threshold.to_string b.threshold_generators) + (Threshold.to_string b.threshold_selectors) + (Strictly_positive_int.to_string b.n_states) + (Bool.to_string b.s2_eig) + (Bool.to_string b.read_wf) + (Bool.to_string b.only_single_double_dm) + |> Rst_string.of_string + ;; + include Generic_input_of_rst;; + let of_rst = of_rst t_of_sexp;; +end \ No newline at end of file diff --git a/ocaml/Input_determinants_by_hand.ml b/ocaml/Input_determinants_by_hand.ml new file mode 100644 index 00000000..4c0453e6 --- /dev/null +++ b/ocaml/Input_determinants_by_hand.ml @@ -0,0 +1,447 @@ +open Qptypes;; +open Qputils;; +open Core.Std;; + +module Determinants_by_hand : sig + type t = + { n_int : N_int_number.t; + bit_kind : Bit_kind.t; + n_det : Det_number.t; + n_states : States_number.t; + n_states_diag : States_number.t; + expected_s2 : Positive_float.t; + psi_coef : Det_coef.t array; + psi_det : Determinant.t array; + } with sexp + val read : unit -> t option + val write : t -> unit + val to_string : t -> string + val to_rst : t -> Rst_string.t + val of_rst : Rst_string.t -> t option +end = struct + type t = + { n_int : N_int_number.t; + bit_kind : Bit_kind.t; + n_det : Det_number.t; + n_states : States_number.t; + n_states_diag : States_number.t; + expected_s2 : Positive_float.t; + psi_coef : Det_coef.t array; + psi_det : Determinant.t array; + } with sexp + ;; + + let get_default = Qpackage.get_ezfio_default "determinants";; + + let read_n_int () = + if not (Ezfio.has_determinants_n_int()) then + Ezfio.get_mo_basis_mo_tot_num () + |> Bitlist.n_int_of_mo_tot_num + |> N_int_number.to_int + |> Ezfio.set_determinants_n_int + ; + Ezfio.get_determinants_n_int () + |> N_int_number.of_int + ;; + + let write_n_int n = + N_int_number.to_int n + |> Ezfio.set_determinants_n_int + ;; + + + let read_bit_kind () = + if not (Ezfio.has_determinants_bit_kind ()) then + Lazy.force Qpackage.bit_kind + |> Bit_kind.to_int + |> Ezfio.set_determinants_bit_kind + ; + Ezfio.get_determinants_bit_kind () + |> Bit_kind.of_int + ;; + + let write_bit_kind b = + Bit_kind.to_int b + |> Ezfio.set_determinants_bit_kind + ;; + + let read_n_det () = + if not (Ezfio.has_determinants_n_det ()) then + Ezfio.set_determinants_n_det 1 + ; + Ezfio.get_determinants_n_det () + |> Det_number.of_int + ;; + + let write_n_det n = + Det_number.to_int n + |> Ezfio.set_determinants_n_det + ;; + + + let read_n_states () = + if not (Ezfio.has_determinants_n_states ()) then + Ezfio.set_determinants_n_states 1 + ; + Ezfio.get_determinants_n_states () + |> States_number.of_int + ;; + + let write_n_states n = + States_number.to_int n + |> Ezfio.set_determinants_n_states + ;; + + + let read_n_states_diag () = + if not (Ezfio.has_determinants_n_states_diag ()) then + read_n_states () + |> States_number.to_int + |> Ezfio.set_determinants_n_states_diag + ; + Ezfio.get_determinants_n_states_diag () + |> States_number.of_int + ;; + + let write_n_states_diag ~n_states n = + let n_states = States_number.to_int n_states + and n = States_number.to_int n + in + Ezfio.set_determinants_n_states_diag (max n_states n) + ;; + + let read_expected_s2 () = + if not (Ezfio.has_determinants_expected_s2 ()) then + begin + let na = Ezfio.get_electrons_elec_alpha_num () + and nb = Ezfio.get_electrons_elec_beta_num () + in + let s = 0.5 *. (Float.of_int (na - nb)) + in + Ezfio.set_determinants_expected_s2 ( s *. (s +. 1.) ) + end + ; + Ezfio.get_determinants_expected_s2 () + |> Positive_float.of_float + ;; + + let write_expected_s2 s2 = + Positive_float.to_float s2 + |> Ezfio.set_determinants_expected_s2 + ;; + + let read_psi_coef () = + if not (Ezfio.has_determinants_psi_coef ()) then + begin + let n_states = + read_n_states () + |> States_number.to_int + in + Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| 1 ; n_states |] + ~data:(List.init n_states ~f:(fun i -> if (i=0) then 1. else 0. )) + |> Ezfio.set_determinants_psi_coef + end; + Ezfio.get_determinants_psi_coef () + |> Ezfio.flattened_ezfio + |> Array.map ~f:Det_coef.of_float + ;; + + let write_psi_coef ~n_det ~n_states c = + let n_det = Det_number.to_int n_det + and c = Array.to_list c + |> List.map ~f:Det_coef.to_float + and n_states = States_number.to_int n_states + in + Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| n_det ; n_states |] ~data:c + |> Ezfio.set_determinants_psi_coef + ;; + + + let read_psi_det () = + let n_int = read_n_int () + and n_alpha = Ezfio.get_electrons_elec_alpha_num () + |> Elec_alpha_number.of_int + and n_beta = Ezfio.get_electrons_elec_beta_num () + |> Elec_beta_number.of_int + in + if not (Ezfio.has_determinants_psi_det ()) then + begin + let mo_tot_num = MO_number.get_max () in + let rec build_data accu = function + | 0 -> accu + | n -> build_data ((MO_number.of_int ~max:mo_tot_num n)::accu) (n-1) + in + let det_a = build_data [] (Elec_alpha_number.to_int n_alpha) + |> Bitlist.of_mo_number_list n_int + and det_b = build_data [] (Elec_beta_number.to_int n_beta) + |> Bitlist.of_mo_number_list n_int + in + let data = ( (Bitlist.to_int64_list det_a) @ + (Bitlist.to_int64_list det_b) ) + in + Ezfio.ezfio_array_of_list ~rank:3 ~dim:[| N_int_number.to_int n_int ; 2 ; 1 |] ~data:data + |> Ezfio.set_determinants_psi_det ; + end ; + let n_int = N_int_number.to_int n_int in + let psi_det_array = Ezfio.get_determinants_psi_det () in + let dim = psi_det_array.Ezfio.dim + and data = Ezfio.flattened_ezfio psi_det_array + in + assert (n_int = dim.(0)); + assert (dim.(1) = 2); + assert (dim.(2) = (Det_number.to_int (read_n_det ()))); + List.init dim.(2) ~f:(fun i -> + Array.sub ~pos:(2*n_int*i) ~len:(2*n_int) data) + |> List.map ~f:(Determinant.of_int64_array + ~n_int:(N_int_number.of_int n_int) + ~alpha:n_alpha ~beta:n_beta ) + |> Array.of_list + ;; + + let write_psi_det ~n_int ~n_det d = + let data = Array.to_list d + |> Array.concat + |> Array.to_list + in + Ezfio.ezfio_array_of_list ~rank:3 ~dim:[| N_int_number.to_int n_int ; 2 ; Det_number.to_int n_det |] ~data:data + |> Ezfio.set_determinants_psi_det + ;; + + + let read () = + if (Ezfio.has_mo_basis_mo_tot_num ()) then + Some + { n_int = read_n_int () ; + bit_kind = read_bit_kind () ; + n_det = read_n_det () ; + n_states = read_n_states () ; + n_states_diag = read_n_states_diag () ; + expected_s2 = read_expected_s2 () ; + psi_coef = read_psi_coef () ; + psi_det = read_psi_det () ; + } + else + None + ;; + + let write { n_int ; + bit_kind ; + n_det ; + n_states ; + n_states_diag ; + expected_s2 ; + psi_coef ; + psi_det ; + } = + write_n_int n_int ; + write_bit_kind bit_kind; + write_n_det n_det; + write_n_states n_states; + write_n_states_diag ~n_states:n_states n_states_diag; + write_expected_s2 expected_s2; + write_psi_coef ~n_det:n_det psi_coef ~n_states:n_states; + write_psi_det ~n_int:n_int ~n_det:n_det psi_det; + ;; + + + let to_rst b = + let mo_tot_num = Ezfio.get_mo_basis_mo_tot_num () in + let mo_tot_num = MO_number.of_int mo_tot_num ~max:mo_tot_num in + let det_text = + let nstates = + States_number.to_int b.n_states + and ndet = + Det_number.to_int b.n_det + in + let coefs_string i = + Array.init nstates (fun j -> + let ishift = + j*ndet + in + if (ishift < Array.length b.psi_coef) then + b.psi_coef.(i+ishift) + |> Det_coef.to_float + |> Float.to_string + else + "0." + ) + |> String.concat_array ~sep:"\t" + in + Array.init ndet ~f:(fun i -> + Printf.sprintf " %s\n%s\n" + (coefs_string i) + (Determinant.to_string ~mo_tot_num:mo_tot_num b.psi_det.(i) + |> String.split ~on:'\n' + |> List.map ~f:(fun x -> " "^x) + |> String.concat ~sep:"\n" + ) + ) + |> String.concat_array ~sep:"\n" + in + Printf.sprintf " +Force the selected wave function to be an eigenfunction of S^2. +If true, input the expected value of S^2 :: + + expected_s2 = %s + +Number of requested states, and number of states used for the +Davidson diagonalization :: + + n_states = %s + n_states_diag = %s + +Number of determinants :: + + n_det = %s + +Determinants :: + +%s +" + (b.expected_s2 |> Positive_float.to_string) + (b.n_states |> States_number.to_string) + (b.n_states_diag |> States_number.to_string) + (b.n_det |> Det_number.to_string) + det_text + |> Rst_string.of_string + ;; + + let to_string b = + let mo_tot_num = Ezfio.get_mo_basis_mo_tot_num () in + let mo_tot_num = MO_number.of_int mo_tot_num ~max:mo_tot_num in + Printf.sprintf " +n_int = %s +bit_kind = %s +n_det = %s +n_states = %s +n_states_diag = %s +expected_s2 = %s +psi_coef = %s +psi_det = %s +" + (b.n_int |> N_int_number.to_string) + (b.bit_kind |> Bit_kind.to_string) + (b.n_det |> Det_number.to_string) + (b.n_states |> States_number.to_string) + (b.n_states_diag |> States_number.to_string) + (b.expected_s2 |> Positive_float.to_string) + (b.psi_coef |> Array.to_list |> List.map ~f:Det_coef.to_string + |> String.concat ~sep:", ") + (b.psi_det |> Array.to_list |> List.map ~f:(Determinant.to_string + ~mo_tot_num:mo_tot_num) |> String.concat ~sep:"\n\n") + ;; + + let of_rst r = + let r = Rst_string.to_string r + in + + (* Split into header and determinants data *) + let idx = String.substr_index_exn r ~pos:0 ~pattern:"\nDeterminants" + in + let (header, dets) = + (String.prefix r idx, String.suffix r ((String.length r)-idx) ) + in + + (* Handle header *) + let header = r + |> String.split ~on:'\n' + |> List.filter ~f:(fun line -> + if (line = "") then + false + else + ( (String.contains line '=') && (line.[0] = ' ') ) + ) + |> List.map ~f:(fun line -> + "("^( + String.tr line ~target:'=' ~replacement:' ' + |> String.strip + )^")" ) + |> String.concat + in + + (* Handle determinant coefs *) + let dets = match ( dets + |> String.split ~on:'\n' + |> List.map ~f:(String.strip) + ) with + | _::lines -> lines + | _ -> failwith "Error in determinants" + in + + let psi_coef = + let rec read_coefs accu = function + | [] -> List.rev accu + | ""::""::tail -> read_coefs accu tail + | ""::c::tail -> + let c = + String.split ~on:'\t' c + |> List.map ~f:(fun x -> Det_coef.of_float (Float.of_string x)) + |> Array.of_list + in + read_coefs (c::accu) tail + | _::tail -> read_coefs accu tail + in + let a = + let buffer = + read_coefs [] dets + in + let nstates = + List.hd_exn buffer + |> Array.length + in + let extract_state i = + let i = + i-1 + in + List.map ~f:(fun x -> Det_coef.to_string x.(i)) buffer + |> String.concat ~sep:" " + in + let rec build_result = function + | 1 -> extract_state 1 + | i -> (build_result (i-1))^" "^(extract_state i) + in + build_result nstates + in + "(psi_coef ("^a^"))" + in + + (* Handle determinants *) + let psi_det = + let n_alpha = Ezfio.get_electrons_elec_alpha_num () + |> Elec_alpha_number.of_int + and n_beta = Ezfio.get_electrons_elec_beta_num () + |> Elec_beta_number.of_int + in + let rec read_dets accu = function + | [] -> List.rev accu + | ""::c::alpha::beta::tail -> + begin + let alpha = String.rev alpha |> Bitlist.of_string ~zero:'-' ~one:'+' + and beta = String.rev beta |> Bitlist.of_string ~zero:'-' ~one:'+' + in + let newdet = Determinant.of_bitlist_couple + ~alpha:n_alpha ~beta:n_beta (alpha,beta) + |> Determinant.sexp_of_t |> Sexplib.Sexp.to_string + in + read_dets (newdet::accu) tail + end + | _::tail -> read_dets accu tail + in + let a = read_dets [] dets + |> String.concat + in + "(psi_det ("^a^"))" + in + + let bitkind = Printf.sprintf "(bit_kind %d)" (Lazy.force Qpackage.bit_kind + |> Bit_kind.to_int) + and n_int = Printf.sprintf "(n_int %d)" (N_int_number.get_max ()) in + let s = String.concat [ header ; bitkind ; n_int ; psi_coef ; psi_det] + in + + Generic_input_of_rst.evaluate_sexp t_of_sexp s + ;; + +end + + diff --git a/scripts/clean_modules.sh b/scripts/clean_modules.sh index cc25cede..452724f2 100755 --- a/scripts/clean_modules.sh +++ b/scripts/clean_modules.sh @@ -14,7 +14,7 @@ function do_clean() { rm -rf -- \ IRPF90_temp IRPF90_man Makefile.depend $(cat NEEDED_MODULES) include \ - ezfio_interface.irp.f irpf90.make irpf90_entities tags $(ls_exe) + ezfio_interface.irp.f irpf90.make irpf90_entities tags $(ls_exe) *.mod } if [[ -z $1 ]] diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index dcfb394c..6d18d071 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -112,6 +112,8 @@ def get_type_dict(): # ~#~#~#~#~#~#~#~ # fancy_type['integer'] = Type(None, "int", "integer") + fancy_type['integer*8'] = Type(None, "int", "integer*8") + fancy_type['int'] = Type(None, "int", "integer") fancy_type['float'] = Type(None, "float", "double precision") @@ -121,7 +123,7 @@ def get_type_dict(): fancy_type['bool'] = Type(None, "bool", "logical") fancy_type['character*(32)'] = Type(None, "string", "character*(32)") - fancy_type['character*(60)'] = Type(None, "string", "character*(60)") + fancy_type['character*(64)'] = Type(None, "string", "character*(68)") fancy_type['character*(256)'] = Type(None, "string", "character*(256)") # ~#~#~#~#~#~#~#~ # @@ -267,7 +269,7 @@ def get_dict_config_file(config_file_path, module_lower): d[pvd][option] = d_default[option] # If interface is input we need a default value information - if d[pvd]["interface"] == "input": + if d[pvd]["interface"].lower() == "input": try: default_raw = config_file.get(section, "default") except ConfigParser.NoOptionError: diff --git a/scripts/ezfio_interface/qp_edit_template b/scripts/ezfio_interface/qp_edit_template index 8d52acfd..2990a193 100644 --- a/scripts/ezfio_interface/qp_edit_template +++ b/scripts/ezfio_interface/qp_edit_template @@ -4,14 +4,16 @@ open Core.Std;; (** Interactive editing of the input. -@author A. Scemama +WARNING +This file is autogenerad by +`${{QP_ROOT}}/script/ezfio_interface/ei_handler.py` *) (** Keywords used to define input sections *) type keyword = | Ao_basis -| Determinants +| Determinants_by_hand | Electrons | Mo_basis | Nuclei @@ -20,11 +22,11 @@ type keyword = let keyword_to_string = function -| Ao_basis -> "AO basis" -| Determinants -> "Determinants" -| Electrons -> "Electrons" -| Mo_basis -> "MO basis" -| Nuclei -> "Molecule" +| Ao_basis -> "AO basis" +| Determinants_by_hand -> "Determinants_by_hand" +| Electrons -> "Electrons" +| Mo_basis -> "MO basis" +| Nuclei -> "Molecule" {keywords_to_string} ;; @@ -72,8 +74,8 @@ let get s = f Nuclei.(read, to_rst) | Ao_basis -> f Ao_basis.(read, to_rst) - | Determinants -> - f Determinants.(read, to_rst) + | Determinants_by_hand -> + f Determinants_by_hand.(read, to_rst) {section_to_rst} end with @@ -114,7 +116,7 @@ let set str s = match s with {write} | Electrons -> write Electrons.(of_rst, write) s - | Determinants -> write Determinants.(of_rst, write) s + | Determinants_by_hand -> write Determinants_by_hand.(of_rst, write) s | Nuclei -> write Nuclei.(of_rst, write) s | Ao_basis -> () (* TODO *) | Mo_basis -> () (* TODO *) @@ -162,7 +164,7 @@ let run check_only ezfio_filename = Electrons ; {tasks} Mo_basis; - Determinants ; + Determinants_by_hand ; ] in diff --git a/scripts/generate_h_apply.py b/scripts/generate_h_apply.py index 280c9f72..072a8f1e 100755 --- a/scripts/generate_h_apply.py +++ b/scripts/generate_h_apply.py @@ -1,7 +1,7 @@ #!/usr/bin/env python import os -file = open(os.environ["QPACKAGE_ROOT"]+'/src/Dets/H_apply_template.f','r') +file = open(os.environ["QPACKAGE_ROOT"]+'/src/Determinants/H_apply_template.f','r') template = file.read() file.close() @@ -104,7 +104,7 @@ class H_apply(object): endif SOFT_TOUCH psi_det psi_coef N_det """ - s["printout_now"] = """write(output_Dets,*) & + s["printout_now"] = """write(output_determinants,*) & 100.*float(i_generator)/float(N_det_generators), '% in ', wall_1-wall_0, 's'""" self.data = s @@ -211,9 +211,9 @@ class H_apply(object): delta_pt2(k) = 0.d0 pt2_old(k) = 0.d0 enddo - write(output_Dets,'(A12, X, A8, 3(2X, A9), 2X, A8, 2X, A8, 2X, A8)') & + write(output_determinants,'(A12, X, A8, 3(2X, A9), 2X, A8, 2X, A8, 2X, A8)') & 'N_generators', 'Norm', 'Delta PT2', 'PT2', 'Est. PT2', 'secs' - write(output_Dets,'(A12, X, A8, 3(2X, A9), 2X, A8, 2X, A8, 2X, A8)') & + write(output_determinants,'(A12, X, A8, 3(2X, A9), 2X, A8, 2X, A8, 2X, A8)') & '============', '========', '=========', '=========', '=========', & '=========' """ @@ -226,7 +226,7 @@ class H_apply(object): """ self.data["printout_now"] = """ do k=1,N_st - write(output_Dets,'(I10, 4(2X, F9.6), 2X, F8.1)') & + write(output_determinants,'(I10, 4(2X, F9.6), 2X, F8.1)') & i_generator, norm_psi(k), delta_pt2(k), pt2(k), & pt2(k)/(norm_psi(k)*norm_psi(k)), & wall_1-wall_0 @@ -258,7 +258,7 @@ class H_apply(object): ! SOFT_TOUCH psi_det psi_coef N_det selection_criterion_min = min(selection_criterion_min, maxval(select_max))*0.1d0 selection_criterion = selection_criterion_min - call write_double(output_Dets,selection_criterion,'Selection criterion') + call write_double(output_determinants,selection_criterion,'Selection criterion') """ self.data["keys_work"] = """ e_2_pert_buffer = 0.d0 diff --git a/src/CAS_SD/NEEDED_MODULES b/src/CAS_SD/NEEDED_MODULES index cbf44be7..f20d16a0 100644 --- a/src/CAS_SD/NEEDED_MODULES +++ b/src/CAS_SD/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Generators_CAS Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Generators_CAS Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils diff --git a/src/CAS_SD/README.rst b/src/CAS_SD/README.rst index 0dc4ea56..0b3293d5 100644 --- a/src/CAS_SD/README.rst +++ b/src/CAS_SD/README.rst @@ -27,7 +27,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Generators_CAS `_ diff --git a/src/CID/NEEDED_MODULES b/src/CID/NEEDED_MODULES index ac8e21ab..f7a1831f 100644 --- a/src/CID/NEEDED_MODULES +++ b/src/CID/NEEDED_MODULES @@ -1,3 +1,3 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils diff --git a/src/CID/README.rst b/src/CID/README.rst index 6adc4dcd..47cbc40b 100644 --- a/src/CID/README.rst +++ b/src/CID/README.rst @@ -18,7 +18,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CID_SC2_selected/NEEDED_MODULES b/src/CID_SC2_selected/NEEDED_MODULES index 42d83610..67f77e87 100644 --- a/src/CID_SC2_selected/NEEDED_MODULES +++ b/src/CID_SC2_selected/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask CISD CISD_selected Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask CISD CISD_selected Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils diff --git a/src/CID_SC2_selected/README.rst b/src/CID_SC2_selected/README.rst index 720b6385..37680ebb 100644 --- a/src/CID_SC2_selected/README.rst +++ b/src/CID_SC2_selected/README.rst @@ -24,7 +24,7 @@ Needed Modules * `Bitmask `_ * `CISD `_ * `CISD_selected `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CID_selected/NEEDED_MODULES b/src/CID_selected/NEEDED_MODULES index b27ab85e..ca89c5f3 100644 --- a/src/CID_selected/NEEDED_MODULES +++ b/src/CID_selected/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask CISD Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask CISD Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils diff --git a/src/CID_selected/README.rst b/src/CID_selected/README.rst index 2ee45ac6..d8f054ac 100644 --- a/src/CID_selected/README.rst +++ b/src/CID_selected/README.rst @@ -26,7 +26,7 @@ Needed Modules * `Bielec_integrals `_ * `Bitmask `_ * `CISD `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CIS/NEEDED_MODULES b/src/CIS/NEEDED_MODULES index 010e60f5..5cdee2e5 100644 --- a/src/CIS/NEEDED_MODULES +++ b/src/CIS/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils diff --git a/src/CIS/README.rst b/src/CIS/README.rst index e9ba93db..59558a31 100644 --- a/src/CIS/README.rst +++ b/src/CIS/README.rst @@ -34,7 +34,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CISD/NEEDED_MODULES b/src/CISD/NEEDED_MODULES index 010e60f5..5cdee2e5 100644 --- a/src/CISD/NEEDED_MODULES +++ b/src/CISD/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Selectors_full SingleRefMethod Utils diff --git a/src/CISD/README.rst b/src/CISD/README.rst index 07528e59..bcf7aee2 100644 --- a/src/CISD/README.rst +++ b/src/CISD/README.rst @@ -18,7 +18,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CISD_SC2_selected/NEEDED_MODULES b/src/CISD_SC2_selected/NEEDED_MODULES index 42d83610..67f77e87 100644 --- a/src/CISD_SC2_selected/NEEDED_MODULES +++ b/src/CISD_SC2_selected/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask CISD CISD_selected Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask CISD CISD_selected Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils diff --git a/src/CISD_SC2_selected/README.rst b/src/CISD_SC2_selected/README.rst index 25f4368f..915c85f1 100644 --- a/src/CISD_SC2_selected/README.rst +++ b/src/CISD_SC2_selected/README.rst @@ -24,7 +24,7 @@ Needed Modules * `Bitmask `_ * `CISD `_ * `CISD_selected `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/CISD_selected/NEEDED_MODULES b/src/CISD_selected/NEEDED_MODULES index b27ab85e..ca89c5f3 100644 --- a/src/CISD_selected/NEEDED_MODULES +++ b/src/CISD_selected/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask CISD Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask CISD Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils diff --git a/src/CISD_selected/README.rst b/src/CISD_selected/README.rst index 1ba5f9c5..e2b6989e 100644 --- a/src/CISD_selected/README.rst +++ b/src/CISD_selected/README.rst @@ -32,7 +32,7 @@ Needed Modules * `Bielec_integrals `_ * `Bitmask `_ * `CISD `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/DDCI_selected/NEEDED_MODULES b/src/DDCI_selected/NEEDED_MODULES index cbf44be7..f20d16a0 100644 --- a/src/DDCI_selected/NEEDED_MODULES +++ b/src/DDCI_selected/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Generators_CAS Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Generators_CAS Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils diff --git a/src/DDCI_selected/README.rst b/src/DDCI_selected/README.rst index db75b101..2b5823c7 100644 --- a/src/DDCI_selected/README.rst +++ b/src/DDCI_selected/README.rst @@ -22,7 +22,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Generators_CAS `_ diff --git a/src/Dets/determinants.irp.f b/src/Determinants/determinants.irp.f similarity index 98% rename from src/Dets/determinants.irp.f rename to src/Determinants/determinants.irp.f index 104b868e..03315836 100644 --- a/src/Dets/determinants.irp.f +++ b/src/Determinants/determinants.irp.f @@ -25,7 +25,7 @@ BEGIN_PROVIDER [ integer, N_det ] else N_det = 1 endif - call write_int(output_dets,N_det,'Number of determinants') + call write_int(output_determinants,N_det,'Number of determinants') ASSERT (N_det > 0) END_PROVIDER @@ -58,7 +58,7 @@ BEGIN_PROVIDER [ integer, psi_det_size ] psi_det_size = 1 endif psi_det_size = max(psi_det_size,10000) - call write_int(output_dets,psi_det_size,'Dimension of the psi arrays') + call write_int(output_determinants,psi_det_size,'Dimension of the psi arrays') END_PROVIDER @@ -68,6 +68,9 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_det, (N_int,2,psi_det_size) ] ! The wave function determinants. Initialized with Hartree-Fock if the EZFIO file ! is empty END_DOC + + PROVIDE ezfio_filename + integer :: i logical :: exists character*64 :: label @@ -234,6 +237,8 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states_diag) ] ! is empty END_DOC + PROVIDE ezfio_filename + integer :: i,k, N_int2 logical :: exists double precision, allocatable :: psi_coef_read(:,:) @@ -597,6 +602,8 @@ subroutine read_dets(det,Nint,Ndet) integer :: i,k equivalence (det_8, det_bk) + PROVIDE ezfio_filename + call ezfio_get_determinants_N_int(N_int2) ASSERT (N_int2 == Nint) call ezfio_get_determinants_bit_kind(k) @@ -665,6 +672,8 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef) integer :: i,k PROVIDE progress_bar + PROVIDE ezfio_filename + call start_progress(7,'Saving wfunction',0.d0) progress_bar(1) = 1 @@ -727,7 +736,7 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef) enddo call ezfio_set_determinants_psi_coef(psi_coef_save) - call write_int(output_dets,ndet,'Saved determinants') + call write_int(output_determinants,ndet,'Saved determinants') call stop_progress deallocate (psi_coef_save) end diff --git a/src/Dets/ASSUMPTIONS.rst b/src/Dets/ASSUMPTIONS.rst deleted file mode 100644 index e9e24d09..00000000 --- a/src/Dets/ASSUMPTIONS.rst +++ /dev/null @@ -1,7 +0,0 @@ -* The MOs are orthonormal -* All the determinants have the same number of electrons -* The determinants are orthonormal -* The number of generator determinants <= the number of determinants -* All the determinants in the H_apply buffer are supposed to be different from the - wave function determinants -* All the determinants in the H_apply buffer are supposed to be unique diff --git a/src/Dets/H_apply.irp.f b/src/Dets/H_apply.irp.f deleted file mode 100644 index 801d00a5..00000000 --- a/src/Dets/H_apply.irp.f +++ /dev/null @@ -1,229 +0,0 @@ -use bitmasks -use omp_lib - -type H_apply_buffer_type -integer :: N_det -integer :: sze -integer(bit_kind), pointer :: det(:,:,:) -double precision , pointer :: coef(:,:) -double precision , pointer :: e2(:,:) -end type H_apply_buffer_type - -type(H_apply_buffer_type), pointer :: H_apply_buffer(:) - - - BEGIN_PROVIDER [ logical, H_apply_buffer_allocated ] -&BEGIN_PROVIDER [ integer(omp_lock_kind), H_apply_buffer_lock, (64,0:nproc-1) ] - use omp_lib - implicit none - BEGIN_DOC - ! Buffer of determinants/coefficients/perturbative energy for H_apply. - ! Uninitialized. Filled by H_apply subroutines. - END_DOC - integer :: iproc, sze - sze = 10000 - if (.not.associated(H_apply_buffer)) then - allocate(H_apply_buffer(0:nproc-1)) - iproc = 0 - !$OMP PARALLEL PRIVATE(iproc) DEFAULT(NONE) & - !$OMP SHARED(H_apply_buffer,N_int,sze,N_states,H_apply_buffer_lock) - !$ iproc = omp_get_thread_num() - H_apply_buffer(iproc)%N_det = 0 - H_apply_buffer(iproc)%sze = sze - allocate ( & - H_apply_buffer(iproc)%det(N_int,2,sze), & - H_apply_buffer(iproc)%coef(sze,N_states), & - H_apply_buffer(iproc)%e2(sze,N_states) & - ) - H_apply_buffer(iproc)%det = 0_bit_kind - H_apply_buffer(iproc)%coef = 0.d0 - H_apply_buffer(iproc)%e2 = 0.d0 - call omp_init_lock(H_apply_buffer_lock(1,iproc)) - !$OMP END PARALLEL - endif - -END_PROVIDER - - -subroutine resize_H_apply_buffer(new_size,iproc) - implicit none - integer, intent(in) :: new_size, iproc - integer(bit_kind), pointer :: buffer_det(:,:,:) - double precision, pointer :: buffer_coef(:,:) - double precision, pointer :: buffer_e2(:,:) - integer :: i,j,k - integer :: Ndet - PROVIDE H_apply_buffer_allocated - - ASSERT (new_size > 0) - ASSERT (iproc >= 0) - ASSERT (iproc < nproc) - - call omp_set_lock(H_apply_buffer_lock(1,iproc)) - allocate ( buffer_det(N_int,2,new_size), & - buffer_coef(new_size,N_states), & - buffer_e2(new_size,N_states) ) - - do i=1,min(new_size,H_apply_buffer(iproc)%N_det) - do k=1,N_int - buffer_det(k,1,i) = H_apply_buffer(iproc)%det(k,1,i) - buffer_det(k,2,i) = H_apply_buffer(iproc)%det(k,2,i) - enddo - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i))) == elec_alpha_num) - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num ) - enddo - deallocate(H_apply_buffer(iproc)%det) - H_apply_buffer(iproc)%det => buffer_det - - do k=1,N_states - do i=1,min(new_size,H_apply_buffer(iproc)%N_det) - buffer_coef(i,k) = H_apply_buffer(iproc)%coef(i,k) - enddo - enddo - deallocate(H_apply_buffer(iproc)%coef) - H_apply_buffer(iproc)%coef => buffer_coef - - do k=1,N_states - do i=1,min(new_size,H_apply_buffer(iproc)%N_det) - buffer_e2(i,k) = H_apply_buffer(iproc)%e2(i,k) - enddo - enddo - deallocate(H_apply_buffer(iproc)%e2) - H_apply_buffer(iproc)%e2 => buffer_e2 - - H_apply_buffer(iproc)%sze = new_size - H_apply_buffer(iproc)%N_det = min(new_size,H_apply_buffer(iproc)%N_det) - call omp_unset_lock(H_apply_buffer_lock(1,iproc)) - -end - -subroutine copy_H_apply_buffer_to_wf - use omp_lib - implicit none - BEGIN_DOC -! Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det -! after calling this function. -! After calling this subroutine, N_det, psi_det and psi_coef need to be touched - END_DOC - integer(bit_kind), allocatable :: buffer_det(:,:,:) - double precision, allocatable :: buffer_coef(:,:) - integer :: i,j,k - integer :: N_det_old - integer :: iproc - - PROVIDE H_apply_buffer_allocated - - ASSERT (N_int > 0) - ASSERT (N_det > 0) - - allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) ) - - do i=1,N_det - do k=1,N_int - ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) - ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num) - buffer_det(k,1,i) = psi_det(k,1,i) - buffer_det(k,2,i) = psi_det(k,2,i) - enddo - enddo - do k=1,N_states - do i=1,N_det - buffer_coef(i,k) = psi_coef(i,k) - enddo - enddo - - N_det_old = N_det - do j=0,nproc-1 - N_det = N_det + H_apply_buffer(j)%N_det - enddo - - if (psi_det_size < N_det) then - psi_det_size = N_det - TOUCH psi_det_size - endif - do i=1,N_det_old - do k=1,N_int - psi_det(k,1,i) = buffer_det(k,1,i) - psi_det(k,2,i) = buffer_det(k,2,i) - enddo - ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) - ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num ) - enddo - do k=1,N_states - do i=1,N_det_old - psi_coef(i,k) = buffer_coef(i,k) - enddo - enddo - !$OMP PARALLEL DEFAULT(SHARED) & - !$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) & - !$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states) - j=0 - !$ j=omp_get_thread_num() - do k=0,j-1 - N_det_old += H_apply_buffer(k)%N_det - enddo - do i=1,H_apply_buffer(j)%N_det - do k=1,N_int - psi_det(k,1,i+N_det_old) = H_apply_buffer(j)%det(k,1,i) - psi_det(k,2,i+N_det_old) = H_apply_buffer(j)%det(k,2,i) - enddo - ASSERT (sum(popcnt(psi_det(:,1,i+N_det_old))) == elec_alpha_num) - ASSERT (sum(popcnt(psi_det(:,2,i+N_det_old))) == elec_beta_num ) - enddo - do k=1,N_states - do i=1,H_apply_buffer(j)%N_det - psi_coef(i+N_det_old,k) = H_apply_buffer(j)%coef(i,k) - enddo - enddo - !$OMP BARRIER - H_apply_buffer(j)%N_det = 0 - !$OMP END PARALLEL - call normalize(psi_coef,N_det) - SOFT_TOUCH N_det psi_det psi_coef - -end - - -subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc) - use bitmasks - implicit none - BEGIN_DOC - ! Fill the H_apply buffer with determiants for CISD - END_DOC - - integer, intent(in) :: n_selected, Nint, iproc - integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) - integer :: i,j,k - integer :: new_size - PROVIDE H_apply_buffer_allocated - new_size = H_apply_buffer(iproc)%N_det + n_selected - if (new_size > H_apply_buffer(iproc)%sze) then - call resize_h_apply_buffer(max(2*H_apply_buffer(iproc)%sze,new_size),iproc) - endif - call omp_set_lock(H_apply_buffer_lock(1,iproc)) - do i=1,H_apply_buffer(iproc)%N_det - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) - enddo - do i=1,n_selected - do j=1,N_int - H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i) - H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i) - enddo - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num) - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num) - enddo - do j=1,N_states - do i=1,N_selected - H_apply_buffer(iproc)%coef(i,j) = 0.d0 - enddo - enddo - H_apply_buffer(iproc)%N_det = new_size - do i=1,H_apply_buffer(iproc)%N_det - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) - ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) - enddo - call omp_unset_lock(H_apply_buffer_lock(1,iproc)) -end - - diff --git a/src/Dets/H_apply_template.f b/src/Dets/H_apply_template.f deleted file mode 100644 index a9a282ae..00000000 --- a/src/Dets/H_apply_template.f +++ /dev/null @@ -1,542 +0,0 @@ -subroutine $subroutine_diexc(key_in, hole_1,particl_1, hole_2, particl_2, i_generator, iproc_in $parameters ) - use omp_lib - use bitmasks - implicit none - BEGIN_DOC - ! Generate all double excitations of key_in using the bit masks of holes and - ! particles. - ! Assume N_int is already provided. - END_DOC - integer,parameter :: size_max = $size_max - $declarations - integer ,intent(in) :: i_generator - integer(bit_kind),intent(in) :: key_in(N_int,2) - integer(bit_kind),allocatable :: keys_out(:,:,:) - integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) - integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2) - integer, intent(in) :: iproc_in - integer(bit_kind), allocatable :: hole_save(:,:) - integer(bit_kind), allocatable :: key(:,:),hole(:,:), particle(:,:) - integer(bit_kind), allocatable :: hole_tmp(:,:), particle_tmp(:,:) - integer :: ii,i,jj,j,k,ispin,l - integer, allocatable :: occ_particle(:,:), occ_hole(:,:) - integer, allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) - integer :: kk,pp,other_spin,key_idx - integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) - integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) - - double precision :: mo_bielec_integral - logical :: is_a_two_holes_two_particles - integer, allocatable :: ia_ja_pairs(:,:,:) - integer, allocatable :: ib_jb_pairs(:,:) - double precision :: diag_H_mat_elem - integer :: iproc - integer(omp_lock_kind), save :: lck, ifirst=0 - if (ifirst == 0) then -!$ call omp_init_lock(lck) - ifirst=1 - endif - - logical :: check_double_excitation - check_double_excitation = .True. - iproc = iproc_in - - - $initialization - - $omp_parallel -!$ iproc = omp_get_thread_num() - allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & - key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& - particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & - occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& - occ_hole_tmp(N_int*bit_kind_size,2)) - $init_thread - - - - !!!! First couple hole particle - do j = 1, N_int - hole(j,1) = iand(hole_1(j,1),key_in(j,1)) - hole(j,2) = iand(hole_1(j,2),key_in(j,2)) - particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) - particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) - enddo - call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) - call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) - call bitstring_to_list(hole(1,1),occ_hole(1,1),N_elec_in_key_hole_1(1),N_int) - call bitstring_to_list(hole(1,2),occ_hole(1,2),N_elec_in_key_hole_1(2),N_int) - allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2), & - ib_jb_pairs(2,0:(elec_alpha_num)*mo_tot_num)) - - do ispin=1,2 - i=0 - do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole - i_a = occ_hole(ii,ispin) - ASSERT (i_a > 0) - ASSERT (i_a <= mo_tot_num) - - do jj=1,N_elec_in_key_part_1(ispin) !particle - j_a = occ_particle(jj,ispin) - ASSERT (j_a > 0) - ASSERT (j_a <= mo_tot_num) - i += 1 - ia_ja_pairs(1,i,ispin) = i_a - ia_ja_pairs(2,i,ispin) = j_a - enddo - enddo - ia_ja_pairs(1,0,ispin) = i - enddo - - key_idx = 0 - - integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b - integer(bit_kind) :: test(N_int,2) - double precision :: accu - logical, allocatable :: array_pairs(:,:) - allocate(array_pairs(mo_tot_num,mo_tot_num)) - accu = 0.d0 - do ispin=1,2 - other_spin = iand(ispin,1)+1 - if (abort_here) then - exit - endif - $omp_do - do ii=1,ia_ja_pairs(1,0,ispin) - if (abort_here) then - cycle - endif - i_a = ia_ja_pairs(1,ii,ispin) - ASSERT (i_a > 0) - ASSERT (i_a <= mo_tot_num) - j_a = ia_ja_pairs(2,ii,ispin) - ASSERT (j_a > 0) - ASSERT (j_a <= mo_tot_num) - hole = key_in - k = ishft(i_a-1,-bit_kind_shift)+1 - j = i_a-ishft(k-1,bit_kind_shift)-1 - hole(k,ispin) = ibclr(hole(k,ispin),j) - k_a = ishft(j_a-1,-bit_kind_shift)+1 - l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 - hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) - - !!!! Second couple hole particle - do j = 1, N_int - hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1)) - hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2)) - particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1)) - particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2)) - enddo - - call bitstring_to_list(particle_tmp(1,1),occ_particle_tmp(1,1),N_elec_in_key_part_2(1),N_int) - call bitstring_to_list(particle_tmp(1,2),occ_particle_tmp(1,2),N_elec_in_key_part_2(2),N_int) - call bitstring_to_list(hole_tmp (1,1),occ_hole_tmp (1,1),N_elec_in_key_hole_2(1),N_int) - call bitstring_to_list(hole_tmp (1,2),occ_hole_tmp (1,2),N_elec_in_key_hole_2(2),N_int) - - ! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : mono exc :: orb(i_a,ispin) --> orb(j_a,ispin) - hole_save = hole - - ! Build array of the non-zero integrals of second excitation - $filter_integrals - if (ispin == 1) then - integer :: jjj - - i=0 - do kk = 1,N_elec_in_key_hole_2(other_spin) - i_b = occ_hole_tmp(kk,other_spin) - ASSERT (i_b > 0) - ASSERT (i_b <= mo_tot_num) - do jjj=1,N_elec_in_key_part_2(other_spin) ! particule - j_b = occ_particle_tmp(jjj,other_spin) - ASSERT (j_b > 0) - ASSERT (j_b <= mo_tot_num) - if (array_pairs(i_b,j_b)) then - i+= 1 - ib_jb_pairs(1,i) = i_b - ib_jb_pairs(2,i) = j_b - endif - enddo - enddo - ib_jb_pairs(1,0) = i - - do kk = 1,ib_jb_pairs(1,0) - hole = hole_save - i_b = ib_jb_pairs(1,kk) - j_b = ib_jb_pairs(2,kk) - k = ishft(i_b-1,-bit_kind_shift)+1 - j = i_b-ishft(k-1,bit_kind_shift)-1 - hole(k,other_spin) = ibclr(hole(k,other_spin),j) - key = hole - k = ishft(j_b-1,-bit_kind_shift)+1 - l = j_b-ishft(k-1,bit_kind_shift)-1 - key(k,other_spin) = ibset(key(k,other_spin),l) - $filter2h2p - key_idx += 1 - do k=1,N_int - keys_out(k,1,key_idx) = key(k,1) - keys_out(k,2,key_idx) = key(k,2) - enddo - ASSERT (key_idx <= size_max) - if (key_idx == size_max) then - $keys_work - key_idx = 0 - endif - if (abort_here) then - exit - endif - enddo - endif - - ! does all the mono excitations of the same spin - i=0 - do kk = 1,N_elec_in_key_hole_2(ispin) - i_b = occ_hole_tmp(kk,ispin) - if (i_b <= i_a.or.i_b == j_a) cycle - ASSERT (i_b > 0) - ASSERT (i_b <= mo_tot_num) - do jjj=1,N_elec_in_key_part_2(ispin) ! particule - j_b = occ_particle_tmp(jjj,ispin) - ASSERT (j_b > 0) - ASSERT (j_b <= mo_tot_num) - if (j_b <= j_a) cycle - if (array_pairs(i_b,j_b)) then - i+= 1 - ib_jb_pairs(1,i) = i_b - ib_jb_pairs(2,i) = j_b - endif - enddo - enddo - ib_jb_pairs(1,0) = i - - do kk = 1,ib_jb_pairs(1,0) - hole = hole_save - i_b = ib_jb_pairs(1,kk) - j_b = ib_jb_pairs(2,kk) - k = ishft(i_b-1,-bit_kind_shift)+1 - j = i_b-ishft(k-1,bit_kind_shift)-1 - hole(k,ispin) = ibclr(hole(k,ispin),j) - key = hole - k = ishft(j_b-1,-bit_kind_shift)+1 - l = j_b-ishft(k-1,bit_kind_shift)-1 - key(k,ispin) = ibset(key(k,ispin),l) - $filter2h2p - key_idx += 1 - do k=1,N_int - keys_out(k,1,key_idx) = key(k,1) - keys_out(k,2,key_idx) = key(k,2) - enddo - ASSERT (key_idx <= size_max) - if (key_idx == size_max) then - $keys_work - key_idx = 0 - endif - if (abort_here) then - exit - endif - enddo ! kk - - enddo ! ii - $omp_enddo - enddo ! ispin - $keys_work - $deinit_thread - deallocate (ia_ja_pairs, ib_jb_pairs, & - keys_out, hole_save, & - key,hole, particle, hole_tmp,& - particle_tmp, occ_particle, & - occ_hole, occ_particle_tmp,& - occ_hole_tmp,array_pairs) - $omp_end_parallel - $finalization -end - -subroutine $subroutine_monoexc(key_in, hole_1,particl_1,i_generator,iproc_in $parameters ) - use omp_lib - use bitmasks - implicit none - BEGIN_DOC - ! Generate all single excitations of key_in using the bit masks of holes and - ! particles. - ! Assume N_int is already provided. - END_DOC - integer,parameter :: size_max = $size_max - $declarations - integer ,intent(in) :: i_generator - integer(bit_kind),intent(in) :: key_in(N_int,2) - integer(bit_kind),intent(in) :: hole_1(N_int,2), particl_1(N_int,2) - integer, intent(in) :: iproc_in - integer(bit_kind),allocatable :: keys_out(:,:,:) - integer(bit_kind),allocatable :: hole_save(:,:) - integer(bit_kind),allocatable :: key(:,:),hole(:,:), particle(:,:) - integer(bit_kind),allocatable :: hole_tmp(:,:), particle_tmp(:,:) - integer(bit_kind),allocatable :: hole_2(:,:), particl_2(:,:) - integer :: ii,i,jj,j,k,ispin,l - integer,allocatable :: occ_particle(:,:), occ_hole(:,:) - integer,allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) - integer,allocatable :: ib_jb_pairs(:,:) - integer :: kk,pp,other_spin,key_idx - integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) - integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) - logical :: is_a_two_holes_two_particles - - integer, allocatable :: ia_ja_pairs(:,:,:) - logical, allocatable :: array_pairs(:,:) - double precision :: diag_H_mat_elem - integer(omp_lock_kind), save :: lck, ifirst=0 - integer :: iproc - - logical :: check_double_excitation - iproc = iproc_in - - check_double_excitation = .True. - $check_double_excitation - - - if (ifirst == 0) then - ifirst=1 -!$ call omp_init_lock(lck) - endif - - $initialization - - $omp_parallel -!$ iproc = omp_get_thread_num() - allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & - key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& - particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & - occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& - occ_hole_tmp(N_int*bit_kind_size,2)) - $init_thread - !!!! First couple hole particle - do j = 1, N_int - hole(j,1) = iand(hole_1(j,1),key_in(j,1)) - hole(j,2) = iand(hole_1(j,2),key_in(j,2)) - particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) - particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) - enddo - - call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) - call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) - call bitstring_to_list(hole (1,1),occ_hole (1,1),N_elec_in_key_hole_1(1),N_int) - call bitstring_to_list(hole (1,2),occ_hole (1,2),N_elec_in_key_hole_1(2),N_int) - allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2)) - - do ispin=1,2 - i=0 - do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole - i_a = occ_hole(ii,ispin) - do jj=1,N_elec_in_key_part_1(ispin) !particule - j_a = occ_particle(jj,ispin) - i += 1 - ia_ja_pairs(1,i,ispin) = i_a - ia_ja_pairs(2,i,ispin) = j_a - enddo - enddo - ia_ja_pairs(1,0,ispin) = i - enddo - - key_idx = 0 - - integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b - integer(bit_kind) :: test(N_int,2) - double precision :: accu - accu = 0.d0 - do ispin=1,2 - other_spin = iand(ispin,1)+1 - $omp_do - do ii=1,ia_ja_pairs(1,0,ispin) - i_a = ia_ja_pairs(1,ii,ispin) - j_a = ia_ja_pairs(2,ii,ispin) - hole = key_in - k = ishft(i_a-1,-bit_kind_shift)+1 - j = i_a-ishft(k-1,bit_kind_shift)-1 - $filterhole - hole(k,ispin) = ibclr(hole(k,ispin),j) - k_a = ishft(j_a-1,-bit_kind_shift)+1 - l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 - $filterparticle - hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) - $filter2h2p - key_idx += 1 - do k=1,N_int - keys_out(k,1,key_idx) = hole(k,1) - keys_out(k,2,key_idx) = hole(k,2) - enddo - if (key_idx == size_max) then - $keys_work - key_idx = 0 - endif - enddo ! ii - $omp_enddo - enddo ! ispin - $keys_work - $deinit_thread - deallocate (ia_ja_pairs, & - keys_out, hole_save, & - key,hole, particle, hole_tmp,& - particle_tmp, occ_particle, & - occ_hole, occ_particle_tmp,& - occ_hole_tmp) - $omp_end_parallel - $finalization - -end - - -subroutine $subroutine($params_main) - implicit none - use omp_lib - use bitmasks - BEGIN_DOC - ! Calls H_apply on the HF determinant and selects all connected single and double - ! excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. - END_DOC - - $decls_main - - integer :: i_generator, nmax - double precision :: wall_0, wall_1 - integer(omp_lock_kind) :: lck - integer(bit_kind), allocatable :: mask(:,:,:) - integer :: ispin, k - integer :: iproc - - $initialization - PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators - - - nmax = mod( N_det_generators,nproc ) - - - !$ call omp_init_lock(lck) - call start_progress(N_det_generators,'Selection (norm)',0.d0) - - call wall_time(wall_0) - - iproc = 0 - allocate( mask(N_int,2,6) ) - do i_generator=1,nmax - - progress_bar(1) = i_generator - - if (abort_here) then - exit - endif - $skip - - ! Create bit masks for holes and particles - do ispin=1,2 - do k=1,N_int - mask(k,ispin,s_hole) = & - iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,s_part) = & - iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & - not(psi_det_generators(k,ispin,i_generator)) ) - mask(k,ispin,d_hole1) = & - iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,d_part1) = & - iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & - not(psi_det_generators(k,ispin,i_generator)) ) - mask(k,ispin,d_hole2) = & - iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,d_part2) = & - iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & - not(psi_det_generators(k,ispin,i_generator)) ) - enddo - enddo - if($do_double_excitations)then - call $subroutine_diexc(psi_det_generators(1,1,i_generator), & - mask(1,1,d_hole1), mask(1,1,d_part1), & - mask(1,1,d_hole2), mask(1,1,d_part2), & - i_generator, iproc $params_post) - endif - if($do_mono_excitations)then - call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & - mask(1,1,s_hole ), mask(1,1,s_part ), & - i_generator, iproc $params_post) - endif - call wall_time(wall_1) - $printout_always - if (wall_1 - wall_0 > 2.d0) then - $printout_now - wall_0 = wall_1 - endif - enddo - - deallocate( mask ) - - !$OMP PARALLEL DEFAULT(SHARED) & - !$OMP PRIVATE(i_generator,wall_1,wall_0,ispin,k,mask,iproc) - call wall_time(wall_0) - !$ iproc = omp_get_thread_num() - allocate( mask(N_int,2,6) ) - !$OMP DO SCHEDULE(dynamic,1) - do i_generator=nmax+1,N_det_generators - if (iproc == 0) then - progress_bar(1) = i_generator - endif - if (abort_here) then - cycle - endif - $skip - - ! Create bit masks for holes and particles - do ispin=1,2 - do k=1,N_int - mask(k,ispin,s_hole) = & - iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,s_part) = & - iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & - not(psi_det_generators(k,ispin,i_generator)) ) - mask(k,ispin,d_hole1) = & - iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,d_part1) = & - iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & - not(psi_det_generators(k,ispin,i_generator)) ) - mask(k,ispin,d_hole2) = & - iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & - psi_det_generators(k,ispin,i_generator) ) - mask(k,ispin,d_part2) = & - iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & - not (psi_det_generators(k,ispin,i_generator)) ) - enddo - enddo - - if($do_double_excitations)then - call $subroutine_diexc(psi_det_generators(1,1,i_generator), & - mask(1,1,d_hole1), mask(1,1,d_part1), & - mask(1,1,d_hole2), mask(1,1,d_part2), & - i_generator, iproc $params_post) - endif - if($do_mono_excitations)then - call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & - mask(1,1,s_hole ), mask(1,1,s_part ), & - i_generator, iproc $params_post) - endif - !$ call omp_set_lock(lck) - call wall_time(wall_1) - $printout_always - if (wall_1 - wall_0 > 2.d0) then - $printout_now - wall_0 = wall_1 - endif - !$ call omp_unset_lock(lck) - enddo - !$OMP END DO - deallocate( mask ) - !$OMP END PARALLEL - !$ call omp_destroy_lock(lck) - - abort_here = abort_all - call stop_progress - - $copy_buffer - $generate_psi_guess - -end - diff --git a/src/Dets/Makefile b/src/Dets/Makefile deleted file mode 100644 index 092d879d..00000000 --- a/src/Dets/Makefile +++ /dev/null @@ -1,6 +0,0 @@ -# Define here all new external source files and objects.Don't forget to prefix the -# object files with IRPF90_temp/ -SRC=H_apply_template.f -OBJ= - -include $(QPACKAGE_ROOT)/src/Makefile.common diff --git a/src/Dets/NEEDED_MODULES b/src/Dets/NEEDED_MODULES deleted file mode 100644 index 824c75ed..00000000 --- a/src/Dets/NEEDED_MODULES +++ /dev/null @@ -1 +0,0 @@ -AOs Bielec_integrals Bitmask Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Dets/README.rst b/src/Dets/README.rst deleted file mode 100644 index e9077510..00000000 --- a/src/Dets/README.rst +++ /dev/null @@ -1,696 +0,0 @@ -=========== -Dets Module -=========== - -This module contains the determinants of the CI wave function. - -H is applied on the list of generator determinants. Selected determinants -are added into the *H_apply buffer*. Then the new wave function is -constructred as the concatenation of the odl wave function and -some determinants of the H_apply buffer. Generator determinants are built -as a subset of the determinants of the wave function. - - -Assumptions -=========== - -.. Do not edit this section. It was auto-generated from the -.. NEEDED_MODULES file. - -* The MOs are orthonormal -* All the determinants have the same number of electrons -* The determinants are orthonormal -* The number of generator determinants <= the number of determinants -* All the determinants in the H_apply buffer are supposed to be different from the - wave function determinants -* All the determinants in the H_apply buffer are supposed to be unique - - -Needed Modules -============== - -.. Do not edit this section. It was auto-generated from the -.. NEEDED_MODULES file. - -* `AOs `_ -* `Bielec_integrals `_ -* `Bitmask `_ -* `Electrons `_ -* `Ezfio_files `_ -* `MonoInts `_ -* `MOs `_ -* `Nuclei `_ -* `Output `_ -* `Utils `_ - -Documentation -============= - -.. Do not edit this section. It was auto-generated from the -.. NEEDED_MODULES file. - -`copy_h_apply_buffer_to_wf `_ - Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det - after calling this function. - After calling this subroutine, N_det, psi_det and psi_coef need to be touched - -`fill_h_apply_buffer_no_selection `_ - Fill the H_apply buffer with determiants for CISD - -`h_apply_buffer_allocated `_ - Buffer of determinants/coefficients/perturbative energy for H_apply. - Uninitialized. Filled by H_apply subroutines. - -`h_apply_buffer_lock `_ - Buffer of determinants/coefficients/perturbative energy for H_apply. - Uninitialized. Filled by H_apply subroutines. - -`resize_h_apply_buffer `_ - Undocumented - -`cisd_sc2 `_ - CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) - .br - dets_in : bitmasks corresponding to determinants - .br - u_in : guess coefficients on the various states. Overwritten - on exit - .br - dim_in : leftmost dimension of u_in - .br - sze : Number of determinants - .br - N_st : Number of eigenstates - .br - Initial guess vectors are not necessarily orthonormal - -`connected_to_ref `_ - Undocumented - -`connected_to_ref_by_mono `_ - Undocumented - -`det_search_key `_ - Return an integer*8 corresponding to a determinant index for searching - -`get_index_in_psi_det_sorted_bit `_ - Returns the index of the determinant in the ``psi_det_sorted_bit`` array - -`is_in_wavefunction `_ - True if the determinant ``det`` is in the wave function - -`occ_pattern_search_key `_ - Return an integer*8 corresponding to a determinant index for searching - -`do_mono_excitation `_ - Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin - on key_in - ispin = 1 == alpha - ispin = 2 == beta - i_ok = 1 == the excitation is possible - i_ok = -1 == the excitation is not possible - -`davidson_converged `_ - True if the Davidson algorithm is converged - -`davidson_criterion `_ - Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] - -`davidson_diag `_ - Davidson diagonalization. - .br - dets_in : bitmasks corresponding to determinants - .br - u_in : guess coefficients on the various states. Overwritten - on exit - .br - dim_in : leftmost dimension of u_in - .br - sze : Number of determinants - .br - N_st : Number of eigenstates - .br - iunit : Unit number for the I/O - .br - Initial guess vectors are not necessarily orthonormal - -`davidson_diag_hjj `_ - Davidson diagonalization with specific diagonal elements of the H matrix - .br - H_jj : specific diagonal H matrix elements to diagonalize de Davidson - .br - dets_in : bitmasks corresponding to determinants - .br - u_in : guess coefficients on the various states. Overwritten - on exit - .br - dim_in : leftmost dimension of u_in - .br - sze : Number of determinants - .br - N_st : Number of eigenstates - .br - iunit : Unit for the I/O - .br - Initial guess vectors are not necessarily orthonormal - -`davidson_iter_max `_ - Max number of Davidson iterations - -`davidson_sze_max `_ - Max number of Davidson sizes - -`davidson_threshold `_ - Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] - -`one_body_dm_mo `_ - One-body density matrix - -`one_body_dm_mo_alpha `_ - Alpha and beta one-body density matrix for each state - -`one_body_dm_mo_beta `_ - Alpha and beta one-body density matrix for each state - -`one_body_single_double_dm_mo_alpha `_ - Alpha and beta one-body density matrix for each state - -`one_body_single_double_dm_mo_beta `_ - Alpha and beta one-body density matrix for each state - -`one_body_spin_density_mo `_ - rho(alpha) - rho(beta) - -`save_natural_mos `_ - Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis - -`set_natural_mos `_ - Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis - -`state_average_weight `_ - Weights in the state-average calculation of the density matrix - -`det_svd `_ - Computes the SVD of the Alpha x Beta determinant coefficient matrix - -`filter_3_highest_electrons `_ - Returns a determinant with only the 3 highest electrons - -`int_of_3_highest_electrons `_ - Returns an integer*8 as : - .br - |_<--- 21 bits ---><--- 21 bits ---><--- 21 bits --->| - .br - |0<--- i1 ---><--- i2 ---><--- i3 --->| - .br - It encodes the value of the indices of the 3 highest MOs - in descending order - .br - -`max_degree_exc `_ - Maximum degree of excitation in the wf - -`n_det `_ - Number of determinants in the wave function - -`psi_average_norm_contrib `_ - Contribution of determinants to the state-averaged density - -`psi_average_norm_contrib_sorted `_ - Wave function sorted by determinants contribution to the norm (state-averaged) - -`psi_coef `_ - The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file - is empty - -`psi_coef_sorted `_ - Wave function sorted by determinants contribution to the norm (state-averaged) - -`psi_coef_sorted_ab `_ - Determinants on which we apply . - They are sorted by the 3 highest electrons in the alpha part, - then by the 3 highest electrons in the beta part to accelerate - the research of connected determinants. - -`psi_coef_sorted_bit `_ - Determinants on which we apply for perturbation. - They are sorted by determinants interpreted as integers. Useful - to accelerate the search of a random determinant in the wave - function. - -`psi_det `_ - The wave function determinants. Initialized with Hartree-Fock if the EZFIO file - is empty - -`psi_det_size `_ - Size of the psi_det/psi_coef arrays - -`psi_det_sorted `_ - Wave function sorted by determinants contribution to the norm (state-averaged) - -`psi_det_sorted_ab `_ - Determinants on which we apply . - They are sorted by the 3 highest electrons in the alpha part, - then by the 3 highest electrons in the beta part to accelerate - the research of connected determinants. - -`psi_det_sorted_bit `_ - Determinants on which we apply for perturbation. - They are sorted by determinants interpreted as integers. Useful - to accelerate the search of a random determinant in the wave - function. - -`psi_det_sorted_next_ab `_ - Determinants on which we apply . - They are sorted by the 3 highest electrons in the alpha part, - then by the 3 highest electrons in the beta part to accelerate - the research of connected determinants. - -`read_dets `_ - Reads the determinants from the EZFIO file - -`save_wavefunction `_ - Save the wave function into the EZFIO file - -`save_wavefunction_general `_ - Save the wave function into the EZFIO file - -`save_wavefunction_unsorted `_ - Save the wave function into the EZFIO file - -`sort_dets_by_3_highest_electrons `_ - Determinants on which we apply . - They are sorted by the 3 highest electrons in the alpha part, - then by the 3 highest electrons in the beta part to accelerate - the research of connected determinants. - -`sort_dets_by_det_search_key `_ - Determinants are sorted are sorted according to their det_search_key. - Useful to accelerate the search of a random determinant in the wave - function. - -`double_exc_bitmask `_ - double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 - double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 - double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 - double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 - for a given couple of hole/particle excitations i. - -`n_double_exc_bitmasks `_ - Number of double excitation bitmasks - -`n_single_exc_bitmasks `_ - Number of single excitation bitmasks - -`single_exc_bitmask `_ - single_exc_bitmask(:,1,i) is the bitmask for holes - single_exc_bitmask(:,2,i) is the bitmask for particles - for a given couple of hole/particle excitations i. - -`ci_eigenvectors `_ - Eigenvectors/values of the CI matrix - -`ci_eigenvectors_s2 `_ - Eigenvectors/values of the CI matrix - -`ci_electronic_energy `_ - Eigenvectors/values of the CI matrix - -`ci_energy `_ - N_states lowest eigenvalues of the CI matrix - -`diag_algorithm `_ - Diagonalization algorithm (Davidson or Lapack) - -`diagonalize_ci `_ - Replace the coefficients of the CI states by the coefficients of the - eigenstates of the CI matrix - -`ci_sc2_eigenvectors `_ - Eigenvectors/values of the CI matrix - -`ci_sc2_electronic_energy `_ - Eigenvectors/values of the CI matrix - -`ci_sc2_energy `_ - N_states_diag lowest eigenvalues of the CI matrix - -`diagonalize_ci_sc2 `_ - Replace the coefficients of the CI states_diag by the coefficients of the - eigenstates of the CI matrix - -`threshold_convergence_sc2 `_ - convergence of the correlation energy of SC2 iterations - -`ci_eigenvectors_mono `_ - Eigenvectors/values of the CI matrix - -`ci_eigenvectors_s2_mono `_ - Eigenvectors/values of the CI matrix - -`ci_electronic_energy_mono `_ - Eigenvectors/values of the CI matrix - -`diagonalize_ci_mono `_ - Replace the coefficients of the CI states by the coefficients of the - eigenstates of the CI matrix - -`apply_mono `_ - Undocumented - -`filter_connected `_ - Filters out the determinants that are not connected by H - .br - returns the array idx which contains the index of the - .br - determinants in the array key1 that interact - .br - via the H operator with key2. - .br - idx(0) is the number of determinants that interact with key1 - -`filter_connected_davidson `_ - Filters out the determinants that are not connected by H - returns the array idx which contains the index of the - determinants in the array key1 that interact - via the H operator with key2. - .br - idx(0) is the number of determinants that interact with key1 - key1 should come from psi_det_sorted_ab. - -`filter_connected_i_h_psi0 `_ - returns the array idx which contains the index of the - .br - determinants in the array key1 that interact - .br - via the H operator with key2. - .br - idx(0) is the number of determinants that interact with key1 - -`filter_connected_i_h_psi0_sc2 `_ - standard filter_connected_i_H_psi but returns in addition - .br - the array of the index of the non connected determinants to key1 - .br - in order to know what double excitation can be repeated on key1 - .br - idx_repeat(0) is the number of determinants that can be used - .br - to repeat the excitations - -`filter_connected_sorted_ab `_ - Filters out the determinants that are not connected by H - returns the array idx which contains the index of the - determinants in the array key1 that interact - via the H operator with key2. - idx(0) is the number of determinants that interact with key1 - .br - Determinants are taken from the psi_det_sorted_ab array - -`put_gess `_ - Undocumented - -`det_to_occ_pattern `_ - Transform a determinant to an occupation pattern - -`make_s2_eigenfunction `_ - Undocumented - -`n_occ_pattern `_ - array of the occ_pattern present in the wf - psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation - psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation - -`occ_pattern_to_dets `_ - Generate all possible determinants for a give occ_pattern - -`occ_pattern_to_dets_size `_ - Number of possible determinants for a given occ_pattern - -`psi_occ_pattern `_ - array of the occ_pattern present in the wf - psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation - psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation - -`rec_occ_pattern_to_dets `_ - Undocumented - -`n_states_diag `_ - Number of states to consider for the diagonalization - -`pouet `_ - Undocumented - -`routine `_ - Undocumented - -`idx_cas `_ - CAS wave function, defined from the application of the CAS bitmask on the - determinants. idx_cas gives the indice of the CAS determinant in psi_det. - -`idx_non_cas `_ - Set of determinants which are not part of the CAS, defined from the application - of the CAS bitmask on the determinants. - idx_non_cas gives the indice of the determinant in psi_det. - -`n_det_cas `_ - CAS wave function, defined from the application of the CAS bitmask on the - determinants. idx_cas gives the indice of the CAS determinant in psi_det. - -`n_det_non_cas `_ - Set of determinants which are not part of the CAS, defined from the application - of the CAS bitmask on the determinants. - idx_non_cas gives the indice of the determinant in psi_det. - -`psi_cas `_ - CAS wave function, defined from the application of the CAS bitmask on the - determinants. idx_cas gives the indice of the CAS determinant in psi_det. - -`psi_cas_coef `_ - CAS wave function, defined from the application of the CAS bitmask on the - determinants. idx_cas gives the indice of the CAS determinant in psi_det. - -`psi_cas_coef_sorted_bit `_ - CAS determinants sorted to accelerate the search of a random determinant in the wave - function. - -`psi_cas_sorted_bit `_ - CAS determinants sorted to accelerate the search of a random determinant in the wave - function. - -`psi_non_cas `_ - Set of determinants which are not part of the CAS, defined from the application - of the CAS bitmask on the determinants. - idx_non_cas gives the indice of the determinant in psi_det. - -`psi_non_cas_coef `_ - Set of determinants which are not part of the CAS, defined from the application - of the CAS bitmask on the determinants. - idx_non_cas gives the indice of the determinant in psi_det. - -`psi_non_cas_coef_sorted_bit `_ - CAS determinants sorted to accelerate the search of a random determinant in the wave - function. - -`psi_non_cas_sorted_bit `_ - CAS determinants sorted to accelerate the search of a random determinant in the wave - function. - -`bi_elec_ref_bitmask_energy `_ - Energy of the reference bitmask used in Slater rules - -`kinetic_ref_bitmask_energy `_ - Energy of the reference bitmask used in Slater rules - -`mono_elec_ref_bitmask_energy `_ - Energy of the reference bitmask used in Slater rules - -`nucl_elec_ref_bitmask_energy `_ - Energy of the reference bitmask used in Slater rules - -`ref_bitmask_energy `_ - Energy of the reference bitmask used in Slater rules - -`expected_s2 `_ - Expected value of S2 : S*(S+1) - -`get_s2 `_ - Returns - -`get_s2_u0 `_ - Undocumented - -`s2_values `_ - array of the averaged values of the S^2 operator on the various states - -`s_z `_ - z component of the Spin - -`s_z2_sz `_ - z component of the Spin - -`prog_save_casino `_ - Undocumented - -`save_casino `_ - Undocumented - -`save_dets_qmcchem `_ - Undocumented - -`save_for_qmc `_ - Undocumented - -`save_natorb `_ - Undocumented - -`a_operator `_ - Needed for diag_H_mat_elem - -`ac_operator `_ - Needed for diag_H_mat_elem - -`decode_exc `_ - Decodes the exc arrays returned by get_excitation. - h1,h2 : Holes - p1,p2 : Particles - s1,s2 : Spins (1:alpha, 2:beta) - degree : Degree of excitation - -`det_connections `_ - Build connection proxy between determinants - -`diag_h_mat_elem `_ - Computes - -`get_double_excitation `_ - Returns the two excitation operators between two doubly excited determinants and the phase - -`get_excitation `_ - Returns the excitation operators between two determinants and the phase - -`get_excitation_degree `_ - Returns the excitation degree between two determinants - -`get_excitation_degree_vector `_ - Applies get_excitation_degree to an array of determinants - -`get_mono_excitation `_ - Returns the excitation operator between two singly excited determinants and the phase - -`get_occ_from_key `_ - Returns a list of occupation numbers from a bitstring - -`h_u_0 `_ - Computes v_0 = H|u_0> - .br - n : number of determinants - .br - H_jj : array of - -`i_h_j `_ - Returns where i and j are determinants - -`i_h_j_verbose `_ - Returns where i and j are determinants - -`i_h_psi `_ - for the various Nstates - -`i_h_psi_sc2 `_ - for the various Nstate - .br - returns in addition - .br - the array of the index of the non connected determinants to key1 - .br - in order to know what double excitation can be repeated on key1 - .br - idx_repeat(0) is the number of determinants that can be used - .br - to repeat the excitations - -`i_h_psi_sc2_verbose `_ - for the various Nstate - .br - returns in addition - .br - the array of the index of the non connected determinants to key1 - .br - in order to know what double excitation can be repeated on key1 - .br - idx_repeat(0) is the number of determinants that can be used - .br - to repeat the excitations - -`i_h_psi_sec_ord `_ - for the various Nstates - -`n_con_int `_ - Number of integers to represent the connections between determinants - -`create_wf_of_psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`generate_all_alpha_beta_det_products `_ - Create a wave function from all possible alpha x beta determinants - -`get_index_in_psi_det_alpha_unique `_ - Returns the index of the determinant in the ``psi_det_alpha_unique`` array - -`get_index_in_psi_det_beta_unique `_ - Returns the index of the determinant in the ``psi_det_beta_unique`` array - -`n_det_alpha_unique `_ - Unique alpha determinants - -`n_det_beta_unique `_ - Unique beta determinants - -`psi_det_alpha `_ - List of alpha determinants of psi_det - -`psi_det_alpha_unique `_ - Unique alpha determinants - -`psi_det_beta `_ - List of beta determinants of psi_det - -`psi_det_beta_unique `_ - Unique beta determinants - -`psi_svd_alpha `_ - SVD wave function - -`psi_svd_beta `_ - SVD wave function - -`psi_svd_coefs `_ - SVD wave function - -`psi_svd_matrix `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`psi_svd_matrix_columns `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`psi_svd_matrix_rows `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`psi_svd_matrix_values `_ - Matrix of wf coefficients. Outer product of alpha and beta determinants - -`spin_det_search_key `_ - Return an integer*8 corresponding to a determinant index for searching - -`write_spindeterminants `_ - Undocumented - -`cisd `_ - Undocumented - -`h_matrix_all_dets `_ - H matrix on the basis of the slater determinants defined by psi_det - - - diff --git a/src/Dets/SC2.irp.f b/src/Dets/SC2.irp.f deleted file mode 100644 index 8a6c10d7..00000000 --- a/src/Dets/SC2.irp.f +++ /dev/null @@ -1,215 +0,0 @@ -subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence) - use bitmasks - implicit none - BEGIN_DOC - ! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) - ! - ! dets_in : bitmasks corresponding to determinants - ! - ! u_in : guess coefficients on the various states. Overwritten - ! on exit - ! - ! dim_in : leftmost dimension of u_in - ! - ! sze : Number of determinants - ! - ! N_st : Number of eigenstates - ! - ! Initial guess vectors are not necessarily orthonormal - END_DOC - integer, intent(in) :: dim_in, sze, N_st, Nint - integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) - double precision, intent(inout) :: u_in(dim_in,N_st) - double precision, intent(out) :: energies(N_st) - double precision, intent(in) :: convergence - ASSERT (N_st > 0) - ASSERT (sze > 0) - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - integer :: iter - integer :: i,j,k,l,m - logical :: converged - double precision :: overlap(N_st,N_st) - double precision :: u_dot_v, u_dot_u - - integer :: degree,N_double,index_hf - double precision :: hij_elec, e_corr_double,e_corr,diag_h_mat_elem,inv_c0 - double precision :: e_corr_double_before,accu,cpu_2,cpu_1 - integer,allocatable :: degree_exc(:), index_double(:) - integer :: i_ok - double precision,allocatable :: e_corr_array(:),H_jj_ref(:),H_jj_dressed(:),hij_double(:) - integer(bit_kind), allocatable :: doubles(:,:,:) - - - allocate (doubles(Nint,2,sze),e_corr_array(sze),H_jj_ref(sze),H_jj_dressed(sze),& - index_double(sze), degree_exc(sze), hij_double(sze)) - call write_time(output_Dets) - write(output_Dets,'(A)') '' - write(output_Dets,'(A)') 'CISD SC2' - write(output_Dets,'(A)') '========' - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP SHARED(sze,N_st, & - !$OMP H_jj_ref,Nint,dets_in,u_in) & - !$OMP PRIVATE(i) - - !$OMP DO SCHEDULE(guided) - do i=1,sze - H_jj_ref(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) - enddo - !$OMP END DO NOWAIT - !$OMP END PARALLEL - - N_double = 0 - e_corr = 0.d0 - e_corr_double = 0.d0 - do i = 1, sze - call get_excitation_degree(ref_bitmask,dets_in(1,1,i),degree,Nint) - degree_exc(i) = degree+1 - if(degree==0)then - index_hf=i - else if (degree == 2)then - N_double += 1 - index_double(N_double) = i - doubles(:,:,N_double) = dets_in(:,:,i) - call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) - hij_double(N_double) = hij_elec - e_corr_array(N_double) = u_in(i,1)* hij_elec - e_corr_double += e_corr_array(N_double) - e_corr += e_corr_array(N_double) - else if (degree == 1)then - call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) - e_corr += u_in(i,1)* hij_elec - endif - enddo - inv_c0 = 1.d0/u_in(index_hf,1) - do i = 1, N_double - e_corr_array(i) = e_corr_array(i) * inv_c0 - enddo - e_corr = e_corr * inv_c0 - e_corr_double = e_corr_double * inv_c0 - converged = .False. - e_corr_double_before = e_corr_double - iter = 0 - do while (.not.converged) - if (abort_here) then - exit - endif - iter +=1 - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(i,j,degree,accu) & - !$OMP SHARED(H_jj_dressed,sze,H_jj_ref,index_hf,N_int,N_double,& - !$OMP dets_in,doubles,degree_exc,e_corr_array,e_corr_double) - !$OMP DO SCHEDULE(STATIC) - do i=1,sze - H_jj_dressed(i) = H_jj_ref(i) - if (i==index_hf)cycle - accu = -e_corr_double - select case (N_int) - case (1) - do j=1,N_double - degree = & - popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & - popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) - - if (degree<=ishft(degree_exc(i),1)) then - accu += e_corr_array(j) - endif - enddo - case (2) - do j=1,N_double - degree = & - popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & - popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & - popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & - popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) - - if (degree<=ishft(degree_exc(i),1)) then - accu += e_corr_array(j) - endif - enddo - case (3) - do j=1,N_double - degree = & - popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & - popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & - popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & - popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + & - popcnt(xor( dets_in(3,1,i),doubles(3,1,j))) + & - popcnt(xor( dets_in(3,2,i),doubles(3,2,j))) - - if (degree<=ishft(degree_exc(i),1)) then - accu += e_corr_array(j) - endif - enddo - case default - do j=1,N_double - call get_excitation_degree(dets_in(1,1,i),doubles(1,1,j),degree,N_int) - if (degree<=degree_exc(i)) then - accu += e_corr_array(j) - endif - enddo - end select - H_jj_dressed(i) -= accu - enddo - !$OMP END DO - !$OMP END PARALLEL - - if(sze<=N_det_max_jacobi)then - double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:) - allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze)) - do j=1,sze - do i=1,sze - H_matrix_tmp(i,j) = H_matrix_all_dets(i,j) - enddo - enddo - do i = 1,sze - H_matrix_tmp(i,i) = H_jj_dressed(i) - enddo - call lapack_diag(eigenvalues,eigenvectors, & - H_matrix_tmp,size(H_matrix_all_dets,1),sze) - do j=1,min(N_states_diag,sze) - do i=1,sze - u_in(i,j) = eigenvectors(i,j) - enddo - energies(j) = eigenvalues(j) - enddo - deallocate (H_matrix_tmp, eigenvalues, eigenvectors) - else - call davidson_diag_hjj(dets_in,u_in,H_jj_dressed,energies,dim_in,sze,N_st,Nint,output_Dets) - endif - - e_corr_double = 0.d0 - inv_c0 = 1.d0/u_in(index_hf,1) - do i = 1, N_double - e_corr_array(i) = u_in(index_double(i),1)*inv_c0 * hij_double(i) - e_corr_double += e_corr_array(i) - enddo - write(output_Dets,'(A,I3)') 'SC2 Iteration ', iter - write(output_Dets,'(A)') '------------------' - write(output_Dets,'(A)') '' - write(output_Dets,'(A)') '===== ================' - write(output_Dets,'(A)') 'State Energy ' - write(output_Dets,'(A)') '===== ================' - do i=1,N_st - write(output_Dets,'(I5,X,F16.10)') i, energies(i)+nuclear_repulsion - enddo - write(output_Dets,'(A)') '===== ================' - write(output_Dets,'(A)') '' - call write_double(output_Dets,(e_corr_double - e_corr_double_before),& - 'Delta(E_corr)') - converged = dabs(e_corr_double - e_corr_double_before) < convergence - converged = converged .or. abort_here - if (converged) then - exit - endif - e_corr_double_before = e_corr_double - - enddo - - call write_time(output_Dets) - deallocate (doubles,e_corr_array,H_jj_ref,H_jj_dressed, & - index_double, degree_exc, hij_double) - -end - - diff --git a/src/Dets/connected_to_ref.irp.f b/src/Dets/connected_to_ref.irp.f deleted file mode 100644 index 2d40b621..00000000 --- a/src/Dets/connected_to_ref.irp.f +++ /dev/null @@ -1,357 +0,0 @@ -integer*8 function det_search_key(det,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Return an integer*8 corresponding to a determinant index for searching - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det(Nint,2) - integer :: i - det_search_key = iand(det(1,1),det(1,2)) - do i=2,Nint - det_search_key = ieor(det_search_key,iand(det(i,1),det(i,2))) - enddo -end - - -integer*8 function occ_pattern_search_key(det,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Return an integer*8 corresponding to a determinant index for searching - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det(Nint,2) - integer :: i - occ_pattern_search_key = ieor(det(1,1),det(1,2)) - do i=2,Nint - occ_pattern_search_key = ieor(occ_pattern_search_key,iand(det(i,1),det(i,2))) - enddo -end - - - -logical function is_in_wavefunction(key,Nint,Ndet) - use bitmasks - implicit none - BEGIN_DOC -! True if the determinant ``det`` is in the wave function - END_DOC - integer, intent(in) :: Nint, Ndet - integer(bit_kind), intent(in) :: key(Nint,2) - integer, external :: get_index_in_psi_det_sorted_bit - - !DIR$ FORCEINLINE - is_in_wavefunction = get_index_in_psi_det_sorted_bit(key,Nint) > 0 -end - -integer function get_index_in_psi_det_sorted_bit(key,Nint) - use bitmasks - BEGIN_DOC -! Returns the index of the determinant in the ``psi_det_sorted_bit`` array - END_DOC - implicit none - - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key(Nint,2) - - integer :: i, ibegin, iend, istep, l - integer*8 :: det_ref, det_search - integer*8, external :: det_search_key - logical :: is_in_wavefunction - - is_in_wavefunction = .False. - get_index_in_psi_det_sorted_bit = 0 - ibegin = 1 - iend = N_det+1 - - !DIR$ FORCEINLINE - det_ref = det_search_key(key,Nint) - !DIR$ FORCEINLINE - det_search = det_search_key(psi_det_sorted_bit(1,1,1),Nint) - - istep = ishft(iend-ibegin,-1) - i=ibegin+istep - do while (istep > 0) - !DIR$ FORCEINLINE - det_search = det_search_key(psi_det_sorted_bit(1,1,i),Nint) - if ( det_search > det_ref ) then - iend = i - else if ( det_search == det_ref ) then - exit - else - ibegin = i - endif - istep = ishft(iend-ibegin,-1) - i = ibegin + istep - end do - - !DIR$ FORCEINLINE - do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) - i = i-1 - if (i == 0) then - exit - endif - enddo - i += 1 - - if (i > N_det) then - return - endif - - !DIR$ FORCEINLINE - do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) - if ( (key(1,1) /= psi_det_sorted_bit(1,1,i)).or. & - (key(1,2) /= psi_det_sorted_bit(1,2,i)) ) then - continue - else - is_in_wavefunction = .True. - !DIR$ IVDEP - !DIR$ LOOP COUNT MIN(3) - do l=2,Nint - if ( (key(l,1) /= psi_det_sorted_bit(l,1,i)).or. & - (key(l,2) /= psi_det_sorted_bit(l,2,i)) ) then - is_in_wavefunction = .False. - endif - enddo - if (is_in_wavefunction) then - get_index_in_psi_det_sorted_bit = i -! exit - return - endif - endif - i += 1 - if (i > N_det) then -! exit - return - endif - - enddo - -! DEBUG is_in_wf -! if (is_in_wavefunction) then -! degree = 1 -! do i=1,N_det -! integer :: degree -! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) -! if (degree == 0) then -! exit -! endif -! enddo -! if (degree /=0) then -! stop 'pouet 1' -! endif -! else -! do i=1,N_det -! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) -! if (degree == 0) then -! stop 'pouet 2' -! endif -! enddo -! endif -! END DEBUG is_in_wf -end - -integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet) - use bitmasks - implicit none - integer, intent(in) :: Nint, N_past_in, Ndet - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - - integer :: N_past - integer :: i, l - integer :: degree_x2 - logical :: t - double precision :: hij_elec - - ! output : 0 : not connected - ! i : connected to determinant i of the past - ! -i : is the ith determinant of the refernce wf keys - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - - connected_to_ref = 0 - N_past = max(1,N_past_in) - if (Nint == 1) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) - if (degree_x2 > 4) then - cycle - else - connected_to_ref = i - return - endif - enddo - - return - - - else if (Nint==2) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) + & - popcnt(xor( key(2,1), keys(2,1,i))) + & - popcnt(xor( key(2,2), keys(2,2,i))) - if (degree_x2 > 4) then - cycle - else - connected_to_ref = i - return - endif - enddo - - return - - else if (Nint==3) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) + & - popcnt(xor( key(2,1), keys(2,1,i))) + & - popcnt(xor( key(2,2), keys(2,2,i))) + & - popcnt(xor( key(3,1), keys(3,1,i))) + & - popcnt(xor( key(3,2), keys(3,2,i))) - if (degree_x2 > 4) then - cycle - else - connected_to_ref = i - return - endif - enddo - - return - - else - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) - !DEC$ LOOP COUNT MIN(3) - do l=2,Nint - degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& - popcnt(xor( key(l,2), keys(l,2,i))) - enddo - if (degree_x2 > 4) then - cycle - else - connected_to_ref = i - return - endif - enddo - - endif - -end - - - -integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) - use bitmasks - implicit none - integer, intent(in) :: Nint, N_past_in, Ndet - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - - integer :: N_past - integer :: i, l - integer :: degree_x2 - logical :: t - double precision :: hij_elec - - ! output : 0 : not connected - ! i : connected to determinant i of the past - ! -i : is the ith determinant of the refernce wf keys - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - - connected_to_ref_by_mono = 0 - N_past = max(1,N_past_in) - if (Nint == 1) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) - if (degree_x2 > 3.and. degree_x2 <5) then - cycle - else if (degree_x2 == 4)then - cycle - else if(degree_x2 == 2)then - connected_to_ref_by_mono = i - return - endif - enddo - - return - - - else if (Nint==2) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) + & - popcnt(xor( key(2,1), keys(2,1,i))) + & - popcnt(xor( key(2,2), keys(2,2,i))) - if (degree_x2 > 3.and. degree_x2 <5) then - cycle - else if (degree_x2 == 4)then - cycle - else if(degree_x2 == 2)then - connected_to_ref_by_mono = i - return - endif - enddo - - return - - else if (Nint==3) then - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) + & - popcnt(xor( key(2,1), keys(2,1,i))) + & - popcnt(xor( key(2,2), keys(2,2,i))) + & - popcnt(xor( key(3,1), keys(3,1,i))) + & - popcnt(xor( key(3,2), keys(3,2,i))) - if (degree_x2 > 3.and. degree_x2 <5) then - cycle - else if (degree_x2 == 4)then - cycle - else if(degree_x2 == 2)then - connected_to_ref_by_mono = i - return - endif - enddo - - return - - else - - do i=N_past-1,1,-1 - degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & - popcnt(xor( key(1,2), keys(1,2,i))) - !DEC$ LOOP COUNT MIN(3) - do l=2,Nint - degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& - popcnt(xor( key(l,2), keys(l,2,i))) - enddo - if (degree_x2 > 3.and. degree_x2 <5) then - cycle - else if (degree_x2 == 4)then - cycle - else if(degree_x2 == 2)then - connected_to_ref_by_mono = i - return - endif - enddo - - endif - -end - - diff --git a/src/Dets/create_excitations.irp.f b/src/Dets/create_excitations.irp.f deleted file mode 100644 index a33525c7..00000000 --- a/src/Dets/create_excitations.irp.f +++ /dev/null @@ -1,36 +0,0 @@ -subroutine do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) - implicit none - BEGIN_DOC - ! Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin - ! on key_in - ! ispin = 1 == alpha - ! ispin = 2 == beta - ! i_ok = 1 == the excitation is possible - ! i_ok = -1 == the excitation is not possible - END_DOC - integer, intent(in) :: i_hole,i_particle,ispin - integer(bit_kind), intent(inout) :: key_in(N_int,2) - integer, intent(out) :: i_ok - integer :: k,j,i - use bitmasks - ASSERT (i_hole > 0 ) - ASSERT (i_particle <= mo_tot_num) - i_ok = 1 - ! hole - k = ishft(i_hole-1,-bit_kind_shift)+1 - j = i_hole-ishft(k-1,bit_kind_shift)-1 - key_in(k,ispin) = ibclr(key_in(k,ispin),j) - - ! particle - k = ishft(i_particle-1,-bit_kind_shift)+1 - j = i_particle-ishft(k-1,bit_kind_shift)-1 - key_in(k,ispin) = ibset(key_in(k,ispin),j) - integer :: n_elec_tmp - n_elec_tmp = 0 - do i = 1, N_int - n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2)) - enddo - if(n_elec_tmp .ne. elec_num)then - i_ok = -1 - endif -end diff --git a/src/Dets/davidson.irp.f b/src/Dets/davidson.irp.f deleted file mode 100644 index bdc979c4..00000000 --- a/src/Dets/davidson.irp.f +++ /dev/null @@ -1,418 +0,0 @@ -BEGIN_PROVIDER [ integer, davidson_iter_max ] - implicit none - BEGIN_DOC - ! Max number of Davidson iterations - END_DOC - davidson_iter_max = 100 -END_PROVIDER - -BEGIN_PROVIDER [ integer, davidson_sze_max ] - implicit none - BEGIN_DOC - ! Max number of Davidson sizes - END_DOC - ASSERT (davidson_sze_max <= davidson_iter_max) - davidson_sze_max = 8*N_states_diag -END_PROVIDER - -subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit) - use bitmasks - implicit none - BEGIN_DOC - ! Davidson diagonalization. - ! - ! dets_in : bitmasks corresponding to determinants - ! - ! u_in : guess coefficients on the various states. Overwritten - ! on exit - ! - ! dim_in : leftmost dimension of u_in - ! - ! sze : Number of determinants - ! - ! N_st : Number of eigenstates - ! - ! iunit : Unit number for the I/O - ! - ! Initial guess vectors are not necessarily orthonormal - END_DOC - integer, intent(in) :: dim_in, sze, N_st, Nint, iunit - integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) - double precision, intent(inout) :: u_in(dim_in,N_st) - double precision, intent(out) :: energies(N_st) - double precision, allocatable :: H_jj(:) - - double precision :: diag_h_mat_elem - integer :: i - ASSERT (N_st > 0) - ASSERT (sze > 0) - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - PROVIDE mo_bielec_integrals_in_map - allocate(H_jj(sze)) - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP SHARED(sze,H_jj,dets_in,Nint) & - !$OMP PRIVATE(i) - !$OMP DO SCHEDULE(guided) - do i=1,sze - H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) - enddo - !$OMP END DO - !$OMP END PARALLEL - - call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) - deallocate (H_jj) -end - -subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) - use bitmasks - implicit none - BEGIN_DOC - ! Davidson diagonalization with specific diagonal elements of the H matrix - ! - ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson - ! - ! dets_in : bitmasks corresponding to determinants - ! - ! u_in : guess coefficients on the various states. Overwritten - ! on exit - ! - ! dim_in : leftmost dimension of u_in - ! - ! sze : Number of determinants - ! - ! N_st : Number of eigenstates - ! - ! iunit : Unit for the I/O - ! - ! Initial guess vectors are not necessarily orthonormal - END_DOC - integer, intent(in) :: dim_in, sze, N_st, Nint - integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) - double precision, intent(in) :: H_jj(sze) - integer, intent(in) :: iunit - double precision, intent(inout) :: u_in(dim_in,N_st) - double precision, intent(out) :: energies(N_st) - - integer :: iter - integer :: i,j,k,l,m - logical :: converged - - double precision :: overlap(N_st,N_st) - double precision :: u_dot_v, u_dot_u - - integer, allocatable :: kl_pairs(:,:) - integer :: k_pairs, kl - - integer :: iter2 - double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:) - double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:) - double precision :: diag_h_mat_elem - double precision :: residual_norm(N_st) - character*(16384) :: write_buffer - double precision :: to_print(2,N_st) - double precision :: cpu, wall - - PROVIDE det_connections - - call write_time(iunit) - call wall_time(wall) - call cpu_time(cpu) - write(iunit,'(A)') '' - write(iunit,'(A)') 'Davidson Diagonalization' - write(iunit,'(A)') '------------------------' - write(iunit,'(A)') '' - call write_int(iunit,N_st,'Number of states') - call write_int(iunit,sze,'Number of determinants') - write(iunit,'(A)') '' - write_buffer = '===== ' - do i=1,N_st - write_buffer = trim(write_buffer)//' ================ ================' - enddo - write(iunit,'(A)') trim(write_buffer) - write_buffer = ' Iter' - do i=1,N_st - write_buffer = trim(write_buffer)//' Energy Residual' - enddo - write(iunit,'(A)') trim(write_buffer) - write_buffer = '===== ' - do i=1,N_st - write_buffer = trim(write_buffer)//' ================ ================' - enddo - write(iunit,'(A)') trim(write_buffer) - - allocate( & - kl_pairs(2,N_st*(N_st+1)/2), & - W(sze,N_st,davidson_sze_max), & - U(sze,N_st,davidson_sze_max), & - R(sze,N_st), & - h(N_st,davidson_sze_max,N_st,davidson_sze_max), & - y(N_st,davidson_sze_max,N_st,davidson_sze_max), & - lambda(N_st*davidson_sze_max)) - - ASSERT (N_st > 0) - ASSERT (sze > 0) - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - - ! Initialization - ! ============== - - k_pairs=0 - do l=1,N_st - do k=1,l - k_pairs+=1 - kl_pairs(1,k_pairs) = k - kl_pairs(2,k_pairs) = l - enddo - enddo - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, & - !$OMP Nint,dets_in,u_in) & - !$OMP PRIVATE(k,l,kl,i) - - - ! Orthonormalize initial guess - ! ============================ - - !$OMP DO - do kl=1,k_pairs - k = kl_pairs(1,kl) - l = kl_pairs(2,kl) - if (k/=l) then - overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze) - overlap(l,k) = overlap(k,l) - else - overlap(k,k) = u_dot_u(U_in(1,k),sze) - endif - enddo - !$OMP END DO - !$OMP END PARALLEL - - call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze) - - ! Davidson iterations - ! =================== - - converged = .False. - - do while (.not.converged) - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st) - do k=1,N_st - !$OMP DO - do i=1,sze - U(i,k,1) = u_in(i,k) - enddo - !$OMP END DO - enddo - !$OMP END PARALLEL - - do iter=1,davidson_sze_max-1 - - ! Compute W_k = H |u_k> - ! ---------------------- - - do k=1,N_st - call H_u_0(W(1,k,iter),U(1,k,iter),H_jj,sze,dets_in,Nint) - enddo - - ! Compute h_kl = = - ! ------------------------------------------- - - do l=1,N_st - do k=1,N_st - do iter2=1,iter-1 - h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze) - h(k,iter,l,iter2) = h(k,iter2,l,iter) - enddo - enddo - do k=1,l - h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze) - h(l,iter,k,iter) = h(k,iter,l,iter) - enddo - enddo - - !DEBUG H MATRIX - !do i=1,iter - ! print '(10(x,F16.10))', h(1,i,1,1:i) - !enddo - !print *, '' - !END - - ! Diagonalize h - ! ------------- - call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter) - - ! Express eigenvectors of h in the determinant basis - ! -------------------------------------------------- - - do k=1,N_st - do i=1,sze - U(i,k,iter+1) = 0.d0 - W(i,k,iter+1) = 0.d0 - do l=1,N_st - do iter2=1,iter - U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1) - W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1) - enddo - enddo - enddo - enddo - - ! Compute residual vector - ! ----------------------- - - do k=1,N_st - do i=1,sze - R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1) - enddo - residual_norm(k) = u_dot_u(R(1,k),sze) - to_print(1,k) = lambda(k) + nuclear_repulsion - to_print(2,k) = residual_norm(k) - enddo - - write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))'), iter, to_print(:,1:N_st) - call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged) - if (converged) then - exit - endif - - - ! Davidson step - ! ------------- - - do k=1,N_st - do i=1,sze - U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k) - enddo - enddo - - ! Gram-Schmidt - ! ------------ - - double precision :: c - do k=1,N_st - do iter2=1,iter - do l=1,N_st - c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze) - do i=1,sze - U(i,k,iter+1) -= c * U(i,l,iter2) - enddo - enddo - enddo - do l=1,k-1 - c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze) - do i=1,sze - U(i,k,iter+1) -= c * U(i,l,iter+1) - enddo - enddo - call normalize( U(1,k,iter+1), sze ) - enddo - - !DEBUG : CHECK OVERLAP - !print *, '===' - !do k=1,iter+1 - ! do l=1,k - ! c = u_dot_v(U(1,1,k),U(1,1,l),sze) - ! print *, k,l, c - ! enddo - !enddo - !print *, '===' - !pause - !END DEBUG - - - enddo - - if (.not.converged) then - iter = davidson_sze_max-1 - endif - - ! Re-contract to u_in - ! ----------- - - do k=1,N_st - energies(k) = lambda(k) - do i=1,sze - u_in(i,k) = 0.d0 - do iter2=1,iter - do l=1,N_st - u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1) - enddo - enddo - enddo - enddo - - enddo - - write_buffer = '===== ' - do i=1,N_st - write_buffer = trim(write_buffer)//' ================ ================' - enddo - write(iunit,'(A)') trim(write_buffer) - write(iunit,'(A)') '' - call write_time(iunit) - - deallocate ( & - kl_pairs, & - W, & - U, & - R, & - h, & - y, & - lambda & - ) - abort_here = abort_all -end - - BEGIN_PROVIDER [ character(64), davidson_criterion ] -&BEGIN_PROVIDER [ double precision, davidson_threshold ] - implicit none - BEGIN_DOC - ! Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] - END_DOC - davidson_criterion = 'residual' - davidson_threshold = 1.d-6 -END_PROVIDER - -subroutine davidson_converged(energy,residual,wall,iterations,cpu,N_st,converged) - implicit none - BEGIN_DOC -! True if the Davidson algorithm is converged - END_DOC - integer, intent(in) :: N_st, iterations - logical, intent(out) :: converged - double precision, intent(in) :: energy(N_st), residual(N_st) - double precision, intent(in) :: wall, cpu - double precision :: E(N_st), time - double precision, allocatable, save :: energy_old(:) - - if (.not.allocated(energy_old)) then - allocate(energy_old(N_st)) - energy_old = 0.d0 - endif - - E = energy - energy_old - energy_old = energy - if (davidson_criterion == 'energy') then - converged = dabs(maxval(E(1:N_st))) < davidson_threshold - else if (davidson_criterion == 'residual') then - converged = dabs(maxval(residual(1:N_st))) < davidson_threshold - else if (davidson_criterion == 'both') then - converged = dabs(maxval(residual(1:N_st))) + dabs(maxval(E(1:N_st)) ) & - < davidson_threshold - else if (davidson_criterion == 'wall_time') then - call wall_time(time) - converged = time - wall > davidson_threshold - else if (davidson_criterion == 'cpu_time') then - call cpu_time(time) - converged = time - cpu > davidson_threshold - else if (davidson_criterion == 'iterations') then - converged = iterations >= int(davidson_threshold) - endif - converged = converged.or.abort_here -end diff --git a/src/Dets/density_matrix.irp.f b/src/Dets/density_matrix.irp.f deleted file mode 100644 index f72b337c..00000000 --- a/src/Dets/density_matrix.irp.f +++ /dev/null @@ -1,214 +0,0 @@ - BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] -&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] - implicit none - BEGIN_DOC - ! Alpha and beta one-body density matrix for each state - END_DOC - - integer :: j,k,l,m - integer :: occ(N_int*bit_kind_size,2) - double precision :: ck, cl, ckl - double precision :: phase - integer :: h1,h2,p1,p2,s1,s2, degree - integer :: exc(0:2,2,2),n_occ_alpha - double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) - - if(only_single_double_dm)then - print*,'ONLY DOUBLE DM' - one_body_dm_mo_alpha = one_body_single_double_dm_mo_alpha - one_body_dm_mo_beta = one_body_single_double_dm_mo_beta - else - one_body_dm_mo_alpha = 0.d0 - one_body_dm_mo_beta = 0.d0 - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & - !$OMP tmp_a, tmp_b, n_occ_alpha)& - !$OMP SHARED(psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& - !$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,& - !$OMP mo_tot_num) - allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) - tmp_a = 0.d0 - tmp_b = 0.d0 - !$OMP DO SCHEDULE(dynamic) - do k=1,N_det - call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) - call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) - do m=1,N_states - ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) - do l=1,elec_alpha_num - j = occ(l,1) - tmp_a(j,j) += ck - enddo - do l=1,elec_beta_num - j = occ(l,2) - tmp_b(j,j) += ck - enddo - enddo - do l=1,k-1 - call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) - if (degree /= 1) then - cycle - endif - call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) - call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) - do m=1,N_states - ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) - if (s1==1) then - tmp_a(h1,p1) += ckl - tmp_a(p1,h1) += ckl - else - tmp_b(h1,p1) += ckl - tmp_b(p1,h1) += ckl - endif - enddo - enddo - enddo - !$OMP END DO NOWAIT - !$OMP CRITICAL - one_body_dm_mo_alpha = one_body_dm_mo_alpha + tmp_a - !$OMP END CRITICAL - !$OMP CRITICAL - one_body_dm_mo_beta = one_body_dm_mo_beta + tmp_b - !$OMP END CRITICAL - deallocate(tmp_a,tmp_b) - !$OMP BARRIER - !$OMP END PARALLEL - - endif -END_PROVIDER - - BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] -&BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] - implicit none - BEGIN_DOC - ! Alpha and beta one-body density matrix for each state - END_DOC - - integer :: j,k,l,m - integer :: occ(N_int*bit_kind_size,2) - double precision :: ck, cl, ckl - double precision :: phase - integer :: h1,h2,p1,p2,s1,s2, degree - integer :: exc(0:2,2,2),n_occ_alpha - double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) - integer :: degree_respect_to_HF_k - integer :: degree_respect_to_HF_l - - PROVIDE elec_alpha_num elec_beta_num - - one_body_single_double_dm_mo_alpha = 0.d0 - one_body_single_double_dm_mo_beta = 0.d0 - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & - !$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)& - !$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& - !$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,mo_tot_num_align,& - !$OMP mo_tot_num) - allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) - tmp_a = 0.d0 - tmp_b = 0.d0 - !$OMP DO SCHEDULE(dynamic) - do k=1,N_det - call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) - call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) - call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int) - - do m=1,N_states - ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) - call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int) - if(degree_respect_to_HF_l.le.0)then - do l=1,elec_alpha_num - j = occ(l,1) - tmp_a(j,j) += ck - enddo - do l=1,elec_beta_num - j = occ(l,2) - tmp_b(j,j) += ck - enddo - endif - enddo - do l=1,k-1 - call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int) - if(degree_respect_to_HF_k.ne.0)cycle - if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle - call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) - if (degree /= 1) then - cycle - endif - call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) - call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) - do m=1,N_states - ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) - if (s1==1) then - tmp_a(h1,p1) += ckl - tmp_a(p1,h1) += ckl - else - tmp_b(h1,p1) += ckl - tmp_b(p1,h1) += ckl - endif - enddo - enddo - enddo - !$OMP END DO NOWAIT - !$OMP CRITICAL - one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a - !$OMP END CRITICAL - !$OMP CRITICAL - one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b - !$OMP END CRITICAL - deallocate(tmp_a,tmp_b) - !$OMP BARRIER - !$OMP END PARALLEL -END_PROVIDER - -BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ] - implicit none - BEGIN_DOC - ! One-body density matrix - END_DOC - one_body_dm_mo = one_body_dm_mo_alpha + one_body_dm_mo_beta -END_PROVIDER - -BEGIN_PROVIDER [ double precision, one_body_spin_density_mo, (mo_tot_num_align,mo_tot_num) ] - implicit none - BEGIN_DOC - ! rho(alpha) - rho(beta) - END_DOC - one_body_spin_density_mo = one_body_dm_mo_alpha - one_body_dm_mo_beta -END_PROVIDER - -subroutine set_natural_mos - implicit none - BEGIN_DOC - ! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis - END_DOC - character*(64) :: label - double precision, allocatable :: tmp(:,:) - allocate(tmp(size(one_body_dm_mo,1),size(one_body_dm_mo,2))) - - ! Negation to have the occupied MOs first after the diagonalization - tmp = -one_body_dm_mo - label = "Natural" - call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label) - deallocate(tmp) - -end -subroutine save_natural_mos - implicit none - BEGIN_DOC - ! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis - END_DOC - call set_natural_mos - call save_mos - -end - - -BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ] - implicit none - BEGIN_DOC - ! Weights in the state-average calculation of the density matrix - END_DOC - state_average_weight = 1.d0/dble(N_states) -END_PROVIDER - diff --git a/src/Dets/det_svd.irp.f b/src/Dets/det_svd.irp.f deleted file mode 100644 index 0a57acf3..00000000 --- a/src/Dets/det_svd.irp.f +++ /dev/null @@ -1,61 +0,0 @@ -program det_svd - implicit none - BEGIN_DOC -! Computes the SVD of the Alpha x Beta determinant coefficient matrix - END_DOC - integer :: i,j,k - - read_wf = .True. - TOUCH read_wf - - print *, 'SVD matrix before filling' - print *, '=========================' - print *, '' - print *, 'N_det = ', N_det - print *, 'N_det_alpha = ', N_det_alpha_unique - print *, 'N_det_beta = ', N_det_beta_unique - print *, '' - -! do i=1,N_det_alpha_unique -! do j=1,N_det_beta_unique -! print *, i,j,psi_svd_matrix(i,j,:) -! enddo -! enddo - - print *, '' - print *, 'Energy = ', ci_energy - print *, '' - - print *, psi_svd_coefs(1:20,1) - - call generate_all_alpha_beta_det_products - print *, '' - print *, 'Energy = ', ci_energy - print *, '' - - print *, 'SVD matrix after filling' - print *, '========================' - print *, '' - print *, 'N_det = ', N_det - print *, 'N_det_alpha = ', N_det_alpha_unique - print *, 'N_det_beta = ', N_det_beta_unique - print *, '' - print *, '' - call diagonalize_ci - print *, 'Energy = ', ci_energy - - do i=1,N_det_alpha_unique - do j=1,N_det_beta_unique - do k=1,N_states - if (dabs(psi_svd_matrix(i,j,k)) < 1.d-15) then - psi_svd_matrix(i,j,k) = 0.d0 - endif - enddo - enddo - enddo - - print *, '' - print *, psi_svd_coefs(1:20,1) - call save_wavefunction - -end diff --git a/src/Dets/determinants.ezfio_config b/src/Dets/determinants.ezfio_config deleted file mode 100644 index 0937502a..00000000 --- a/src/Dets/determinants.ezfio_config +++ /dev/null @@ -1,20 +0,0 @@ -determinants - n_int integer - bit_kind integer - mo_label character*(64) - n_det integer - n_states integer - n_states_diag integer - psi_coef double precision (determinants_n_det,determinants_n_states) - psi_det integer*8 (determinants_n_int*determinants_bit_kind/8,2,determinants_n_det) - n_det_max_jacobi integer - threshold_generators double precision - threshold_selectors double precision - det_num integer - det_occ integer (electrons_elec_alpha_num,determinants_det_num,2) - det_coef double precision (determinants_det_num) - read_wf logical - expected_s2 double precision - s2_eig logical - only_single_double_dm logical - diff --git a/src/Dets/determinants_bitmasks.irp.f b/src/Dets/determinants_bitmasks.irp.f deleted file mode 100644 index 8343fa84..00000000 --- a/src/Dets/determinants_bitmasks.irp.f +++ /dev/null @@ -1,57 +0,0 @@ -use bitmasks - -integer, parameter :: hole_ = 1 -integer, parameter :: particle_ = 2 -integer, parameter :: hole2_ = 3 -integer, parameter :: particle2_= 4 - -BEGIN_PROVIDER [ integer, N_single_exc_bitmasks ] - implicit none - BEGIN_DOC - ! Number of single excitation bitmasks - END_DOC - N_single_exc_bitmasks = 1 - !TODO : Read from input! -END_PROVIDER - -BEGIN_PROVIDER [ integer(bit_kind), single_exc_bitmask, (N_int, 2, N_single_exc_bitmasks) ] - implicit none - BEGIN_DOC - ! single_exc_bitmask(:,1,i) is the bitmask for holes - ! single_exc_bitmask(:,2,i) is the bitmask for particles - ! for a given couple of hole/particle excitations i. - END_DOC - - single_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) - single_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) - !TODO : Read from input! -END_PROVIDER - - -BEGIN_PROVIDER [ integer, N_double_exc_bitmasks ] - implicit none - BEGIN_DOC - ! Number of double excitation bitmasks - END_DOC - N_double_exc_bitmasks = 1 - !TODO : Read from input! -END_PROVIDER - -BEGIN_PROVIDER [ integer(bit_kind), double_exc_bitmask, (N_int, 4, N_double_exc_bitmasks) ] - implicit none - BEGIN_DOC - ! double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 - ! double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 - ! double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 - ! double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 - ! for a given couple of hole/particle excitations i. - END_DOC - - double_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) - double_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) - double_exc_bitmask(:,hole2_,1) = HF_bitmask(:,1) - double_exc_bitmask(:,particle2_,1) = not(HF_bitmask(:,2)) - - !TODO : Read from input! -END_PROVIDER - diff --git a/src/Dets/diagonalize_CI.irp.f b/src/Dets/diagonalize_CI.irp.f deleted file mode 100644 index 55612920..00000000 --- a/src/Dets/diagonalize_CI.irp.f +++ /dev/null @@ -1,109 +0,0 @@ -BEGIN_PROVIDER [ character*(64), diag_algorithm ] - implicit none - BEGIN_DOC - ! Diagonalization algorithm (Davidson or Lapack) - END_DOC - if (N_det > N_det_max_jacobi) then - diag_algorithm = "Davidson" - else - diag_algorithm = "Lapack" - endif - - if (N_det < N_states_diag) then - diag_algorithm = "Lapack" - endif - -END_PROVIDER - -BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] - implicit none - BEGIN_DOC - ! N_states lowest eigenvalues of the CI matrix - END_DOC - - integer :: j - character*(8) :: st - call write_time(output_Dets) - do j=1,N_states_diag - CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion - write(st,'(I4)') j - call write_double(output_Dets,CI_energy(j),'Energy of state '//trim(st)) - call write_double(output_Dets,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) - enddo - -END_PROVIDER - - BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] - implicit none - BEGIN_DOC - ! Eigenvectors/values of the CI matrix - END_DOC - integer :: i,j - - do j=1,N_states_diag - do i=1,N_det - CI_eigenvectors(i,j) = psi_coef(i,j) - enddo - enddo - - if (diag_algorithm == "Davidson") then - - call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & - size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_Dets) - - else if (diag_algorithm == "Lapack") then - - double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) - allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) - allocate (eigenvalues(N_det)) - call lapack_diag(eigenvalues,eigenvectors, & - H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) - CI_electronic_energy(:) = 0.d0 - do i=1,N_det - CI_eigenvectors(i,1) = eigenvectors(i,1) - enddo - integer :: i_state - double precision :: s2 - i_state = 0 - do j=1,N_det - call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) - if(dabs(s2-expected_s2).le.0.3d0)then - i_state += 1 - do i=1,N_det - CI_eigenvectors(i,i_state) = eigenvectors(i,j) - enddo - CI_electronic_energy(i_state) = eigenvalues(j) - CI_eigenvectors_s2(i_state) = s2 - endif - if (i_state.ge.N_states_diag) then - exit - endif - enddo -! if(i_state < min(N_states_diag,N_det))then -! print *, 'pb with the number of states' -! print *, 'i_state = ',i_state -! print *, 'N_states_diag ',N_states_diag -! print *,'stopping ...' -! stop -! endif - deallocate(eigenvectors,eigenvalues) - endif - -END_PROVIDER - -subroutine diagonalize_CI - implicit none - BEGIN_DOC -! Replace the coefficients of the CI states by the coefficients of the -! eigenstates of the CI matrix - END_DOC - integer :: i,j - do j=1,N_states_diag - do i=1,N_det - psi_coef(i,j) = CI_eigenvectors(i,j) - enddo - enddo - SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2 -end diff --git a/src/Dets/diagonalize_CI_SC2.irp.f b/src/Dets/diagonalize_CI_SC2.irp.f deleted file mode 100644 index 86ba72b9..00000000 --- a/src/Dets/diagonalize_CI_SC2.irp.f +++ /dev/null @@ -1,59 +0,0 @@ -BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states_diag) ] - implicit none - BEGIN_DOC - ! N_states_diag lowest eigenvalues of the CI matrix - END_DOC - - integer :: j - character*(8) :: st - call write_time(output_Dets) - do j=1,N_states_diag - CI_SC2_energy(j) = CI_SC2_electronic_energy(j) + nuclear_repulsion - write(st,'(I4)') j - call write_double(output_Dets,CI_SC2_energy(j),'Energy of state '//trim(st)) - enddo - -END_PROVIDER - - BEGIN_PROVIDER [ double precision, threshold_convergence_SC2] - implicit none - BEGIN_DOC - ! convergence of the correlation energy of SC2 iterations - END_DOC - threshold_convergence_SC2 = 1.d-10 - - END_PROVIDER - BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ] - implicit none - BEGIN_DOC - ! Eigenvectors/values of the CI matrix - END_DOC - integer :: i,j - - do j=1,N_states_diag - do i=1,N_det - CI_SC2_eigenvectors(i,j) = psi_coef(i,j) - enddo -! TODO : check comment -! CI_SC2_electronic_energy(j) = CI_electronic_energy(j) - enddo - - call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, & - size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2) -END_PROVIDER - -subroutine diagonalize_CI_SC2 - implicit none - BEGIN_DOC -! Replace the coefficients of the CI states_diag by the coefficients of the -! eigenstates of the CI matrix - END_DOC - integer :: i,j - do j=1,N_states_diag - do i=1,N_det - psi_coef(i,j) = CI_SC2_eigenvectors(i,j) - enddo - enddo - SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors -end diff --git a/src/Dets/diagonalize_CI_mono.irp.f b/src/Dets/diagonalize_CI_mono.irp.f deleted file mode 100644 index a3c5b103..00000000 --- a/src/Dets/diagonalize_CI_mono.irp.f +++ /dev/null @@ -1,72 +0,0 @@ - BEGIN_PROVIDER [ double precision, CI_electronic_energy_mono, (N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_eigenvectors_mono, (N_det,N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_mono, (N_states_diag) ] - implicit none - BEGIN_DOC - ! Eigenvectors/values of the CI matrix - END_DOC - integer :: i,j - - do j=1,N_states_diag - do i=1,N_det - CI_eigenvectors_mono(i,j) = psi_coef(i,j) - enddo - enddo - - if (diag_algorithm == "Davidson") then - - call davidson_diag(psi_det,CI_eigenvectors_mono,CI_electronic_energy, & - size(CI_eigenvectors_mono,1),N_det,N_states_diag,N_int,output_Dets) - - else if (diag_algorithm == "Lapack") then - - double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) - allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) - allocate (eigenvalues(N_det)) - call lapack_diag(eigenvalues,eigenvectors, & - H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) - CI_electronic_energy_mono(:) = 0.d0 - do i=1,N_det - CI_eigenvectors_mono(i,1) = eigenvectors(i,1) - enddo - integer :: i_state - double precision :: s2 - i_state = 0 - do j=1,N_det - call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) - if(dabs(s2-expected_s2).le.0.3d0)then - print*,'j = ',j - print*,'e = ',eigenvalues(j) - print*,'c = ',dabs(eigenvectors(1,j)) - if(dabs(eigenvectors(1,j)).gt.0.9d0)then - i_state += 1 - do i=1,N_det - CI_eigenvectors_mono(i,i_state) = eigenvectors(i,j) - enddo - CI_electronic_energy_mono(i_state) = eigenvalues(j) - CI_eigenvectors_s2_mono(i_state) = s2 - endif - endif - if (i_state.ge.N_states_diag) then - exit - endif - enddo - deallocate(eigenvectors,eigenvalues) - endif - -END_PROVIDER - -subroutine diagonalize_CI_mono - implicit none - BEGIN_DOC -! Replace the coefficients of the CI states by the coefficients of the -! eigenstates of the CI matrix - END_DOC - integer :: i,j - do j=1,N_states_diag - do i=1,N_det - psi_coef(i,j) = CI_eigenvectors_mono(i,j) - enddo - enddo - SOFT_TOUCH psi_coef CI_electronic_energy_mono CI_eigenvectors_mono CI_eigenvectors_s2_mono -end diff --git a/src/Dets/excitations_utils.irp.f b/src/Dets/excitations_utils.irp.f deleted file mode 100644 index 46e38b08..00000000 --- a/src/Dets/excitations_utils.irp.f +++ /dev/null @@ -1,16 +0,0 @@ -subroutine apply_mono(i_hole,i_particle,ispin_excit,key_in,Nint) - implicit none - integer, intent(in) :: i_hole,i_particle,ispin_excit,Nint - integer(bit_kind), intent(inout) :: key_in(Nint,2) - integer :: k,j - use bitmasks - ! hole - k = ishft(i_hole-1,-bit_kind_shift)+1 - j = i_hole-ishft(k-1,bit_kind_shift)-1 - key_in(k,ispin_excit) = ibclr(key_in(k,ispin_excit),j) - - k = ishft(i_particle-1,-bit_kind_shift)+1 - j = i_particle-ishft(k-1,bit_kind_shift)-1 - key_in(k,ispin_excit) = ibset(key_in(k,ispin_excit),j) - -end diff --git a/src/Dets/filter_connected.irp.f b/src/Dets/filter_connected.irp.f deleted file mode 100644 index 93a6ee7b..00000000 --- a/src/Dets/filter_connected.irp.f +++ /dev/null @@ -1,611 +0,0 @@ - -subroutine filter_connected(key1,key2,Nint,sze,idx) - use bitmasks - implicit none - BEGIN_DOC - ! Filters out the determinants that are not connected by H - ! - ! returns the array idx which contains the index of the - ! - ! determinants in the array key1 that interact - ! - ! via the H operator with key2. - ! - ! idx(0) is the number of determinants that interact with key1 - END_DOC - integer, intent(in) :: Nint, sze - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: idx(0:sze) - - integer :: i,j,l - integer :: degree_x2 - - ASSERT (Nint > 0) - ASSERT (sze >= 0) - - l=1 - - if (Nint==1) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) & - + popcnt( xor( key1(1,2,i), key2(1,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==2) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) + & - popcnt(xor( key1(3,1,i), key2(3,1))) + & - popcnt(xor( key1(3,2,i), key2(3,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = i - l = l+1 - endif - enddo - - else - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = 0 - !DEC$ LOOP COUNT MIN(4) - do j=1,Nint - degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +& - popcnt(xor( key1(j,2,i), key2(j,2))) - if (degree_x2 > 4) then - exit - endif - enddo - if (degree_x2 <= 5) then - idx(l) = i - l = l+1 - endif - enddo - - endif - idx(0) = l-1 -end - - -subroutine filter_connected_sorted_ab(key1,key2,next,Nint,sze,idx) - use bitmasks - implicit none - BEGIN_DOC - ! Filters out the determinants that are not connected by H - ! returns the array idx which contains the index of the - ! determinants in the array key1 that interact - ! via the H operator with key2. - ! idx(0) is the number of determinants that interact with key1 - ! - ! Determinants are taken from the psi_det_sorted_ab array - END_DOC - integer, intent(in) :: Nint, sze - integer, intent(in) :: next(2,N_det) - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: idx(0:sze) - - integer :: i,j,l - integer :: degree_x2 - integer(bit_kind) :: det3_1(Nint,2), det3_2(Nint,2) - - ASSERT (Nint > 0) - ASSERT (sze >= 0) - - l=1 - - call filter_3_highest_electrons( key2(1,1), det3_2(1,1), Nint) - if (Nint==1) then - - i = 1 - do while ( i<= sze ) - call filter_3_highest_electrons( key1(1,1,i), det3_1(1,1), Nint) - degree_x2 = popcnt( xor( det3_1(1,1), det3_2(1,1))) - if (degree_x2 > 4) then - i = next(1,i) - cycle - else - degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1)) ) - if (degree_x2 <= 4) then - degree_x2 += popcnt( xor( key1(1,2,i), key2(1,2)) ) - if (degree_x2 <= 4) then - idx(l) = i - l += 1 - endif - endif - i += 1 - endif - enddo - - else - - print *, 'Not implemented', irp_here - stop 1 - - endif - idx(0) = l-1 -end - - - - -subroutine filter_connected_davidson(key1,key2,Nint,sze,idx) - use bitmasks - implicit none - BEGIN_DOC - ! Filters out the determinants that are not connected by H - ! returns the array idx which contains the index of the - ! determinants in the array key1 that interact - ! via the H operator with key2. - ! - ! idx(0) is the number of determinants that interact with key1 - ! key1 should come from psi_det_sorted_ab. - END_DOC - integer, intent(in) :: Nint, sze - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: idx(0:sze) - - integer :: i,j,k,l - integer :: degree_x2 - integer :: j_int, j_start - integer*8 :: itmp - - PROVIDE N_con_int det_connections - ASSERT (Nint > 0) - ASSERT (sze >= 0) - - l=1 - - if (Nint==1) then - - i = idx(0) - do j_int=1,N_con_int - itmp = det_connections(j_int,i) - do while (itmp /= 0_8) - j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) - do j = j_start+1, min(j_start+32,i-1) - degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & - popcnt(xor( key1(1,2,j), key2(1,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = j - l = l+1 - endif - enddo - itmp = iand(itmp-1_8,itmp) - enddo - enddo - - else if (Nint==2) then - - - i = idx(0) - do j_int=1,N_con_int - itmp = det_connections(j_int,i) - do while (itmp /= 0_8) - j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) - do j = j_start+1, min(j_start+32,i-1) - degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & - popcnt(xor( key1(2,1,j), key2(2,1))) + & - popcnt(xor( key1(1,2,j), key2(1,2))) + & - popcnt(xor( key1(2,2,j), key2(2,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = j - l = l+1 - endif - enddo - itmp = iand(itmp-1_8,itmp) - enddo - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - i = idx(0) - do j_int=1,N_con_int - itmp = det_connections(j_int,i) - do while (itmp /= 0_8) - j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) - do j = j_start+1, min(j_start+32,i-1) - degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & - popcnt(xor( key1(1,2,j), key2(1,2))) + & - popcnt(xor( key1(2,1,j), key2(2,1))) + & - popcnt(xor( key1(2,2,j), key2(2,2))) + & - popcnt(xor( key1(3,1,j), key2(3,1))) + & - popcnt(xor( key1(3,2,j), key2(3,2))) - if (degree_x2 > 4) then - cycle - else - idx(l) = j - l = l+1 - endif - enddo - itmp = iand(itmp-1_8,itmp) - enddo - enddo - - else - - !DIR$ LOOP COUNT (1000) - i = idx(0) - do j_int=1,N_con_int - itmp = det_connections(j_int,i) - do while (itmp /= 0_8) - j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) - do j = j_start+1, min(j_start+32,i-1) - degree_x2 = 0 - !DEC$ LOOP COUNT MIN(4) - do k=1,Nint - degree_x2 = degree_x2+ popcnt(xor( key1(k,1,j), key2(k,1))) +& - popcnt(xor( key1(k,2,j), key2(k,2))) - if (degree_x2 > 4) then - exit - endif - enddo - if (degree_x2 <= 5) then - idx(l) = j - l = l+1 - endif - enddo - itmp = iand(itmp-1_8,itmp) - enddo - enddo - - endif - idx(0) = l-1 -end - -subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx) - use bitmasks - BEGIN_DOC - ! returns the array idx which contains the index of the - ! - ! determinants in the array key1 that interact - ! - ! via the H operator with key2. - ! - ! idx(0) is the number of determinants that interact with key1 - END_DOC - implicit none - integer, intent(in) :: Nint, sze - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: idx(0:sze) - - integer :: i,l,m - integer :: degree_x2 - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - ASSERT (sze > 0) - - l=1 - - if (Nint==1) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) - if (degree_x2 > 4) then - cycle - else if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==2) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) - if (degree_x2 > 4) then - cycle - else if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) + & - popcnt(xor( key1(3,1,i), key2(3,1))) + & - popcnt(xor( key1(3,2,i), key2(3,2))) - if (degree_x2 > 4) then - cycle - else if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - enddo - - else - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = 0 - !DEC$ LOOP COUNT MIN(4) - do m=1,Nint - degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& - popcnt(xor( key1(m,2,i), key2(m,2))) - if (degree_x2 > 4) then - exit - endif - enddo - if (degree_x2 > 4) then - cycle - else if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - enddo - - endif - idx(0) = l-1 -end - -subroutine filter_connected_i_H_psi0_SC2(key1,key2,Nint,sze,idx,idx_repeat) - use bitmasks - BEGIN_DOC - ! standard filter_connected_i_H_psi but returns in addition - ! - ! the array of the index of the non connected determinants to key1 - ! - ! in order to know what double excitation can be repeated on key1 - ! - ! idx_repeat(0) is the number of determinants that can be used - ! - ! to repeat the excitations - END_DOC - implicit none - integer, intent(in) :: Nint, sze - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: idx(0:sze) - integer, intent(out) :: idx_repeat(0:sze) - - integer :: i,l,l_repeat,m - integer :: degree_x2 - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - ASSERT (sze > 0) - - integer :: degree - degree = popcnt(xor( ref_bitmask(1,1), key2(1,1))) + & - popcnt(xor( ref_bitmask(1,2), key2(1,2))) - !DEC$ NOUNROLL - do m=2,Nint - degree = degree+ popcnt(xor( ref_bitmask(m,1), key2(m,1))) + & - popcnt(xor( ref_bitmask(m,2), key2(m,2))) - enddo - degree = ishft(degree,-1) - - l_repeat=1 - l=1 - if(degree == 2)then - if (Nint==1) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) - if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - elseif(degree_x2>6)then - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - else if (Nint==2) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) - if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - elseif(degree_x2>6)then - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) + & - popcnt(xor( key1(3,1,i), key2(3,1))) + & - popcnt(xor( key1(3,2,i), key2(3,2))) - if(degree_x2>6)then - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - else if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - endif - enddo - - else - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = 0 - !DEC$ LOOP COUNT MIN(4) - do m=1,Nint - degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& - popcnt(xor( key1(m,2,i), key2(m,2))) - if (degree_x2 > 4) then - exit - endif - enddo - if (degree_x2 <= 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - elseif(degree_x2>6)then - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - endif - elseif(degree==1)then - if (Nint==1) then - - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) - if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - else - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - else if (Nint==2) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) - if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - else - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) + & - popcnt(xor( key1(3,1,i), key2(3,1))) + & - popcnt(xor( key1(3,2,i), key2(3,2))) - if (degree_x2 < 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - else - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - else - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree_x2 = 0 - !DEC$ LOOP COUNT MIN(4) - do m=1,Nint - degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& - popcnt(xor( key1(m,2,i), key2(m,2))) - if (degree_x2 > 4) then - exit - endif - enddo - if (degree_x2 <= 5) then - if(degree_x2 .ne. 0)then - idx(l) = i - l = l+1 - endif - else - idx_repeat(l_repeat) = i - l_repeat = l_repeat + 1 - endif - enddo - - endif - - else -! print*,'more than a double excitation, can not apply the ' -! print*,'SC2 dressing of the diagonal element .....' -! print*,'stop !!' -! print*,'degree = ',degree -! stop - idx(0) = 0 - idx_repeat(0) = 0 - endif - idx(0) = l-1 - idx_repeat(0) = l_repeat-1 -end - diff --git a/src/Dets/guess_doublet.irp.f b/src/Dets/guess_doublet.irp.f deleted file mode 100644 index a44697c1..00000000 --- a/src/Dets/guess_doublet.irp.f +++ /dev/null @@ -1,79 +0,0 @@ -program put_gess - use bitmasks - implicit none - integer :: i,j,N_det_tmp,N_states_tmp - integer :: list(N_int*bit_kind_size,2) - integer(bit_kind) :: string(N_int,2) - integer(bit_kind) :: psi_det_tmp(N_int,2,3) - double precision :: psi_coef_tmp(3,1) - - integer :: iorb,jorb,korb - print*,'which open shells ?' - read(5,*)iorb,jorb,korb - print*,iorb,jorb,korb - N_states= 1 - N_det= 3 - - - list = 0 - list(1,1) = 1 - list(1,2) = 1 - list(2,1) = 2 - list(2,2) = 2 - list(3,1) = iorb - list(4,1) = jorb - list(3,2) = korb - print*,'passed' - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - print*,'passed' - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - print*,'passed' - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,1) = string(i,j) - enddo - enddo - psi_coef(1,1) = 1.d0/dsqrt(3.d0) - - print*,'passed 1' - list = 0 - list(1,1) = 1 - list(1,2) = 1 - list(2,1) = 2 - list(2,2) = 2 - list(3,1) = iorb - list(4,1) = korb - list(3,2) = jorb - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,2) = string(i,j) - enddo - enddo - psi_coef(2,1) = 1.d0/dsqrt(3.d0) - - print*,'passed 2' - list = 0 - list(1,1) = 1 - list(1,2) = 1 - list(2,1) = 2 - list(2,2) = 2 - list(3,1) = korb - list(4,1) = jorb - list(3,2) = iorb - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,3) = string(i,j) - enddo - enddo - psi_coef(3,1) = 1.d0/dsqrt(3.d0) - print*,'passed 3' - - call save_wavefunction -end diff --git a/src/Dets/guess_singlet.irp.f b/src/Dets/guess_singlet.irp.f deleted file mode 100644 index 50f8dc4e..00000000 --- a/src/Dets/guess_singlet.irp.f +++ /dev/null @@ -1,44 +0,0 @@ -program put_gess - use bitmasks - implicit none - integer :: i,j,N_det_tmp,N_states_tmp - integer :: list(N_int*bit_kind_size,2) - integer(bit_kind) :: string(N_int,2) - integer(bit_kind) :: psi_det_tmp(N_int,2,2) - double precision :: psi_coef_tmp(2,1) - - integer :: iorb,jorb - print*,'which open shells ?' - read(5,*)iorb,jorb - N_states= 1 - N_det= 2 - - - list = 0 - list(1,1) = iorb - list(1,2) = jorb - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,1) = string(i,j) - enddo - enddo - psi_coef(1,1) = 1.d0/dsqrt(2.d0) - - list = 0 - list(1,1) = jorb - list(1,2) = iorb - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,2) = string(i,j) - enddo - enddo - psi_coef(2,1) = 1.d0/dsqrt(2.d0) - - call save_wavefunction -end diff --git a/src/Dets/guess_triplet.irp.f b/src/Dets/guess_triplet.irp.f deleted file mode 100644 index 77f88c3e..00000000 --- a/src/Dets/guess_triplet.irp.f +++ /dev/null @@ -1,48 +0,0 @@ -program put_gess - use bitmasks - implicit none - integer :: i,j,N_det_tmp,N_states_tmp - integer :: list(N_int*bit_kind_size,2) - integer(bit_kind) :: string(N_int,2) - integer(bit_kind) :: psi_det_tmp(N_int,2,2) - double precision :: psi_coef_tmp(2,1) - - integer :: iorb,jorb - print*,'which open shells ?' - read(5,*)iorb,jorb - N_states= 1 - N_det= 2 - print*,'iorb = ',iorb - print*,'jorb = ',jorb - - - list = 0 - list(1,1) = iorb - list(1,2) = jorb - string = 0 - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,1) = string(i,j) - enddo - enddo - psi_coef(1,1) = 1.d0/dsqrt(2.d0) - - list = 0 - list(1,1) = jorb - list(1,2) = iorb - string = 0 - call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) - call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) - call print_det(string,N_int) - do j = 1,2 - do i = 1, N_int - psi_det(i,j,2) = string(i,j) - enddo - enddo - psi_coef(2,1) = -1.d0/dsqrt(2.d0) - - call save_wavefunction -end diff --git a/src/Dets/occ_pattern.irp.f b/src/Dets/occ_pattern.irp.f deleted file mode 100644 index 29d0dacf..00000000 --- a/src/Dets/occ_pattern.irp.f +++ /dev/null @@ -1,339 +0,0 @@ -use bitmasks -subroutine det_to_occ_pattern(d,o,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Transform a determinant to an occupation pattern - END_DOC - integer ,intent(in) :: Nint - integer(bit_kind),intent(in) :: d(Nint,2) - integer(bit_kind),intent(out) :: o(Nint,2) - - integer :: k - - do k=1,Nint - o(k,1) = ieor(d(k,1),d(k,2)) - o(k,2) = iand(d(k,1),d(k,2)) - enddo -end - -subroutine occ_pattern_to_dets_size(o,sze,n_alpha,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Number of possible determinants for a given occ_pattern - END_DOC - integer ,intent(in) :: Nint, n_alpha - integer(bit_kind),intent(in) :: o(Nint,2) - integer, intent(out) :: sze - integer :: amax,bmax,k - double precision, external :: binom_func - - amax = n_alpha - bmax = 0 - do k=1,Nint - bmax += popcnt( o(k,1) ) - amax -= popcnt( o(k,2) ) - enddo - sze = int( min(binom_func(bmax, amax), 1.d8) ) - -end - -subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Generate all possible determinants for a give occ_pattern - END_DOC - integer ,intent(in) :: Nint, n_alpha - integer ,intent(inout) :: sze - integer(bit_kind),intent(in) :: o(Nint,2) - integer(bit_kind),intent(out) :: d(Nint,2,sze) - - integer :: i, k, nt, na, nd, amax - integer :: list_todo(n_alpha) - integer :: list_a(n_alpha) - - amax = n_alpha - do k=1,Nint - amax -= popcnt( o(k,2) ) - enddo - - call bitstring_to_list(o(1,1), list_todo, nt, Nint) - - na = 0 - nd = 0 - d = 0 - call rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) - - sze = nd - - do i=1,nd - ! Doubly occupied orbitals - do k=1,Nint - d(k,1,i) = ior(d(k,1,i),o(k,2)) - d(k,2,i) = ior(d(k,2,i),o(k,2)) - enddo - enddo - -! !TODO DEBUG -! integer :: j,s -! do i=1,nd -! do j=1,i-1 -! na=0 -! do k=1,Nint -! if((d(k,1,j) /= d(k,1,i)).or. & -! (d(k,2,j) /= d(k,2,i))) then -! s=1 -! exit -! endif -! enddo -! if ( j== 0 ) then -! print *, 'det ',i,' and ',j,' equal:' -! call debug_det(d(1,1,j),Nint) -! call debug_det(d(1,1,i),Nint) -! stop -! endif -! enddo -! enddo -! !TODO DEBUG -end - -recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) - use bitmasks - implicit none - - integer, intent(in) :: nt, sze, amax, Nint,na - integer,intent(inout) :: list_todo(nt) - integer, intent(inout) :: list_a(na+1),nd - integer(bit_kind),intent(inout) :: d(Nint,2,sze) - - if (na == amax) then - nd += 1 - if (na > 0) then - call list_to_bitstring( d(1,1,nd), list_a, na, Nint) - endif - if (nt > 0) then - call list_to_bitstring( d(1,2,nd), list_todo, nt, Nint) - endif - else - integer :: i, j, k - integer :: list_todo_tmp(nt) - do i=1,nt - if (na > 0) then - if (list_todo(i) < list_a(na)) then - cycle - endif - endif - list_a(na+1) = list_todo(i) - k=1 - do j=1,nt - if (i/=j) then - list_todo_tmp(k) = list_todo(j) - k += 1 - endif - enddo - call rec_occ_pattern_to_dets(list_todo_tmp,nt-1,list_a,na+1,d,nd,sze,amax,Nint) - enddo - endif - -end - - BEGIN_PROVIDER [ integer(bit_kind), psi_occ_pattern, (N_int,2,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_occ_pattern ] - implicit none - BEGIN_DOC - ! array of the occ_pattern present in the wf - ! psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation - ! psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation - END_DOC - integer :: i,j,k - - ! create - do i = 1, N_det - do k = 1, N_int - psi_occ_pattern(k,1,i) = ieor(psi_det(k,1,i),psi_det(k,2,i)) - psi_occ_pattern(k,2,i) = iand(psi_det(k,1,i),psi_det(k,2,i)) - enddo - enddo - - ! Sort - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8, external :: occ_pattern_search_key - integer(bit_kind), allocatable :: tmp_array(:,:,:) - logical,allocatable :: duplicate(:) - - - allocate ( iorder(N_det), duplicate(N_det), bit_tmp(N_det), tmp_array(N_int,2,psi_det_size) ) - - do i=1,N_det - iorder(i) = i - !$DIR FORCEINLINE - bit_tmp(i) = occ_pattern_search_key(psi_occ_pattern(1,1,i),N_int) - enddo - call i8sort(bit_tmp,iorder,N_det) - !DIR$ IVDEP - do i=1,N_det - do k=1,N_int - tmp_array(k,1,i) = psi_occ_pattern(k,1,iorder(i)) - tmp_array(k,2,i) = psi_occ_pattern(k,2,iorder(i)) - enddo - duplicate(i) = .False. - enddo - - i=1 - integer (bit_kind) :: occ_pattern_tmp - do i=1,N_det - duplicate(i) = .False. - enddo - - do i=1,N_det-1 - if (duplicate(i)) then - cycle - endif - j = i+1 - do while (bit_tmp(j)==bit_tmp(i)) - if (duplicate(j)) then - j+=1 - cycle - endif - duplicate(j) = .True. - do k=1,N_int - if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) & - .or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then - duplicate(j) = .False. - exit - endif - enddo - j+=1 - if (j>N_det) then - exit - endif - enddo - enddo - - N_occ_pattern=0 - do i=1,N_det - if (duplicate(i)) then - cycle - endif - N_occ_pattern += 1 - do k=1,N_int - psi_occ_pattern(k,1,N_occ_pattern) = tmp_array(k,1,i) - psi_occ_pattern(k,2,N_occ_pattern) = tmp_array(k,2,i) - enddo - enddo - - deallocate(iorder,duplicate,bit_tmp,tmp_array) -! !TODO DEBUG -! integer :: s -! do i=1,N_occ_pattern -! do j=i+1,N_occ_pattern -! s = 0 -! do k=1,N_int -! if((psi_occ_pattern(k,1,j) /= psi_occ_pattern(k,1,i)).or. & -! (psi_occ_pattern(k,2,j) /= psi_occ_pattern(k,2,i))) then -! s=1 -! exit -! endif -! enddo -! if ( s == 0 ) then -! print *, 'Error : occ ', j, 'already in wf' -! call debug_det(psi_occ_pattern(1,1,j),N_int) -! stop -! endif -! enddo -! enddo -! !TODO DEBUG -END_PROVIDER - -subroutine make_s2_eigenfunction - implicit none - integer :: i,j,k - integer :: smax, s - integer(bit_kind), allocatable :: d(:,:,:), det_buffer(:,:,:) - integer :: N_det_new - integer, parameter :: bufsze = 1000 - logical, external :: is_in_wavefunction - -! !TODO DEBUG -! do i=1,N_det -! do j=i+1,N_det -! s = 0 -! do k=1,N_int -! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & -! (psi_det(k,2,j) /= psi_det(k,2,i))) then -! s=1 -! exit -! endif -! enddo -! if ( s == 0 ) then -! print *, 'Error0: det ', j, 'already in wf' -! call debug_det(psi_det(1,1,j),N_int) -! stop -! endif -! enddo -! enddo -! !TODO DEBUG - - allocate (d(N_int,2,1), det_buffer(N_int,2,bufsze) ) - smax = 1 - N_det_new = 0 - - do i=1,N_occ_pattern - call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int) - s += 1 - if (s > smax) then - deallocate(d) - allocate ( d(N_int,2,s) ) - smax = s - endif - call occ_pattern_to_dets(psi_occ_pattern(1,1,i),d,s,elec_alpha_num,N_int) - do j=1,s - if (.not. is_in_wavefunction( d(1,1,j), N_int, N_det)) then - N_det_new += 1 - do k=1,N_int - det_buffer(k,1,N_det_new) = d(k,1,j) - det_buffer(k,2,N_det_new) = d(k,2,j) - enddo - if (N_det_new == bufsze) then - call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,0) - N_det_new = 0 - endif - endif - enddo - enddo - - if (N_det_new > 0) then - call fill_H_apply_buffer_no_selection(N_det_new,det_buffer,N_int,0) - call copy_H_apply_buffer_to_wf - SOFT_TOUCH N_det psi_coef psi_det - endif - - deallocate(d,det_buffer) - - -! !TODO DEBUG -! do i=1,N_det -! do j=i+1,N_det -! s = 0 -! do k=1,N_int -! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & -! (psi_det(k,2,j) /= psi_det(k,2,i))) then -! s=1 -! exit -! endif -! enddo -! if ( s == 0 ) then -! print *, 'Error : det ', j, 'already in wf at ', i -! call debug_det(psi_det(1,1,j),N_int) -! stop -! endif -! enddo -! enddo -! !TODO DEBUG - call write_int(output_dets,N_det_new, 'Added deteminants for S^2') - -end - diff --git a/src/Dets/options.irp.f b/src/Dets/options.irp.f deleted file mode 100644 index dda5c04a..00000000 --- a/src/Dets/options.irp.f +++ /dev/null @@ -1,61 +0,0 @@ -BEGIN_SHELL [ /usr/bin/python ] -from ezfio_with_default import EZFIO_Provider -T = EZFIO_Provider() -T.set_type ( "integer" ) -T.set_name ( "N_states" ) -T.set_doc ( "Number of states to consider" ) -T.set_ezfio_dir ( "determinants" ) -T.set_ezfio_name( "N_states" ) -T.set_output ( "output_dets" ) -print T - - -T.set_name ( "N_det_max_jacobi" ) -T.set_doc ( "Maximum number of determinants diagonalized by Jacobi" ) -T.set_ezfio_name( "N_det_max_jacobi" ) -print T - -T.set_type ( "logical" ) -T.set_name ( "read_wf" ) -T.set_doc ( "If true, read the wave function from the EZFIO file" ) -T.set_ezfio_name( "read_wf" ) -T.set_output ( "output_dets" ) -print T - -T.set_type ( "logical" ) -T.set_name ( "only_single_double_dm" ) -T.set_doc ( "If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements" ) -T.set_ezfio_name( "only_single_double_dm" ) -T.set_output ( "output_dets" ) -print T - - -T.set_name ( "s2_eig" ) -T.set_doc ( "Force the wave function to be an eigenfunction of S^2" ) -T.set_ezfio_name( "s2_eig" ) -print T - -END_SHELL - -BEGIN_PROVIDER [ integer, N_states_diag ] - implicit none - BEGIN_DOC -! Number of states to consider for the diagonalization - END_DOC - - logical :: has - PROVIDE ezfio_filename - call ezfio_has_determinants_n_states_diag(has) - if (has) then - call ezfio_get_determinants_n_states_diag(N_states_diag) - else - N_states_diag = N_states - endif - - call write_time(output_dets) - call write_int(output_dets, N_states_diag, & - 'N_states_diag') - - -END_PROVIDER - diff --git a/src/Dets/program_beginer_determinants.irp.f b/src/Dets/program_beginer_determinants.irp.f deleted file mode 100644 index 6375af22..00000000 --- a/src/Dets/program_beginer_determinants.irp.f +++ /dev/null @@ -1,138 +0,0 @@ -program pouet - implicit none - print*,'HF energy = ',ref_bitmask_energy + nuclear_repulsion - call routine - -end -subroutine routine - use bitmasks - implicit none - integer :: i,j,k,l - double precision :: hij,get_mo_bielec_integral - double precision :: hmono,h_bi_ispin,h_bi_other_spin - integer(bit_kind),allocatable :: key_tmp(:,:) - integer, allocatable :: occ(:,:) - integer :: n_occ_alpha, n_occ_beta - ! First checks - print*,'N_int = ',N_int - print*,'mo_tot_num = ',mo_tot_num - print*,'mo_tot_num / 64+1= ',mo_tot_num/64+1 - ! We print the HF determinant - do i = 1, N_int - print*,'ref_bitmask(i,1) = ',ref_bitmask(i,1) - print*,'ref_bitmask(i,2) = ',ref_bitmask(i,2) - enddo - print*,'' - print*,'Hartree Fock determinant ...' - call debug_det(ref_bitmask,N_int) - allocate(key_tmp(N_int,2)) - ! We initialize key_tmp to the Hartree Fock one - key_tmp = ref_bitmask - integer :: i_hole,i_particle,ispin,i_ok,other_spin - ! We do a mono excitation on the top of the HF determinant - write(*,*)'Enter the (hole, particle) couple for the mono excitation ...' - read(5,*)i_hole,i_particle -!!i_hole = 4 -!!i_particle = 20 - write(*,*)'Enter the ispin variable ...' - write(*,*)'ispin = 1 ==> alpha ' - write(*,*)'ispin = 2 ==> beta ' - read(5,*)ispin - if(ispin == 1)then - other_spin = 2 - else if(ispin == 2)then - other_spin = 1 - else - print*,'PB !! ' - print*,'ispin must be 1 or 2 !' - stop - endif -!!ispin = 1 - call do_mono_excitation(key_tmp,i_hole,i_particle,ispin,i_ok) - ! We check if it the excitation was possible with "i_ok" - if(i_ok == -1)then - print*,'i_ok = ',i_ok - print*,'You can not do this excitation because of Pauli principle ...' - print*,'check your hole particle couple, there must be something wrong ...' - stop - - endif - print*,'New det = ' - call debug_det(key_tmp,N_int) - call i_H_j(key_tmp,ref_bitmask,N_int,hij) - ! We calculate the H matrix element between the new determinant and HF - print*,' = ',hij - print*,'' - print*,'' - print*,'Recalculating it old school style ....' - print*,'' - print*,'' - ! We recalculate this old school style !!! - ! Mono electronic part - hmono = mo_mono_elec_integral(i_hole,i_particle) - print*,'' - print*,'Mono electronic part ' - print*,'' - print*,' = ',hmono - h_bi_ispin = 0.d0 - h_bi_other_spin = 0.d0 - print*,'' - print*,'Getting all the info for the calculation of the bi electronic part ...' - print*,'' - allocate (occ(N_int*bit_kind_size,2)) - ! We get the occupation of the alpha electrons in occ(:,1) - call bitstring_to_list(key_tmp(1,1), occ(1,1), n_occ_alpha, N_int) - print*,'n_occ_alpha = ',n_occ_alpha - print*,'elec_alpha_num = ',elec_alpha_num - ! We get the occupation of the beta electrons in occ(:,2) - call bitstring_to_list(key_tmp(1,2), occ(1,2), n_occ_beta, N_int) - print*,'n_occ_beta = ',n_occ_beta - print*,'elec_beta_num = ',elec_beta_num - ! We print the occupation of the alpha electrons - print*,'Alpha electrons !' - do i = 1, n_occ_alpha - print*,'i = ',i - print*,'occ(i,1) = ',occ(i,1) - enddo - ! We print the occupation of the beta electrons - print*,'Alpha electrons !' - do i = 1, n_occ_beta - print*,'i = ',i - print*,'occ(i,2) = ',occ(i,2) - enddo - integer :: exc(0:2,2,2),degree,h1,p1,h2,p2,s1,s2 - double precision :: phase - - call get_excitation_degree(key_tmp,ref_bitmask,degree,N_int) - print*,'degree = ',degree - call get_mono_excitation(ref_bitmask,key_tmp,exc,phase,N_int) - call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) - print*,'h1 = ',h1 - print*,'p1 = ',p1 - print*,'s1 = ',s1 - print*,'phase = ',phase - do i = 1, elec_num_tab(ispin) - integer :: orb_occupied - orb_occupied = occ(i,ispin) - h_bi_ispin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) & - -get_mo_bielec_integral(i_hole,i_particle,orb_occupied,orb_occupied,mo_integrals_map) - enddo - print*,'h_bi_ispin = ',h_bi_ispin - - do i = 1, elec_num_tab(other_spin) - orb_occupied = occ(i,other_spin) - h_bi_other_spin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) - enddo - print*,'h_bi_other_spin = ',h_bi_other_spin - print*,'h_bi_ispin + h_bi_other_spin = ',h_bi_ispin + h_bi_other_spin - - print*,'Total matrix element = ',phase*(h_bi_ispin + h_bi_other_spin + hmono) -!i = 1 -!j = 1 -!k = 1 -!l = 1 -!hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) -!print*,' = ',hij - - -end diff --git a/src/Dets/psi_cas.irp.f b/src/Dets/psi_cas.irp.f deleted file mode 100644 index 299e5e8f..00000000 --- a/src/Dets/psi_cas.irp.f +++ /dev/null @@ -1,114 +0,0 @@ -use bitmasks - - BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,psi_det_size) ] -&BEGIN_PROVIDER [ double precision, psi_cas_coef, (psi_det_size,n_states) ] -&BEGIN_PROVIDER [ integer, idx_cas, (psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_cas ] - implicit none - BEGIN_DOC - ! CAS wave function, defined from the application of the CAS bitmask on the - ! determinants. idx_cas gives the indice of the CAS determinant in psi_det. - END_DOC - integer :: i, k, l - logical :: good - N_det_cas = 0 - do i=1,N_det - do l=1,n_cas_bitmask - good = .True. - do k=1,N_int - good = good .and. ( & - iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == & - iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( & - iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == & - iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) ) - enddo - if (good) then - exit - endif - enddo - if (good) then - N_det_cas = N_det_cas+1 - do k=1,N_int - psi_cas(k,1,N_det_cas) = psi_det(k,1,i) - psi_cas(k,2,N_det_cas) = psi_det(k,2,i) - enddo - idx_cas(N_det_cas) = i - do k=1,N_states - psi_cas_coef(N_det_cas,k) = psi_coef(i,k) - enddo - endif - enddo - call write_int(output_dets,N_det_cas, 'Number of determinants in the CAS') - -END_PROVIDER - - - BEGIN_PROVIDER [ integer(bit_kind), psi_cas_sorted_bit, (N_int,2,psi_det_size) ] -&BEGIN_PROVIDER [ double precision, psi_cas_coef_sorted_bit, (psi_det_size,N_states) ] - implicit none - BEGIN_DOC - ! CAS determinants sorted to accelerate the search of a random determinant in the wave - ! function. - END_DOC - call sort_dets_by_det_search_key(N_det_cas, psi_cas, psi_cas_coef, & - psi_cas_sorted_bit, psi_cas_coef_sorted_bit) - -END_PROVIDER - - - - BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas, (N_int,2,psi_det_size) ] -&BEGIN_PROVIDER [ double precision, psi_non_cas_coef, (psi_det_size,n_states) ] -&BEGIN_PROVIDER [ integer, idx_non_cas, (psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_non_cas ] - implicit none - BEGIN_DOC - ! Set of determinants which are not part of the CAS, defined from the application - ! of the CAS bitmask on the determinants. - ! idx_non_cas gives the indice of the determinant in psi_det. - END_DOC - integer :: i_non_cas,j,k - integer :: degree - logical :: in_cas - i_non_cas =0 - do k=1,N_det - in_cas = .False. - do j=1,N_det_cas - call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int) - if (degree == 0) then - in_cas = .True. - exit - endif - enddo - if (.not.in_cas) then - double precision :: hij - i_non_cas += 1 - do j=1,N_int - psi_non_cas(j,1,i_non_cas) = psi_det(j,1,k) - psi_non_cas(j,2,i_non_cas) = psi_det(j,2,k) - enddo - do j=1,N_states - psi_non_cas_coef(i_non_cas,j) = psi_coef(k,j) - enddo - idx_non_cas(i_non_cas) = k - endif - enddo - N_det_non_cas = i_non_cas -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas_sorted_bit, (N_int,2,psi_det_size) ] -&BEGIN_PROVIDER [ double precision, psi_non_cas_coef_sorted_bit, (psi_det_size,N_states) ] - implicit none - BEGIN_DOC - ! CAS determinants sorted to accelerate the search of a random determinant in the wave - ! function. - END_DOC - call sort_dets_by_det_search_key(N_det_cas, psi_non_cas, psi_non_cas_coef, & - psi_non_cas_sorted_bit, psi_non_cas_coef_sorted_bit) - -END_PROVIDER - - - - - diff --git a/src/Dets/ref_bitmask.irp.f b/src/Dets/ref_bitmask.irp.f deleted file mode 100644 index 7f760562..00000000 --- a/src/Dets/ref_bitmask.irp.f +++ /dev/null @@ -1,57 +0,0 @@ - BEGIN_PROVIDER [ double precision, ref_bitmask_energy ] -&BEGIN_PROVIDER [ double precision, mono_elec_ref_bitmask_energy ] -&BEGIN_PROVIDER [ double precision, kinetic_ref_bitmask_energy ] -&BEGIN_PROVIDER [ double precision, nucl_elec_ref_bitmask_energy ] -&BEGIN_PROVIDER [ double precision, bi_elec_ref_bitmask_energy ] - use bitmasks - implicit none - BEGIN_DOC - ! Energy of the reference bitmask used in Slater rules - END_DOC - - integer :: occ(N_int*bit_kind_size,2) - integer :: i,j - - call bitstring_to_list(ref_bitmask(1,1), occ(1,1), i, N_int) - call bitstring_to_list(ref_bitmask(1,2), occ(1,2), i, N_int) - - - ref_bitmask_energy = 0.d0 - mono_elec_ref_bitmask_energy = 0.d0 - kinetic_ref_bitmask_energy = 0.d0 - nucl_elec_ref_bitmask_energy = 0.d0 - bi_elec_ref_bitmask_energy = 0.d0 - - do i = 1, elec_beta_num - ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) + mo_mono_elec_integral(occ(i,2),occ(i,2)) - kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) + mo_kinetic_integral(occ(i,2),occ(i,2)) - nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) + mo_nucl_elec_integral(occ(i,2),occ(i,2)) - enddo - - do i = elec_beta_num+1,elec_alpha_num - ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) - kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) - nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) - enddo - - do j= 1, elec_alpha_num - do i = j+1, elec_alpha_num - bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) - ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) - enddo - enddo - - do j= 1, elec_beta_num - do i = j+1, elec_beta_num - bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) - ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) - enddo - do i= 1, elec_alpha_num - bi_elec_ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) - ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) - enddo - enddo - mono_elec_ref_bitmask_energy = kinetic_ref_bitmask_energy + nucl_elec_ref_bitmask_energy - -END_PROVIDER - diff --git a/src/Dets/s2.irp.f b/src/Dets/s2.irp.f deleted file mode 100644 index cd1d9fda..00000000 --- a/src/Dets/s2.irp.f +++ /dev/null @@ -1,106 +0,0 @@ -subroutine get_s2(key_i,key_j,phase,Nint) - implicit none - use bitmasks - BEGIN_DOC -! Returns - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key_i(Nint,2) - integer(bit_kind), intent(in) :: key_j(Nint,2) - double precision, intent(out) :: phase - integer :: exc(0:2,2,2) - integer :: degree - double precision :: phase_spsm - integer :: nup, i - - phase = 0.d0 - !$FORCEINLINE - call get_excitation_degree(key_i,key_j,degree,Nint) - select case (degree) - case(2) - call get_double_excitation(key_i,key_j,exc,phase_spsm,Nint) - if (exc(0,1,1) == 1) then ! Mono alpha + mono-beta - if ( (exc(1,1,1) == exc(1,2,2)).and.(exc(1,1,2) == exc(1,2,1)) ) then - phase = -phase_spsm - endif - endif - case(0) - nup = 0 - do i=1,Nint - nup += popcnt(iand(xor(key_i(i,1),key_i(i,2)),key_i(i,1))) - enddo - phase = dble(nup) - end select -end - -BEGIN_PROVIDER [ double precision, S_z ] -&BEGIN_PROVIDER [ double precision, S_z2_Sz ] - implicit none - BEGIN_DOC -! z component of the Spin - END_DOC - - S_z = 0.5d0*dble(elec_alpha_num-elec_beta_num) - S_z2_Sz = S_z*(S_z-1.d0) - -END_PROVIDER - -BEGIN_PROVIDER [ double precision, expected_s2] - implicit none - BEGIN_DOC -! Expected value of S2 : S*(S+1) - END_DOC - logical :: has_expected_s2 - - call ezfio_has_determinants_expected_s2(has_expected_s2) - if (has_expected_s2) then - call ezfio_get_determinants_expected_s2(expected_s2) - else - double precision :: S - S = (elec_alpha_num-elec_beta_num)*0.5d0 - expected_s2 = S * (S+1.d0) -! expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num)) - endif - -END_PROVIDER - -BEGIN_PROVIDER [ double precision, s2_values, (N_states) ] - implicit none - BEGIN_DOC -! array of the averaged values of the S^2 operator on the various states - END_DOC - integer :: i - double precision :: s2 - do i = 1, N_states - call get_s2_u0(psi_det,psi_coef(1,i),n_det,psi_det_size,s2) - s2_values(i) = s2 - enddo - -END_PROVIDER - - -subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2) - implicit none - use bitmasks - integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax) - integer, intent(in) :: n,nmax - double precision, intent(in) :: psi_coefs_tmp(nmax) - double precision, intent(out) :: s2 - integer :: i,j,l - double precision :: s2_tmp - s2 = S_z2_Sz - !$OMP PARALLEL DO DEFAULT(NONE) & - !$OMP PRIVATE(i,j,s2_tmp) SHARED(n,psi_coefs_tmp,psi_keys_tmp,N_int) & - !$OMP REDUCTION(+:s2) SCHEDULE(dynamic) - do i = 1, n - call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),s2_tmp,N_int) -! print*,'s2_tmp = ',s2_tmp - do j = 1, n - call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),s2_tmp,N_int) - if (s2_tmp == 0.d0) cycle - s2 += psi_coefs_tmp(i)*psi_coefs_tmp(j)*s2_tmp - enddo - enddo - !$OMP END PARALLEL DO -end - diff --git a/src/Dets/save_for_casino.irp.f b/src/Dets/save_for_casino.irp.f deleted file mode 100644 index 631f79bd..00000000 --- a/src/Dets/save_for_casino.irp.f +++ /dev/null @@ -1,268 +0,0 @@ -subroutine save_casino - use bitmasks - implicit none - character*(128) :: message - integer :: getUnitAndOpen, iunit - integer, allocatable :: itmp(:) - integer :: n_ao_new - real, allocatable :: rtmp(:) - PROVIDE ezfio_filename - - iunit = getUnitAndOpen('gwfn.data','w') - print *, 'Title?' - read(*,*) message - write(iunit,'(A)') trim(message) - write(iunit,'(A)') '' - write(iunit,'(A)') 'BASIC_INFO' - write(iunit,'(A)') '----------' - write(iunit,'(A)') 'Generated by:' - write(iunit,'(A)') 'Quantum package' - write(iunit,'(A)') 'Method:' - print *, 'Method?' - read(*,*) message - write(iunit,'(A)') trim(message) - write(iunit,'(A)') 'DFT Functional:' - write(iunit,'(A)') 'none' - write(iunit,'(A)') 'Periodicity:' - write(iunit,'(A)') '0' - write(iunit,'(A)') 'Spin unrestricted:' - write(iunit,'(A)') '.false.' - write(iunit,'(A)') 'nuclear-nuclear repulsion energy (au/atom):' - write(iunit,*) nuclear_repulsion - write(iunit,'(A)') 'Number of electrons per primitive cell:' - write(iunit,*) elec_num - write(iunit,*) '' - - - write(iunit,*) 'GEOMETRY' - write(iunit,'(A)') '--------' - write(iunit,'(A)') 'Number of atoms:' - write(iunit,*) nucl_num - write(iunit,'(A)') 'Atomic positions (au):' - integer :: i - do i=1,nucl_num - write(iunit,'(3(1PE20.13))') nucl_coord(i,1:3) - enddo - write(iunit,'(A)') 'Atomic numbers for each atom:' - ! Add 200 if pseudopotential - allocate(itmp(nucl_num)) - do i=1,nucl_num - itmp(i) = int(nucl_charge(i)) - enddo - write(iunit,'(8(I10))') itmp(1:nucl_num) - deallocate(itmp) - write(iunit,'(A)') 'Valence charges for each atom:' - write(iunit,'(4(1PE20.13))') nucl_charge(1:nucl_num) - write(iunit,'(A)') '' - - - write(iunit,'(A)') 'BASIS SET' - write(iunit,'(A)') '---------' - write(iunit,'(A)') 'Number of Gaussian centres' - write(iunit,*) nucl_num - write(iunit,'(A)') 'Number of shells per primitive cell' - integer :: icount - icount = 0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - icount += 1 - endif - enddo - write(iunit,*) icount - write(iunit,'(A)') 'Number of basis functions (''AO'') per primitive cell' - icount = 0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - icount += 2*ao_l(i)+1 - endif - enddo - n_ao_new = icount - write(iunit,*) n_ao_new - write(iunit,'(A)') 'Number of Gaussian primitives per primitive cell' - allocate(itmp(ao_num)) - integer :: l - l=0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - l += 1 - itmp(l) = ao_prim_num(i) - endif - enddo - write(iunit,'(8(I10))') sum(itmp(1:l)) - write(iunit,'(A)') 'Highest shell angular momentum (s/p/d/f... 1/2/3/4...)' - write(iunit,*) maxval(ao_l(1:ao_num))+1 - write(iunit,'(A)') 'Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)' - l=0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - l += 1 - if (ao_l(i) > 0) then - itmp(l) = ao_l(i)+2 - else - itmp(l) = ao_l(i)+1 - endif - endif - enddo - write(iunit,'(8(I10))') itmp(1:l) - write(iunit,'(A)') 'Number of primitive Gaussians in each shell' - l=0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - l += 1 - itmp(l) = ao_prim_num(i) - endif - enddo - write(iunit,'(8(I10))') itmp(1:l) - deallocate(itmp) - write(iunit,'(A)') 'Sequence number of first shell on each centre' - allocate(itmp(nucl_num)) - l=0 - icount = 1 - itmp(icount) = 1 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - l = l+1 - if (ao_nucl(i) == icount) then - continue - else if (ao_nucl(i) == icount+1) then - icount += 1 - itmp(icount) = l - else - print *, 'Problem in order of centers of basis functions' - stop 1 - endif - endif - enddo - ! Check - if (icount /= nucl_num) then - print *, 'Error :' - print *, ' icount :', icount - print *, ' nucl_num:', nucl_num - stop 2 - endif - write(iunit,'(8(I10))') itmp(1:nucl_num) - deallocate(itmp) - write(iunit,'(A)') 'Exponents of Gaussian primitives' - allocate(rtmp(ao_num)) - l=0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - do j=1,ao_prim_num(i) - l+=1 - rtmp(l) = ao_expo(i,ao_prim_num(i)-j+1) - enddo - endif - enddo - write(iunit,'(4(1PE20.13))') rtmp(1:l) - write(iunit,'(A)') 'Normalized contraction coefficients' - l=0 - integer :: j - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - do j=1,ao_prim_num(i) - l+=1 - rtmp(l) = ao_coef(i,ao_prim_num(i)-j+1) - enddo - endif - enddo - write(iunit,'(4(1PE20.13))') rtmp(1:l) - deallocate(rtmp) - write(iunit,'(A)') 'Position of each shell (au)' - l=0 - do i=1,ao_num - if (ao_l(i) == ao_power(i,1)) then - write(iunit,'(3(1PE20.13))') nucl_coord( ao_nucl(i), 1:3 ) - endif - enddo - write(iunit,'(A)') - - - write(iunit,'(A)') 'MULTIDETERMINANT INFORMATION' - write(iunit,'(A)') '----------------------------' - write(iunit,'(A)') 'GS' - write(iunit,'(A)') 'ORBITAL COEFFICIENTS' - write(iunit,'(A)') '------------------------' - - ! Transformation cartesian -> spherical - double precision :: tf2(6,5), tf3(10,7), tf4(15,9) - integer :: check2(3,6), check3(3,10), check4(3,15) - check2(:,1) = (/ 2, 0, 0 /) - check2(:,2) = (/ 1, 1, 0 /) - check2(:,3) = (/ 1, 0, 1 /) - check2(:,4) = (/ 0, 2, 0 /) - check2(:,5) = (/ 0, 1, 1 /) - check2(:,6) = (/ 0, 0, 2 /) - - check3(:,1) = (/ 3, 0, 0 /) - check3(:,2) = (/ 2, 1, 0 /) - check3(:,3) = (/ 2, 0, 1 /) - check3(:,4) = (/ 1, 2, 0 /) - check3(:,5) = (/ 1, 1, 1 /) - check3(:,6) = (/ 1, 0, 2 /) - check3(:,7) = (/ 0, 3, 0 /) - check3(:,8) = (/ 0, 2, 1 /) - check3(:,9) = (/ 0, 1, 2 /) - check3(:,10) = (/ 0, 0, 3 /) - - check4(:,1) = (/ 4, 0, 0 /) - check4(:,2) = (/ 3, 1, 0 /) - check4(:,3) = (/ 3, 0, 1 /) - check4(:,4) = (/ 2, 2, 0 /) - check4(:,5) = (/ 2, 1, 1 /) - check4(:,6) = (/ 2, 0, 2 /) - check4(:,7) = (/ 1, 3, 0 /) - check4(:,8) = (/ 1, 2, 1 /) - check4(:,9) = (/ 1, 1, 2 /) - check4(:,10) = (/ 1, 0, 3 /) - check4(:,11) = (/ 0, 4, 0 /) - check4(:,12) = (/ 0, 3, 1 /) - check4(:,13) = (/ 0, 2, 2 /) - check4(:,14) = (/ 0, 1, 3 /) - check4(:,15) = (/ 0, 0, 4 /) - -! tf2 = (/ -! -0.5, 0, 0, -0.5, 0, 1.0, & -! 0, 0, 1.0, 0, 0, 0, & -! 0, 0, 0, 0, 1.0, 0, & -! 0.86602540378443864676, 0, 0, -0.86602540378443864676, 0, 0, & -! 0, 1.0, 0, 0, 0, 0, & -! /) -! tf3 = (/ -! 0, 0, -0.67082039324993690892, 0, 0, 0, 0, -0.67082039324993690892, 0, 1.0, & -! -0.61237243569579452455, 0, 0, -0.27386127875258305673, 0, 1.0954451150103322269, 0, 0, 0, 0, & -! 0, -0.27386127875258305673, 0, 0, 0, 0, -0.61237243569579452455, 0, 1.0954451150103322269, 0, & -! 0, 0, 0.86602540378443864676, 0, 0, 0, 0, -0.86602540378443864676, 0, 0, & -! 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, & -! 0.790569415042094833, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, & -! 0, 1.0606601717798212866, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & -! /) -! tf4 = (/ -! 0.375, 0, 0, 0.21957751641341996535, 0, -0.87831006565367986142, 0, 0, 0, 0, 0.375, 0, -0.87831006565367986142, 0, 1.0, & -! 0, 0, -0.89642145700079522998, 0, 0, 0, 0, -0.40089186286863657703, 0, 1.19522860933439364, 0, 0, 0, 0, 0, & -! 0, 0, 0, 0, -0.40089186286863657703, 0, 0, 0, 0, 0, 0, -0.89642145700079522998, 0, 1.19522860933439364, 0, & -! -0.5590169943749474241, 0, 0, 0, 0, 0.9819805060619657157, 0, 0, 0, 0, 0.5590169943749474241, 0, -0.9819805060619657157, 0, 0, & -! 0, -0.42257712736425828875, 0, 0, 0, 0, -0.42257712736425828875, 0, 1.1338934190276816816, 0, 0, 0, 0, 0, 0, & -! 0, 0, 0.790569415042094833, 0, 0, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, 0, & -! 0, 0, 0, 0, 1.0606601717798212866, 0, 0, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & -! 0.73950997288745200532, 0, 0, -1.2990381056766579701, 0, 0, 0, 0, 0, 0, 0.73950997288745200532, 0, 0, 0, 0, & -! 0, 1.1180339887498948482, 0, 0, 0, 0, -1.1180339887498948482, 0, 0, 0, 0, 0, 0, 0, 0, & -! /) -! - - - allocate(rtmp(ao_num*mo_tot_num)) - l=0 - do i=1,mo_tot_num - do j=1,ao_num - l += 1 - rtmp(l) = mo_coef(j,i) - enddo - enddo - write(iunit,'(4(1PE20.13))') rtmp(1:l) - deallocate(rtmp) - close(iunit) -end - -program prog_save_casino - call save_casino -end diff --git a/src/Dets/save_for_qmcchem.irp.f b/src/Dets/save_for_qmcchem.irp.f deleted file mode 100644 index 7dea70c6..00000000 --- a/src/Dets/save_for_qmcchem.irp.f +++ /dev/null @@ -1,51 +0,0 @@ -subroutine save_dets_qmcchem - use bitmasks - implicit none - character :: c(mo_tot_num) - integer :: i,k - - integer, allocatable :: occ(:,:,:), occ_tmp(:,:) - !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: occ, occ_tmp - - read_wf = .True. - TOUCH read_wf - call ezfio_set_determinants_det_num(N_det) - call ezfio_set_determinants_det_coef(psi_coef_sorted(1,1)) - - allocate (occ(elec_alpha_num,N_det,2)) - ! OMP PARALLEL DEFAULT(NONE) & - ! OMP PRIVATE(occ_tmp,i,k)& - ! OMP SHARED(N_det,psi_det_sorted,elec_alpha_num, & - ! OMP occ,elec_beta_num,N_int) - allocate (occ_tmp(N_int*bit_kind_size,2)) - occ_tmp = 0 - ! OMP DO - do i=1,N_det - call bitstring_to_list(psi_det_sorted(1,1,i), occ_tmp(1,1), elec_alpha_num, N_int ) - call bitstring_to_list(psi_det_sorted(1,2,i), occ_tmp(1,2), elec_beta_num, N_int ) - do k=1,elec_alpha_num - occ(k,i,1) = occ_tmp(k,1) - occ(k,i,2) = occ_tmp(k,2) - enddo - enddo - ! OMP END DO - deallocate(occ_tmp) - ! OMP END PARALLEL - call ezfio_set_determinants_det_occ(occ) - call write_int(output_dets,N_det,'Determinants saved for QMC') - deallocate(occ) - open(unit=31,file=trim(ezfio_filename)//'/mo_basis/mo_classif') - write(31,'(I1)') 1 - write(31,*) mo_tot_num - do i=1,mo_tot_num - write(31,'(A)') 'a' - enddo - close(31) - call system('gzip -f '//trim(ezfio_filename)//'/mo_basis/mo_classif') - -end - -program save_for_qmc - call save_dets_qmcchem - call write_spindeterminants -end diff --git a/src/Dets/save_natorb.irp.f b/src/Dets/save_natorb.irp.f deleted file mode 100644 index e56f9821..00000000 --- a/src/Dets/save_natorb.irp.f +++ /dev/null @@ -1,6 +0,0 @@ -program save_natorb - read_wf = .True. - touch read_wf - call save_natural_mos -end - diff --git a/src/Dets/slater_rules.irp.f b/src/Dets/slater_rules.irp.f deleted file mode 100644 index 7d431879..00000000 --- a/src/Dets/slater_rules.irp.f +++ /dev/null @@ -1,1301 +0,0 @@ -subroutine get_excitation_degree(key1,key2,degree,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Returns the excitation degree between two determinants - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key1(Nint,2) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: degree - - integer :: l - - ASSERT (Nint > 0) - - degree = popcnt(xor( key1(1,1), key2(1,1))) + & - popcnt(xor( key1(1,2), key2(1,2))) - !DEC$ NOUNROLL - do l=2,Nint - degree = degree+ popcnt(xor( key1(l,1), key2(l,1))) + & - popcnt(xor( key1(l,2), key2(l,2))) - enddo - ASSERT (degree >= 0) - degree = ishft(degree,-1) - -end - - - -subroutine get_excitation(det1,det2,exc,degree,phase,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Returns the excitation operators between two determinants and the phase - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det1(Nint,2) - integer(bit_kind), intent(in) :: det2(Nint,2) - integer, intent(out) :: exc(0:2,2,2) - integer, intent(out) :: degree - double precision, intent(out) :: phase - ! exc(number,hole/particle,spin) - ! ex : - ! exc(0,1,1) = number of holes alpha - ! exc(0,2,1) = number of particle alpha - ! exc(0,2,2) = number of particle beta - ! exc(1,2,1) = first particle alpha - ! exc(1,1,1) = first hole alpha - ! exc(1,2,2) = first particle beta - ! exc(1,1,2) = first hole beta - - ASSERT (Nint > 0) - - !DIR$ FORCEINLINE - call get_excitation_degree(det1,det2,degree,Nint) - select case (degree) - - case (3:) - degree = -1 - return - - case (2) - call get_double_excitation(det1,det2,exc,phase,Nint) - return - - case (1) - call get_mono_excitation(det1,det2,exc,phase,Nint) - return - - case(0) - return - - end select -end - -subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) - use bitmasks - implicit none - BEGIN_DOC - ! Decodes the exc arrays returned by get_excitation. - ! h1,h2 : Holes - ! p1,p2 : Particles - ! s1,s2 : Spins (1:alpha, 2:beta) - ! degree : Degree of excitation - END_DOC - integer, intent(in) :: exc(0:2,2,2),degree - integer, intent(out) :: h1,h2,p1,p2,s1,s2 - ASSERT (degree > 0) - ASSERT (degree < 3) - - select case(degree) - case(2) - if (exc(0,1,1) == 2) then - h1 = exc(1,1,1) - h2 = exc(2,1,1) - p1 = exc(1,2,1) - p2 = exc(2,2,1) - s1 = 1 - s2 = 1 - else if (exc(0,1,2) == 2) then - h1 = exc(1,1,2) - h2 = exc(2,1,2) - p1 = exc(1,2,2) - p2 = exc(2,2,2) - s1 = 2 - s2 = 2 - else - h1 = exc(1,1,1) - h2 = exc(1,1,2) - p1 = exc(1,2,1) - p2 = exc(1,2,2) - s1 = 1 - s2 = 2 - endif - case(1) - if (exc(0,1,1) == 1) then - h1 = exc(1,1,1) - h2 = 0 - p1 = exc(1,2,1) - p2 = 0 - s1 = 1 - s2 = 0 - else - h1 = exc(1,1,2) - h2 = 0 - p1 = exc(1,2,2) - p2 = 0 - s1 = 2 - s2 = 0 - endif - case(0) - h1 = 0 - p1 = 0 - h2 = 0 - p2 = 0 - s1 = 0 - s2 = 0 - end select -end - -subroutine get_double_excitation(det1,det2,exc,phase,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Returns the two excitation operators between two doubly excited determinants and the phase - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det1(Nint,2) - integer(bit_kind), intent(in) :: det2(Nint,2) - integer, intent(out) :: exc(0:2,2,2) - double precision, intent(out) :: phase - integer :: tz - integer :: l, ispin, idx_hole, idx_particle, ishift - integer :: nperm - integer :: i,j,k,m,n - integer :: high, low - integer :: a,b,c,d - integer(bit_kind) :: hole, particle, tmp - double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) - - ASSERT (Nint > 0) - nperm = 0 - exc(0,1,1) = 0 - exc(0,2,1) = 0 - exc(0,1,2) = 0 - exc(0,2,2) = 0 - do ispin = 1,2 - idx_particle = 0 - idx_hole = 0 - ishift = 1-bit_kind_size - do l=1,Nint - ishift = ishift + bit_kind_size - if (det1(l,ispin) == det2(l,ispin)) then - cycle - endif - tmp = xor( det1(l,ispin), det2(l,ispin) ) - particle = iand(tmp, det2(l,ispin)) - hole = iand(tmp, det1(l,ispin)) - do while (particle /= 0_bit_kind) - tz = trailz(particle) - idx_particle = idx_particle + 1 - exc(0,2,ispin) = exc(0,2,ispin) + 1 - exc(idx_particle,2,ispin) = tz+ishift - particle = iand(particle,particle-1_bit_kind) - enddo - if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2 - exit - endif - do while (hole /= 0_bit_kind) - tz = trailz(hole) - idx_hole = idx_hole + 1 - exc(0,1,ispin) = exc(0,1,ispin) + 1 - exc(idx_hole,1,ispin) = tz+ishift - hole = iand(hole,hole-1_bit_kind) - enddo - if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin) - exit - endif - enddo - - ! TODO : Voir si il faut sortir i,n,k,m du case. - - select case (exc(0,1,ispin)) - case(0) - cycle - - case(1) - low = min(exc(1,1,ispin), exc(1,2,ispin)) - high = max(exc(1,1,ispin), exc(1,2,ispin)) - - ASSERT (low > 0) - j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) - n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) - ASSERT (high > 0) - k = ishft(high-1,-bit_kind_shift)+1 - m = iand(high,bit_kind_size-1) - - if (j==k) then - nperm = nperm + popcnt(iand(det1(j,ispin), & - iand( ibset(0_bit_kind,m-1)-1_bit_kind, & - ibclr(-1_bit_kind,n)+1_bit_kind ) )) - else - nperm = nperm + popcnt(iand(det1(k,ispin), & - ibset(0_bit_kind,m-1)-1_bit_kind)) + & - popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) - do i=j+1,k-1 - nperm = nperm + popcnt(det1(i,ispin)) - end do - endif - - case (2) - - do i=1,2 - low = min(exc(i,1,ispin), exc(i,2,ispin)) - high = max(exc(i,1,ispin), exc(i,2,ispin)) - - ASSERT (low > 0) - j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) - n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) - ASSERT (high > 0) - k = ishft(high-1,-bit_kind_shift)+1 - m = iand(high,bit_kind_size-1) - - if (j==k) then - nperm = nperm + popcnt(iand(det1(j,ispin), & - iand( ibset(0_bit_kind,m-1)-1_bit_kind, & - ibclr(-1_bit_kind,n)+1_bit_kind ) )) - else - nperm = nperm + popcnt(iand(det1(k,ispin), & - ibset(0_bit_kind,m-1)-1_bit_kind)) + & - popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) - do l=j+1,k-1 - nperm = nperm + popcnt(det1(l,ispin)) - end do - endif - - enddo - - a = min(exc(1,1,ispin), exc(1,2,ispin)) - b = max(exc(1,1,ispin), exc(1,2,ispin)) - c = min(exc(2,1,ispin), exc(2,2,ispin)) - d = max(exc(2,1,ispin), exc(2,2,ispin)) - if (c>a .and. cb) then - nperm = nperm + 1 - endif - exit - end select - - enddo - phase = phase_dble(iand(nperm,1)) - -end - -subroutine get_mono_excitation(det1,det2,exc,phase,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Returns the excitation operator between two singly excited determinants and the phase - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det1(Nint,2) - integer(bit_kind), intent(in) :: det2(Nint,2) - integer, intent(out) :: exc(0:2,2,2) - double precision, intent(out) :: phase - integer :: tz - integer :: l, ispin, idx_hole, idx_particle, ishift - integer :: nperm - integer :: i,j,k,m,n - integer :: high, low - integer :: a,b,c,d - integer(bit_kind) :: hole, particle, tmp - double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) - - ASSERT (Nint > 0) - nperm = 0 - exc(0,1,1) = 0 - exc(0,2,1) = 0 - exc(0,1,2) = 0 - exc(0,2,2) = 0 - do ispin = 1,2 - ishift = 1-bit_kind_size - do l=1,Nint - ishift = ishift + bit_kind_size - if (det1(l,ispin) == det2(l,ispin)) then - cycle - endif - tmp = xor( det1(l,ispin), det2(l,ispin) ) - particle = iand(tmp, det2(l,ispin)) - hole = iand(tmp, det1(l,ispin)) - if (particle /= 0_bit_kind) then - tz = trailz(particle) - exc(0,2,ispin) = 1 - exc(1,2,ispin) = tz+ishift - endif - if (hole /= 0_bit_kind) then - tz = trailz(hole) - exc(0,1,ispin) = 1 - exc(1,1,ispin) = tz+ishift - endif - - if ( iand(exc(0,1,ispin),exc(0,2,ispin)) /= 1) then ! exc(0,1,ispin)/=1 and exc(0,2,ispin) /= 1 - cycle - endif - - low = min(exc(1,1,ispin),exc(1,2,ispin)) - high = max(exc(1,1,ispin),exc(1,2,ispin)) - - ASSERT (low > 0) - j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) - n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) - ASSERT (high > 0) - k = ishft(high-1,-bit_kind_shift)+1 - m = iand(high,bit_kind_size-1) - if (j==k) then - nperm = popcnt(iand(det1(j,ispin), & - iand(ibset(0_bit_kind,m-1)-1_bit_kind,ibclr(-1_bit_kind,n)+1_bit_kind))) - else - nperm = nperm + popcnt(iand(det1(k,ispin),ibset(0_bit_kind,m-1)-1_bit_kind)) +& - popcnt(iand(det1(j,ispin),ibclr(-1_bit_kind,n)+1_bit_kind)) - do i=j+1,k-1 - nperm = nperm + popcnt(det1(i,ispin)) - end do - endif - phase = phase_dble(iand(nperm,1)) - return - - enddo - enddo -end - - - - - -subroutine i_H_j(key_i,key_j,Nint,hij) - use bitmasks - implicit none - BEGIN_DOC - ! Returns where i and j are determinants - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) - double precision, intent(out) :: hij - - integer :: exc(0:2,2,2) - integer :: degree - double precision :: get_mo_bielec_integral - integer :: m,n,p,q - integer :: i,j,k - integer :: occ(Nint*bit_kind_size,2) - double precision :: diag_H_mat_elem, phase,phase_2 - integer :: n_occ_alpha, n_occ_beta - logical :: has_mipi(Nint*bit_kind_size) - double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) - PROVIDE mo_bielec_integrals_in_map mo_integrals_map - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) - ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) - ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) - ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) - - hij = 0.d0 - !DEC$ FORCEINLINE - call get_excitation_degree(key_i,key_j,degree,Nint) - select case (degree) - case (2) - call get_double_excitation(key_i,key_j,exc,phase,Nint) - if (exc(0,1,1) == 1) then - ! Mono alpha, mono beta - hij = phase*get_mo_bielec_integral( & - exc(1,1,1), & - exc(1,1,2), & - exc(1,2,1), & - exc(1,2,2) ,mo_integrals_map) - else if (exc(0,1,1) == 2) then - ! Double alpha - hij = phase*(get_mo_bielec_integral( & - exc(1,1,1), & - exc(2,1,1), & - exc(1,2,1), & - exc(2,2,1) ,mo_integrals_map) - & - get_mo_bielec_integral( & - exc(1,1,1), & - exc(2,1,1), & - exc(2,2,1), & - exc(1,2,1) ,mo_integrals_map) ) - else if (exc(0,1,2) == 2) then - ! Double beta - hij = phase*(get_mo_bielec_integral( & - exc(1,1,2), & - exc(2,1,2), & - exc(1,2,2), & - exc(2,2,2) ,mo_integrals_map) - & - get_mo_bielec_integral( & - exc(1,1,2), & - exc(2,1,2), & - exc(2,2,2), & - exc(1,2,2) ,mo_integrals_map) ) - endif - case (1) - call get_mono_excitation(key_i,key_j,exc,phase,Nint) - call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) - call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) - has_mipi = .False. - if (exc(0,1,1) == 1) then - ! Mono alpha - m = exc(1,1,1) - p = exc(1,2,1) - do k = 1, elec_alpha_num - i = occ(k,1) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - do k = 1, elec_beta_num - i = occ(k,2) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - - do k = 1, elec_alpha_num - hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) - enddo - do k = 1, elec_beta_num - hij = hij + mipi(occ(k,2)) - enddo - - else - ! Mono beta - m = exc(1,1,2) - p = exc(1,2,2) - do k = 1, elec_beta_num - i = occ(k,2) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - do k = 1, elec_alpha_num - i = occ(k,1) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - - do k = 1, elec_alpha_num - hij = hij + mipi(occ(k,1)) - enddo - do k = 1, elec_beta_num - hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) - enddo - - endif - hij = phase*(hij + mo_mono_elec_integral(m,p)) - - case (0) - hij = diag_H_mat_elem(key_i,Nint) - end select -end - - - - -subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble) - use bitmasks - implicit none - BEGIN_DOC - ! Returns where i and j are determinants - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) - double precision, intent(out) :: hij,hmono,hdouble - - integer :: exc(0:2,2,2) - integer :: degree - double precision :: get_mo_bielec_integral - integer :: m,n,p,q - integer :: i,j,k - integer :: occ(Nint*bit_kind_size,2) - double precision :: diag_H_mat_elem, phase,phase_2 - integer :: n_occ_alpha, n_occ_beta - logical :: has_mipi(Nint*bit_kind_size) - double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) - PROVIDE mo_bielec_integrals_in_map mo_integrals_map - - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) - ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) - ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) - ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) - - hij = 0.d0 - hmono = 0.d0 - hdouble = 0.d0 - !DEC$ FORCEINLINE - call get_excitation_degree(key_i,key_j,degree,Nint) - select case (degree) - case (2) - call get_double_excitation(key_i,key_j,exc,phase,Nint) - if (exc(0,1,1) == 1) then - ! Mono alpha, mono beta - hij = phase*get_mo_bielec_integral( & - exc(1,1,1), & - exc(1,1,2), & - exc(1,2,1), & - exc(1,2,2) ,mo_integrals_map) - else if (exc(0,1,1) == 2) then - ! Double alpha - hij = phase*(get_mo_bielec_integral( & - exc(1,1,1), & - exc(2,1,1), & - exc(1,2,1), & - exc(2,2,1) ,mo_integrals_map) - & - get_mo_bielec_integral( & - exc(1,1,1), & - exc(2,1,1), & - exc(2,2,1), & - exc(1,2,1) ,mo_integrals_map) ) - else if (exc(0,1,2) == 2) then - ! Double beta - hij = phase*(get_mo_bielec_integral( & - exc(1,1,2), & - exc(2,1,2), & - exc(1,2,2), & - exc(2,2,2) ,mo_integrals_map) - & - get_mo_bielec_integral( & - exc(1,1,2), & - exc(2,1,2), & - exc(2,2,2), & - exc(1,2,2) ,mo_integrals_map) ) - endif - case (1) - call get_mono_excitation(key_i,key_j,exc,phase,Nint) - call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) - call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) - has_mipi = .False. - if (exc(0,1,1) == 1) then - ! Mono alpha - m = exc(1,1,1) - p = exc(1,2,1) - do k = 1, elec_alpha_num - i = occ(k,1) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - do k = 1, elec_beta_num - i = occ(k,2) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - - do k = 1, elec_alpha_num - hdouble = hdouble + mipi(occ(k,1)) - miip(occ(k,1)) - enddo - do k = 1, elec_beta_num - hdouble = hdouble + mipi(occ(k,2)) - enddo - - else - ! Mono beta - m = exc(1,1,2) - p = exc(1,2,2) - do k = 1, elec_beta_num - i = occ(k,2) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - do k = 1, elec_alpha_num - i = occ(k,1) - if (.not.has_mipi(i)) then - mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) - has_mipi(i) = .True. - endif - enddo - - do k = 1, elec_alpha_num - hdouble = hdouble + mipi(occ(k,1)) - enddo - do k = 1, elec_beta_num - hdouble = hdouble + mipi(occ(k,2)) - miip(occ(k,2)) - enddo - - endif - hmono = mo_mono_elec_integral(m,p) - hij = phase*(hdouble + hmono) - - case (0) - hij = diag_H_mat_elem(key_i,Nint) - end select -end - - - -subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array) - use bitmasks - implicit none - integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - double precision, intent(in) :: coef(Ndet_max,Nstate) - double precision, intent(out) :: i_H_psi_array(Nstate) - - integer :: i, ii,j - double precision :: phase - integer :: exc(0:2,2,2) - double precision :: hij - integer :: idx(0:Ndet) - BEGIN_DOC - ! for the various Nstates - END_DOC - - ASSERT (Nint > 0) - ASSERT (N_int == Nint) - ASSERT (Nstate > 0) - ASSERT (Ndet > 0) - ASSERT (Ndet_max >= Ndet) - i_H_psi_array = 0.d0 - call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) - do ii=1,idx(0) - i = idx(ii) - !DEC$ FORCEINLINE - call i_H_j(keys(1,1,i),key,Nint,hij) - do j = 1, Nstate - i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij - enddo - enddo -end - -subroutine i_H_psi_sec_ord(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_interaction,interactions) - use bitmasks - implicit none - integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - double precision, intent(in) :: coef(Ndet_max,Nstate) - double precision, intent(out) :: i_H_psi_array(Nstate) - double precision, intent(out) :: interactions(Ndet) - integer,intent(out) :: idx_interaction(0:Ndet) - - integer :: i, ii,j - double precision :: phase - integer :: exc(0:2,2,2) - double precision :: hij - integer :: idx(0:Ndet),n_interact - BEGIN_DOC - ! for the various Nstates - END_DOC - - ASSERT (Nint > 0) - ASSERT (N_int == Nint) - ASSERT (Nstate > 0) - ASSERT (Ndet > 0) - ASSERT (Ndet_max >= Ndet) - i_H_psi_array = 0.d0 - call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) - n_interact = 0 - do ii=1,idx(0) - i = idx(ii) - !DEC$ FORCEINLINE - call i_H_j(keys(1,1,i),key,Nint,hij) - if(dabs(hij).ge.1.d-8)then - if(i.ne.1)then - n_interact += 1 - interactions(n_interact) = hij - idx_interaction(n_interact) = i - endif - endif - do j = 1, Nstate - i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij - enddo - enddo - idx_interaction(0) = n_interact -end - - -subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) - use bitmasks - BEGIN_DOC - ! for the various Nstate - ! - ! returns in addition - ! - ! the array of the index of the non connected determinants to key1 - ! - ! in order to know what double excitation can be repeated on key1 - ! - ! idx_repeat(0) is the number of determinants that can be used - ! - ! to repeat the excitations - END_DOC - implicit none - integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - double precision, intent(in) :: coef(Ndet_max,Nstate) - double precision, intent(out) :: i_H_psi_array(Nstate) - integer , intent(out) :: idx_repeat(0:Ndet) - - integer :: i, ii,j - double precision :: phase - integer :: exc(0:2,2,2) - double precision :: hij - integer :: idx(0:Ndet) - - ASSERT (Nint > 0) - ASSERT (N_int == Nint) - ASSERT (Nstate > 0) - ASSERT (Ndet > 0) - ASSERT (Ndet_max >= Ndet) - i_H_psi_array = 0.d0 - call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) - do ii=1,idx(0) - i = idx(ii) - !DEC$ FORCEINLINE - call i_H_j(keys(1,1,i),key,Nint,hij) - do j = 1, Nstate - i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij - enddo - enddo -end - - -subroutine i_H_psi_SC2_verbose(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) - use bitmasks - BEGIN_DOC - ! for the various Nstate - ! - ! returns in addition - ! - ! the array of the index of the non connected determinants to key1 - ! - ! in order to know what double excitation can be repeated on key1 - ! - ! idx_repeat(0) is the number of determinants that can be used - ! - ! to repeat the excitations - END_DOC - implicit none - integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate - integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) - integer(bit_kind), intent(in) :: key(Nint,2) - double precision, intent(in) :: coef(Ndet_max,Nstate) - double precision, intent(out) :: i_H_psi_array(Nstate) - integer , intent(out) :: idx_repeat(0:Ndet) - - integer :: i, ii,j - double precision :: phase - integer :: exc(0:2,2,2) - double precision :: hij - integer :: idx(0:Ndet) - - ASSERT (Nint > 0) - ASSERT (N_int == Nint) - ASSERT (Nstate > 0) - ASSERT (Ndet > 0) - ASSERT (Ndet_max >= Ndet) - i_H_psi_array = 0.d0 - call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) - print*,'--------' - do ii=1,idx(0) - print*,'--' - i = idx(ii) - !DEC$ FORCEINLINE - call i_H_j(keys(1,1,i),key,Nint,hij) - if (i==1)then - print*,'i==1 !!' - endif - print*,coef(i,1) * hij,coef(i,1),hij - do j = 1, Nstate - i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij - enddo - print*,i_H_psi_array(1) - enddo - print*,'------' -end - - - -subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx) - use bitmasks - implicit none - BEGIN_DOC - ! Applies get_excitation_degree to an array of determinants - END_DOC - integer, intent(in) :: Nint, sze - integer(bit_kind), intent(in) :: key1(Nint,2,sze) - integer(bit_kind), intent(in) :: key2(Nint,2) - integer, intent(out) :: degree(sze) - integer, intent(out) :: idx(0:sze) - - integer :: i,l - - ASSERT (Nint > 0) - ASSERT (sze > 0) - - l=1 - if (Nint==1) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))),-1) - if (degree(l) < 3) then - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==2) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))),-1) - if (degree(l) < 3) then - idx(l) = i - l = l+1 - endif - enddo - - else if (Nint==3) then - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree(l) = ishft( popcnt(xor( key1(1,1,i), key2(1,1))) + & - popcnt(xor( key1(1,2,i), key2(1,2))) + & - popcnt(xor( key1(2,1,i), key2(2,1))) + & - popcnt(xor( key1(2,2,i), key2(2,2))) + & - popcnt(xor( key1(3,1,i), key2(3,1))) + & - popcnt(xor( key1(3,2,i), key2(3,2))),-1) - if (degree(l) < 3) then - idx(l) = i - l = l+1 - endif - enddo - - else - - !DIR$ LOOP COUNT (1000) - do i=1,sze - degree(l) = 0 - !DEC$ LOOP COUNT MIN(4) - do l=1,Nint - degree(l) = degree(l)+ popcnt(xor( key1(l,1,i), key2(l,1))) +& - popcnt(xor( key1(l,2,i), key2(l,2))) - enddo - degree(l) = ishft(degree(l),-1) - if (degree(l) < 3) then - idx(l) = i - l = l+1 - endif - enddo - - endif - idx(0) = l-1 -end - - - - -double precision function diag_H_mat_elem(det_in,Nint) - implicit none - BEGIN_DOC - ! Computes - END_DOC - integer,intent(in) :: Nint - integer(bit_kind),intent(in) :: det_in(Nint,2) - - integer(bit_kind) :: hole(Nint,2) - integer(bit_kind) :: particle(Nint,2) - integer :: i, nexc(2), ispin - integer :: occ_particle(Nint*bit_kind_size,2) - integer :: occ_hole(Nint*bit_kind_size,2) - integer(bit_kind) :: det_tmp(Nint,2) - integer :: na, nb - - ASSERT (Nint > 0) - ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) - ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) - - nexc(1) = 0 - nexc(2) = 0 - do i=1,Nint - hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) - hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) - particle(i,1) = iand(hole(i,1),det_in(i,1)) - particle(i,2) = iand(hole(i,2),det_in(i,2)) - hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) - hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) - nexc(1) += popcnt(hole(i,1)) - nexc(2) += popcnt(hole(i,2)) - enddo - - diag_H_mat_elem = ref_bitmask_energy - if (nexc(1)+nexc(2) == 0) then - return - endif - - !call debug_det(det_in,Nint) - integer :: tmp - call bitstring_to_list(particle(1,1), occ_particle(1,1), tmp, Nint) - ASSERT (tmp == nexc(1)) - call bitstring_to_list(particle(1,2), occ_particle(1,2), tmp, Nint) - ASSERT (tmp == nexc(2)) - call bitstring_to_list(hole(1,1), occ_hole(1,1), tmp, Nint) - ASSERT (tmp == nexc(1)) - call bitstring_to_list(hole(1,2), occ_hole(1,2), tmp, Nint) - ASSERT (tmp == nexc(2)) - - det_tmp = ref_bitmask - do ispin=1,2 - na = elec_num_tab(ispin) - nb = elec_num_tab(iand(ispin,1)+1) - do i=1,nexc(ispin) - !DIR$ FORCEINLINE - call ac_operator( occ_particle(i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) - !DIR$ FORCEINLINE - call a_operator ( occ_hole (i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) - enddo - enddo -end - -subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb) - use bitmasks - implicit none - BEGIN_DOC - ! Needed for diag_H_mat_elem - END_DOC - integer, intent(in) :: iorb, ispin, Nint - integer, intent(inout) :: na, nb - integer(bit_kind), intent(inout) :: key(Nint,2) - double precision, intent(inout) :: hjj - - integer :: occ(Nint*bit_kind_size,2) - integer :: other_spin - integer :: k,l,i - - ASSERT (iorb > 0) - ASSERT (ispin > 0) - ASSERT (ispin < 3) - ASSERT (Nint > 0) - - k = ishft(iorb-1,-bit_kind_shift)+1 - ASSERT (k > 0) - l = iorb - ishft(k-1,bit_kind_shift)-1 - key(k,ispin) = ibclr(key(k,ispin),l) - other_spin = iand(ispin,1)+1 - - !DIR$ FORCEINLINE - call get_occ_from_key(key,occ,Nint) - na -= 1 - - hjj -= mo_mono_elec_integral(iorb,iorb) - - ! Same spin - do i=1,na - hjj -= mo_bielec_integral_jj_anti(occ(i,ispin),iorb) - enddo - - ! Opposite spin - do i=1,nb - hjj -= mo_bielec_integral_jj(occ(i,other_spin),iorb) - enddo - -end - - -subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb) - use bitmasks - implicit none - BEGIN_DOC - ! Needed for diag_H_mat_elem - END_DOC - integer, intent(in) :: iorb, ispin, Nint - integer, intent(inout) :: na, nb - integer(bit_kind), intent(inout) :: key(Nint,2) - double precision, intent(inout) :: hjj - - integer :: occ(Nint*bit_kind_size,2) - integer :: other_spin - integer :: k,l,i - - ASSERT (iorb > 0) - ASSERT (ispin > 0) - ASSERT (ispin < 3) - ASSERT (Nint > 0) - - integer :: tmp - !DIR$ FORCEINLINE - call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) - ASSERT (tmp == elec_alpha_num) - !DIR$ FORCEINLINE - call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) - ASSERT (tmp == elec_beta_num) - - k = ishft(iorb-1,-bit_kind_shift)+1 - ASSERT (k > 0) - l = iorb - ishft(k-1,bit_kind_shift)-1 - key(k,ispin) = ibset(key(k,ispin),l) - other_spin = iand(ispin,1)+1 - - hjj += mo_mono_elec_integral(iorb,iorb) - - ! Same spin - do i=1,na - hjj += mo_bielec_integral_jj_anti(occ(i,ispin),iorb) - enddo - - ! Opposite spin - do i=1,nb - hjj += mo_bielec_integral_jj(occ(i,other_spin),iorb) - enddo - na += 1 -end - -subroutine get_occ_from_key(key,occ,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Returns a list of occupation numbers from a bitstring - END_DOC - integer(bit_kind), intent(in) :: key(Nint,2) - integer , intent(in) :: Nint - integer , intent(out) :: occ(Nint*bit_kind_size,2) - integer :: tmp - - call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) - call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) - -end - -subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint) - use bitmasks - implicit none - BEGIN_DOC - ! Computes v_0 = H|u_0> - ! - ! n : number of determinants - ! - ! H_jj : array of - END_DOC - integer, intent(in) :: n,Nint - double precision, intent(out) :: v_0(n) - double precision, intent(in) :: u_0(n) - double precision, intent(in) :: H_jj(n) - integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) - integer, allocatable :: idx(:) - double precision :: hij - double precision, allocatable :: vt(:) - integer :: i,j,k,l, jj - integer :: i0, j0 - ASSERT (Nint > 0) - ASSERT (Nint == N_int) - ASSERT (n>0) - PROVIDE ref_bitmask_energy - integer, parameter :: block_size = 157 - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(i,hij,j,k,idx,jj,vt) & - !$OMP SHARED(n,H_jj,u_0,keys_tmp,Nint,v_0) - !$OMP DO SCHEDULE(static) - do i=1,n - v_0(i) = H_jj(i) * u_0(i) - enddo - !$OMP END DO - allocate(idx(0:n), vt(n)) - Vt = 0.d0 - !$OMP DO SCHEDULE(guided) - do i=1,n - idx(0) = i - call filter_connected_davidson(keys_tmp,keys_tmp(1,1,i),Nint,i-1,idx) - do jj=1,idx(0) - j = idx(jj) - if ( (dabs(u_0(j)) > 1.d-7).or.((dabs(u_0(i)) > 1.d-7)) ) then - call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij) - vt (i) = vt (i) + hij*u_0(j) - vt (j) = vt (j) + hij*u_0(i) - endif - enddo - enddo - !$OMP END DO - !$OMP CRITICAL - do i=1,n - v_0(i) = v_0(i) + vt(i) - enddo - !$OMP END CRITICAL - deallocate(idx,vt) - !$OMP END PARALLEL -end - - - -BEGIN_PROVIDER [ integer, N_con_int ] - implicit none - BEGIN_DOC - ! Number of integers to represent the connections between determinants - END_DOC - N_con_int = 1 + ishft(N_det-1,-11) -END_PROVIDER - -BEGIN_PROVIDER [ integer*8, det_connections, (N_con_int,N_det) ] - implicit none - BEGIN_DOC - ! Build connection proxy between determinants - END_DOC - integer :: i,j - integer :: degree - integer :: j_int, j_k, j_l - integer, allocatable :: idx(:) - integer :: thread_num - integer :: omp_get_thread_num - - PROVIDE progress_bar - call start_progress(N_det,'Det connections',0.d0) - - select case(N_int) - - case(1) - - - !$OMP PARALLEL DEFAULT (NONE) & - !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections, & - !$OMP progress_bar,progress_value)& - !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) - - !$ thread_num = omp_get_thread_num() - allocate (idx(0:N_det)) - !$OMP DO SCHEDULE(guided) - do i=1,N_det - if (thread_num == 0) then - progress_bar(1) = i - progress_value = dble(i) - endif - do j_int=1,N_con_int - det_connections(j_int,i) = 0_8 - j_k = ishft(j_int-1,11) - do j_l = j_k,min(j_k+2047,N_det), 32 - do j = j_l+1,min(j_l+32,i) - degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & - popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) - if (degree < 5) then - det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) - exit - endif - enddo - enddo - enddo - enddo - !$OMP ENDDO - deallocate(idx) - !$OMP END PARALLEL - - case(2) - - !$OMP PARALLEL DEFAULT (NONE) & - !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& - !$OMP progress_bar,progress_value)& - !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) - !$ thread_num = omp_get_thread_num() - allocate (idx(0:N_det)) - !$OMP DO SCHEDULE(guided) - do i=1,N_det - if (thread_num == 0) then - progress_bar(1) = i - progress_value = dble(i) - endif - do j_int=1,N_con_int - det_connections(j_int,i) = 0_8 - j_k = ishft(j_int-1,11) - do j_l = j_k,min(j_k+2047,N_det), 32 - do j = j_l+1,min(j_l+32,i) - degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & - popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & - popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & - popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) - if (degree < 5) then - det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) - exit - endif - enddo - enddo - enddo - enddo - !$OMP ENDDO - deallocate(idx) - !$OMP END PARALLEL - - case(3) - - !$OMP PARALLEL DEFAULT (NONE) & - !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& - !$OMP progress_bar,progress_value)& - !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) - !$ thread_num = omp_get_thread_num() - allocate (idx(0:N_det)) - !$OMP DO SCHEDULE(guided) - do i=1,N_det - if (thread_num == 0) then - progress_bar(1) = i - progress_value = dble(i) - endif - do j_int=1,N_con_int - det_connections(j_int,i) = 0_8 - j_k = ishft(j_int-1,11) - do j_l = j_k,min(j_k+2047,N_det), 32 - do j = j_l+1,min(j_l+32,i) - degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & - popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & - popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & - popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) + & - popcnt(xor( psi_det(3,1,i),psi_det(3,1,j))) + & - popcnt(xor( psi_det(3,2,i),psi_det(3,2,j))) - if (degree < 5) then - det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) - exit - endif - enddo - enddo - enddo - enddo - !$OMP ENDDO - deallocate(idx) - !$OMP END PARALLEL - - case default - - - !$OMP PARALLEL DEFAULT (NONE) & - !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& - !$OMP progress_bar,progress_value)& - !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) - !$ thread_num = omp_get_thread_num() - allocate (idx(0:N_det)) - !$OMP DO SCHEDULE(guided) - do i=1,N_det - if (thread_num == 0) then - progress_bar(1) = i - progress_value = dble(i) - endif - do j_int=1,N_con_int - det_connections(j_int,i) = 0_8 - j_k = ishft(j_int-1,11) - do j_l = j_k,min(j_k+2047,N_det), 32 - do j = j_l+1,min(j_l+32,i) - !DIR$ FORCEINLINE - call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) - if (degree < 3) then - det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) - exit - endif - enddo - enddo - enddo - enddo - !$OMP ENDDO - deallocate(idx) - !$OMP END PARALLEL - - end select - call stop_progress - -END_PROVIDER - diff --git a/src/Dets/spindeterminants.ezfio_config b/src/Dets/spindeterminants.ezfio_config deleted file mode 100644 index 39ccb82b..00000000 --- a/src/Dets/spindeterminants.ezfio_config +++ /dev/null @@ -1,17 +0,0 @@ -spindeterminants - n_det_alpha integer - n_det_beta integer - n_det integer - n_int integer - bit_kind integer - n_states integer - psi_det_alpha integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_alpha) - psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta) - psi_coef_matrix_rows integer (spindeterminants_n_det) - psi_coef_matrix_columns integer (spindeterminants_n_det) - psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states) - n_svd_coefs integer - psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states) - psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states) - psi_svd_coefs double precision (spindeterminants_n_svd_coefs,spindeterminants_n_states) - diff --git a/src/Dets/spindeterminants.irp.f b/src/Dets/spindeterminants.irp.f deleted file mode 100644 index ffd28f85..00000000 --- a/src/Dets/spindeterminants.irp.f +++ /dev/null @@ -1,615 +0,0 @@ -!==============================================================================! -! ! -! Independent alpha/beta parts ! -! ! -!==============================================================================! - -use bitmasks - -integer*8 function spin_det_search_key(det,Nint) - use bitmasks - implicit none - BEGIN_DOC -! Return an integer*8 corresponding to a determinant index for searching - END_DOC - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: det(Nint) - integer :: i - spin_det_search_key = det(1) - do i=2,Nint - spin_det_search_key = ieor(spin_det_search_key,det(i)) - enddo -end - - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of alpha determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_alpha(k,i) = psi_det(k,1,i) - enddo - enddo -END_PROVIDER - -BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] - implicit none - BEGIN_DOC -! List of beta determinants of psi_det - END_DOC - integer :: i,k - - do i=1,N_det - do k=1,N_int - psi_det_beta(k,i) = psi_det(k,2,i) - enddo - enddo -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] - implicit none - BEGIN_DOC - ! Unique alpha determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_alpha_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_alpha_unique += 1 - do k=1,N_int - psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] -&BEGIN_PROVIDER [ integer, N_det_beta_unique ] - implicit none - BEGIN_DOC - ! Unique beta determinants - END_DOC - - integer :: i,k - integer, allocatable :: iorder(:) - integer*8, allocatable :: bit_tmp(:) - integer*8 :: last_key - integer*8, external :: spin_det_search_key - - allocate ( iorder(N_det), bit_tmp(N_det)) - - do i=1,N_det - iorder(i) = i - bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) - enddo - - call i8sort(bit_tmp,iorder,N_det) - - N_det_beta_unique = 0 - last_key = 0_8 - do i=1,N_det - if (bit_tmp(i) /= last_key) then - last_key = bit_tmp(i) - N_det_beta_unique += 1 - do k=1,N_int - psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) - enddo - endif - enddo - - deallocate (iorder, bit_tmp) -END_PROVIDER - - - - - -integer function get_index_in_psi_det_alpha_unique(key,Nint) - use bitmasks - BEGIN_DOC -! Returns the index of the determinant in the ``psi_det_alpha_unique`` array - END_DOC - implicit none - - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key(Nint) - - integer :: i, ibegin, iend, istep, l - integer*8 :: det_ref, det_search - integer*8, external :: spin_det_search_key - logical :: is_in_wavefunction - - is_in_wavefunction = .False. - get_index_in_psi_det_alpha_unique = 0 - ibegin = 1 - iend = N_det_alpha_unique + 1 - - !DIR$ FORCEINLINE - det_ref = spin_det_search_key(key,Nint) - !DIR$ FORCEINLINE - det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint) - - istep = ishft(iend-ibegin,-1) - i=ibegin+istep - do while (istep > 0) - !DIR$ FORCEINLINE - det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint) - if ( det_search > det_ref ) then - iend = i - else if ( det_search == det_ref ) then - exit - else - ibegin = i - endif - istep = ishft(iend-ibegin,-1) - i = ibegin + istep - end do - - !DIR$ FORCEINLINE - do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) - i = i-1 - if (i == 0) then - exit - endif - enddo - i += 1 - - if (i > N_det_alpha_unique) then - return - endif - - !DIR$ FORCEINLINE - do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) - if (key(1) /= psi_det_alpha_unique(1,i)) then - continue - else - is_in_wavefunction = .True. - !DIR$ IVDEP - !DIR$ LOOP COUNT MIN(3) - do l=2,Nint - if (key(l) /= psi_det_alpha_unique(l,i)) then - is_in_wavefunction = .False. - endif - enddo - if (is_in_wavefunction) then - get_index_in_psi_det_alpha_unique = i - return - endif - endif - i += 1 - if (i > N_det_alpha_unique) then - return - endif - - enddo - -end - -integer function get_index_in_psi_det_beta_unique(key,Nint) - use bitmasks - BEGIN_DOC -! Returns the index of the determinant in the ``psi_det_beta_unique`` array - END_DOC - implicit none - - integer, intent(in) :: Nint - integer(bit_kind), intent(in) :: key(Nint) - - integer :: i, ibegin, iend, istep, l - integer*8 :: det_ref, det_search - integer*8, external :: spin_det_search_key - logical :: is_in_wavefunction - - is_in_wavefunction = .False. - get_index_in_psi_det_beta_unique = 0 - ibegin = 1 - iend = N_det_beta_unique + 1 - - !DIR$ FORCEINLINE - det_ref = spin_det_search_key(key,Nint) - !DIR$ FORCEINLINE - det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint) - - istep = ishft(iend-ibegin,-1) - i=ibegin+istep - do while (istep > 0) - !DIR$ FORCEINLINE - det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint) - if ( det_search > det_ref ) then - iend = i - else if ( det_search == det_ref ) then - exit - else - ibegin = i - endif - istep = ishft(iend-ibegin,-1) - i = ibegin + istep - end do - - !DIR$ FORCEINLINE - do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) - i = i-1 - if (i == 0) then - exit - endif - enddo - i += 1 - - if (i > N_det_beta_unique) then - return - endif - - !DIR$ FORCEINLINE - do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) - if (key(1) /= psi_det_beta_unique(1,i)) then - continue - else - is_in_wavefunction = .True. - !DIR$ IVDEP - !DIR$ LOOP COUNT MIN(3) - do l=2,Nint - if (key(l) /= psi_det_beta_unique(l,i)) then - is_in_wavefunction = .False. - endif - enddo - if (is_in_wavefunction) then - get_index_in_psi_det_beta_unique = i - return - endif - endif - i += 1 - if (i > N_det_beta_unique) then - return - endif - - enddo - -end - - -subroutine write_spindeterminants - use bitmasks - implicit none - integer*8, allocatable :: tmpdet(:,:) - integer :: N_int2 - integer :: i,j,k - integer*8 :: det_8(100) - integer(bit_kind) :: det_bk((100*8)/bit_kind) - equivalence (det_8, det_bk) - - N_int2 = (N_int*bit_kind)/8 - call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique) - call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique) - call ezfio_set_spindeterminants_n_det(N_det) - call ezfio_set_spindeterminants_n_int(N_int) - call ezfio_set_spindeterminants_bit_kind(bit_kind) - call ezfio_set_spindeterminants_n_states(N_states) - - allocate(tmpdet(N_int2,N_det_alpha_unique)) - do i=1,N_det_alpha_unique - do k=1,N_int - det_bk(k) = psi_det_alpha_unique(k,i) - enddo - do k=1,N_int2 - tmpdet(k,i) = det_8(k) - enddo - enddo - call ezfio_set_spindeterminants_psi_det_alpha(psi_det_alpha_unique) - deallocate(tmpdet) - - allocate(tmpdet(N_int2,N_det_beta_unique)) - do i=1,N_det_beta_unique - do k=1,N_int - det_bk(k) = psi_det_beta_unique(k,i) - enddo - do k=1,N_int2 - tmpdet(k,i) = det_8(k) - enddo - enddo - call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique) - deallocate(tmpdet) - - call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_svd_matrix_values) - call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_svd_matrix_rows) - call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_svd_matrix_columns) - - integer :: n_svd_coefs - double precision :: norm, f - f = 1.d0/dble(N_states) - norm = 1.d0 - do n_svd_coefs=1,N_det_alpha_unique - do k=1,N_states - norm -= psi_svd_coefs(n_svd_coefs,k)*psi_svd_coefs(n_svd_coefs,k) - enddo - if (norm < 1.d-4) then - exit - endif - enddo - n_svd_coefs -= 1 - call ezfio_set_spindeterminants_n_svd_coefs(n_svd_coefs) - - double precision, allocatable :: dtmp(:,:,:) - allocate(dtmp(N_det_alpha_unique,n_svd_coefs,N_states)) - do k=1,N_states - do j=1,n_svd_coefs - do i=1,N_det_alpha_unique - dtmp(i,j,k) = psi_svd_alpha(i,j,k) - enddo - enddo - enddo - call ezfio_set_spindeterminants_psi_svd_alpha(dtmp) - deallocate(dtmp) - - allocate(dtmp(N_det_beta_unique,n_svd_coefs,N_states)) - do k=1,N_states - do j=1,n_svd_coefs - do i=1,N_det_beta_unique - dtmp(i,j,k) = psi_svd_beta(i,j,k) - enddo - enddo - enddo - call ezfio_set_spindeterminants_psi_svd_beta(dtmp) - deallocate(dtmp) - - allocate(dtmp(n_svd_coefs,N_states,1)) - do k=1,N_states - do j=1,n_svd_coefs - dtmp(j,k,1) = psi_svd_coefs(j,k) - enddo - enddo - call ezfio_set_spindeterminants_psi_svd_coefs(dtmp) - deallocate(dtmp) - -end - - -!==============================================================================! -! ! -! Alpha x Beta Matrix ! -! ! -!==============================================================================! - -BEGIN_PROVIDER [ double precision, psi_svd_matrix_values, (N_det,N_states) ] -&BEGIN_PROVIDER [ integer, psi_svd_matrix_rows, (N_det) ] -&BEGIN_PROVIDER [ integer, psi_svd_matrix_columns, (N_det) ] - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k, l - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - - - PROVIDE psi_coef_sorted_bit - -! l=0 -! do j=1,N_det_beta_unique -! do k=1,N_int -! tmp_det(k,2) = psi_det_beta_unique(k,j) -! enddo -! do i=1,N_det_alpha_unique -! do k=1,N_int -! tmp_det(k,1) = psi_det_alpha_unique(k,i) -! enddo -! idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) -! if (idx > 0) then -! l += 1 -! psi_svd_matrix_rows(l) = i -! psi_svd_matrix_columns(l) = j -! do k=1,N_states -! psi_svd_matrix_values(l,k) = psi_coef_sorted_bit(idx,k) -! enddo -! endif -! enddo -! enddo -! ASSERT (l == N_det) - - integer, allocatable :: iorder(:), to_sort(:) - integer, external :: get_index_in_psi_det_alpha_unique - integer, external :: get_index_in_psi_det_beta_unique - allocate(iorder(N_det), to_sort(N_det)) - do k=1,N_det - i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int) - j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int) - do l=1,N_states - psi_svd_matrix_values(k,l) = psi_coef(k,l) - enddo - psi_svd_matrix_rows(k) = i - psi_svd_matrix_columns(k) = j - to_sort(k) = N_det_alpha_unique * (j-1) + i - iorder(k) = k - enddo - call isort(to_sort, iorder, N_det) - call iset_order(psi_svd_matrix_rows,iorder,N_det) - call iset_order(psi_svd_matrix_columns,iorder,N_det) - call dset_order(psi_svd_matrix_values,iorder,N_det) - deallocate(iorder,to_sort) -END_PROVIDER - -BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k,istate - psi_svd_matrix = 0.d0 - do k=1,N_det - i = psi_svd_matrix_rows(k) - j = psi_svd_matrix_columns(k) - do istate=1,N_states - psi_svd_matrix(i,j,istate) = psi_svd_matrix_values(k,istate) - enddo - enddo -END_PROVIDER - -subroutine create_wf_of_psi_svd_matrix - use bitmasks - implicit none - BEGIN_DOC -! Matrix of wf coefficients. Outer product of alpha and beta determinants - END_DOC - integer :: i,j,k - integer(bit_kind) :: tmp_det(N_int,2) - integer :: idx - integer, external :: get_index_in_psi_det_sorted_bit - logical, external :: is_in_wavefunction - double precision :: norm(N_states) - - call generate_all_alpha_beta_det_products - norm = 0.d0 - do j=1,N_det_beta_unique - do k=1,N_int - tmp_det(k,2) = psi_det_beta_unique(k,j) - enddo - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1) = psi_det_alpha_unique(k,i) - enddo - idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) - if (idx > 0) then - do k=1,N_states - psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) - norm(k) += psi_svd_matrix(i,j,k) - enddo - endif - enddo - enddo - do k=1,N_states - norm(k) = 1.d0/dsqrt(norm(k)) - do i=1,N_det - psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) - enddo - enddo - psi_det = psi_det_sorted_bit - psi_coef = psi_coef_sorted_bit - TOUCH psi_det psi_coef - psi_det = psi_det_sorted - psi_coef = psi_coef_sorted - norm(1) = 0.d0 - do i=1,N_det - norm(1) += psi_average_norm_contrib_sorted(i) - if (norm(1) >= 0.999999d0) then - exit - endif - enddo - N_det = min(i,N_det) - SOFT_TOUCH psi_det psi_coef N_det - -end - -subroutine generate_all_alpha_beta_det_products - implicit none - BEGIN_DOC -! Create a wave function from all possible alpha x beta determinants - END_DOC - integer :: i,j,k,l - integer :: idx, iproc - integer, external :: get_index_in_psi_det_sorted_bit - integer(bit_kind), allocatable :: tmp_det(:,:,:) - logical, external :: is_in_wavefunction - integer, external :: omp_get_thread_num - - !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& - !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& - !$OMP N_det) & - !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) - !$ iproc = omp_get_thread_num() - allocate (tmp_det(N_int,2,N_det_alpha_unique)) - !$OMP DO - do j=1,N_det_beta_unique - l = 1 - do i=1,N_det_alpha_unique - do k=1,N_int - tmp_det(k,1,l) = psi_det_alpha_unique(k,i) - tmp_det(k,2,l) = psi_det_beta_unique (k,j) - enddo - if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then - l = l+1 - endif - enddo - call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) - enddo - !$OMP END DO NOWAIT - deallocate(tmp_det) - !$OMP END PARALLEL - deallocate (tmp_det) - call copy_H_apply_buffer_to_wf - SOFT_TOUCH psi_det psi_coef N_det -end - - BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] -&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] - implicit none - BEGIN_DOC - ! SVD wave function - END_DOC - - integer :: lwork, info, istate - double precision, allocatable :: work(:), tmp(:,:), copy(:,:) - allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & - copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) - - do istate = 1,N_states - copy(:,:) = psi_svd_matrix(:,:,istate) - lwork=-1 - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - lwork = work(1) - deallocate(work) - allocate(work(lwork)) - call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & - copy, size(copy,1), & - psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & - size(psi_svd_alpha,1), & - tmp, size(psi_svd_beta,2), & - work, lwork, info) - deallocate(work) - if (info /= 0) then - print *, irp_here//': error in det SVD' - stop 1 - endif - integer :: i,j - do j=1,N_det_beta_unique - do i=1,N_det_beta_unique - psi_svd_beta(i,j,istate) = tmp(j,i) - enddo - enddo - deallocate(tmp,copy) - enddo - -END_PROVIDER - - diff --git a/src/Dets/truncate_wf.irp.f b/src/Dets/truncate_wf.irp.f deleted file mode 100644 index f867ad7e..00000000 --- a/src/Dets/truncate_wf.irp.f +++ /dev/null @@ -1,18 +0,0 @@ -program cisd - implicit none - integer :: i,k - - - double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:) - integer :: N_st, degree - N_det=10000 - do i=1,N_det - do k=1,N_int - psi_det(k,1,i) = psi_det_sorted(k,1,i) - psi_det(k,2,i) = psi_det_sorted(k,2,i) - enddo - psi_coef(k,:) = psi_coef_sorted(k,:) - enddo - TOUCH psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted N_det - call save_wavefunction -end diff --git a/src/Dets/utils.irp.f b/src/Dets/utils.irp.f deleted file mode 100644 index 22faee83..00000000 --- a/src/Dets/utils.irp.f +++ /dev/null @@ -1,20 +0,0 @@ -BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ] - implicit none - BEGIN_DOC - ! H matrix on the basis of the slater determinants defined by psi_det - END_DOC - integer :: i,j - double precision :: hij - call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij) - !$OMP PARALLEL DO SCHEDULE(GUIDED) PRIVATE(i,j,hij) & - !$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets) - do i =1,N_det - do j =i,N_det - call i_H_j(psi_det(1,1,i),psi_det(1,1,j),N_int,hij) - H_matrix_all_dets(i,j) = hij - H_matrix_all_dets(j,i) = hij - enddo - enddo - !$OMP END PARALLEL DO -END_PROVIDER - diff --git a/src/FCIdump/NEEDED_MODULES b/src/FCIdump/NEEDED_MODULES index 7f2f0ca8..c5e6c2d3 100644 --- a/src/FCIdump/NEEDED_MODULES +++ b/src/FCIdump/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/FCIdump/README.rst b/src/FCIdump/README.rst index 1fdd9660..bf39955b 100644 --- a/src/FCIdump/README.rst +++ b/src/FCIdump/README.rst @@ -24,7 +24,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `MonoInts `_ diff --git a/src/Full_CI/NEEDED_MODULES b/src/Full_CI/NEEDED_MODULES index 5e074d3c..f225090c 100644 --- a/src/Full_CI/NEEDED_MODULES +++ b/src/Full_CI/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Generators_full Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Generators_full Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils diff --git a/src/Full_CI/README.rst b/src/Full_CI/README.rst index 0b37ca69..53fdc1d5 100644 --- a/src/Full_CI/README.rst +++ b/src/Full_CI/README.rst @@ -27,7 +27,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Generators_full `_ diff --git a/src/Generators_CAS/NEEDED_MODULES b/src/Generators_CAS/NEEDED_MODULES index 7f2f0ca8..c5e6c2d3 100644 --- a/src/Generators_CAS/NEEDED_MODULES +++ b/src/Generators_CAS/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Generators_CAS/README.rst b/src/Generators_CAS/README.rst index 53e8c5a0..3fca0916 100644 --- a/src/Generators_CAS/README.rst +++ b/src/Generators_CAS/README.rst @@ -46,7 +46,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `MonoInts `_ diff --git a/src/Generators_CAS/generators.irp.f b/src/Generators_CAS/generators.irp.f index 511877a0..f47341de 100644 --- a/src/Generators_CAS/generators.irp.f +++ b/src/Generators_CAS/generators.irp.f @@ -7,7 +7,7 @@ BEGIN_PROVIDER [ integer, N_det_generators ] END_DOC integer :: i,k,l logical :: good - call write_time(output_dets) + call write_time(output_determinants) N_det_generators = 0 do i=1,N_det do l=1,n_cas_bitmask @@ -28,7 +28,7 @@ BEGIN_PROVIDER [ integer, N_det_generators ] endif enddo N_det_generators = max(N_det_generators,1) - call write_int(output_dets,N_det_generators,'Number of generators') + call write_int(output_determinants,N_det_generators,'Number of generators') END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ] diff --git a/src/Generators_full/NEEDED_MODULES b/src/Generators_full/NEEDED_MODULES index 7d973bce..a848a687 100644 --- a/src/Generators_full/NEEDED_MODULES +++ b/src/Generators_full/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Utils diff --git a/src/Generators_full/README.rst b/src/Generators_full/README.rst index a8492dbc..79f4037c 100644 --- a/src/Generators_full/README.rst +++ b/src/Generators_full/README.rst @@ -11,25 +11,25 @@ Documentation .. Do not edit this section. It was auto-generated from the .. NEEDED_MODULES file. -`degree_max_generators `_ +`degree_max_generators `_ Max degree of excitation (respect to HF) of the generators -`n_det_generators `_ +`n_det_generators `_ For Single reference wave functions, the number of generators is 1 : the Hartree-Fock determinant -`psi_coef_generators `_ +`psi_coef_generators `_ For Single reference wave functions, the generator is the Hartree-Fock determinant -`psi_det_generators `_ +`psi_det_generators `_ For Single reference wave functions, the generator is the Hartree-Fock determinant -`select_max `_ +`select_max `_ Memo to skip useless selectors -`size_select_max `_ +`size_select_max `_ Size of the select_max array @@ -43,7 +43,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/Generators_full/generators.irp.f b/src/Generators_full/generators.irp.f index 4d261acd..a61fc5c5 100644 --- a/src/Generators_full/generators.irp.f +++ b/src/Generators_full/generators.irp.f @@ -1,17 +1,5 @@ use bitmasks -BEGIN_SHELL [ /usr/bin/python ] -from ezfio_with_default import EZFIO_Provider -T = EZFIO_Provider() -T.set_type ( "double precision" ) -T.set_name ( "threshold_generators" ) -T.set_doc ( "Percentage of the norm of the state-averaged wave function to consider for the generators" ) -T.set_ezfio_dir ( "determinants" ) -T.set_ezfio_name( "threshold_generators" ) -T.set_output ( "output_dets" ) -print T -END_SHELL - BEGIN_PROVIDER [ integer, N_det_generators ] implicit none BEGIN_DOC @@ -20,7 +8,7 @@ BEGIN_PROVIDER [ integer, N_det_generators ] END_DOC integer :: i double precision :: norm - call write_time(output_dets) + call write_time(output_determinants) norm = 0.d0 N_det_generators = N_det do i=1,N_det @@ -31,7 +19,7 @@ BEGIN_PROVIDER [ integer, N_det_generators ] endif enddo N_det_generators = max(N_det_generators,1) - call write_int(output_dets,N_det_generators,'Number of generators') + call write_int(output_determinants,N_det_generators,'Number of generators') END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ] diff --git a/src/Generators_restart/NEEDED_MODULES b/src/Generators_restart/NEEDED_MODULES index 7f2f0ca8..c5e6c2d3 100644 --- a/src/Generators_restart/NEEDED_MODULES +++ b/src/Generators_restart/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Generators_restart/generators.irp.f b/src/Generators_restart/generators.irp.f index 2e0bc375..0a82e6f9 100644 --- a/src/Generators_restart/generators.irp.f +++ b/src/Generators_restart/generators.irp.f @@ -13,7 +13,7 @@ BEGIN_PROVIDER [ integer, N_det_generators ] N_det_generators = N_det ifirst = 1 endif - call write_int(output_dets,N_det_generators,'Number of generators') + call write_int(output_determinants,N_det_generators,'Number of generators') END_PROVIDER diff --git a/src/MP2/NEEDED_MODULES b/src/MP2/NEEDED_MODULES index 076746d1..b7a006c3 100644 --- a/src/MP2/NEEDED_MODULES +++ b/src/MP2/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full SingleRefMethod Utils diff --git a/src/MP2/README.rst b/src/MP2/README.rst index 92d915b6..74db8039 100644 --- a/src/MP2/README.rst +++ b/src/MP2/README.rst @@ -22,7 +22,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/MRCC/NEEDED_MODULES b/src/MRCC/NEEDED_MODULES index 5e074d3c..f225090c 100644 --- a/src/MRCC/NEEDED_MODULES +++ b/src/MRCC/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Generators_full Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Generators_full Hartree_Fock MOGuess MonoInts MOs Nuclei Output Perturbation Properties Selectors_full Utils diff --git a/src/MRCC/README.rst b/src/MRCC/README.rst index 702d19aa..f96f329f 100644 --- a/src/MRCC/README.rst +++ b/src/MRCC/README.rst @@ -11,7 +11,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Generators_full `_ diff --git a/src/MRCC/mrcc_utils.irp.f b/src/MRCC/mrcc_utils.irp.f index d33b7902..9b4add38 100644 --- a/src/MRCC/mrcc_utils.irp.f +++ b/src/MRCC/mrcc_utils.irp.f @@ -94,7 +94,7 @@ END_PROVIDER stop 'use Lapack' ! call davidson_diag(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, & -! size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_Dets) +! size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants) else if (diag_algorithm == "Lapack") then @@ -137,7 +137,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] integer :: j character*(8) :: st - call write_time(output_Dets) + call write_time(output_determinants) do j=1,N_states_diag CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion enddo diff --git a/src/NEEDED_MODULES b/src/NEEDED_MODULES index efe8b8f8..80176c68 100644 --- a/src/NEEDED_MODULES +++ b/src/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask CID CID_SC2_selected CID_selected CIS CISD CISD_selected CISD_SC2_selected Dets Electrons Ezfio_files Full_CI Generators_full Hartree_Fock MOGuess MonoInts MOs MP2 Nuclei Output Selectors_full Utils Molden FCIdump Generators_CAS CAS_SD DDCI_selected MRCC +AOs Bielec_integrals Bitmask CID CID_SC2_selected CID_selected CIS CISD CISD_selected CISD_SC2_selected Determinants Electrons Ezfio_files Full_CI Generators_full Hartree_Fock MOGuess MonoInts MOs MP2 Nuclei Output Selectors_full Utils Molden FCIdump Generators_CAS CAS_SD DDCI_selected MRCC diff --git a/src/Perturbation/NEEDED_MODULES b/src/Perturbation/NEEDED_MODULES index 4fa6ff4b..4e0f218e 100644 --- a/src/Perturbation/NEEDED_MODULES +++ b/src/Perturbation/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Properties Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Properties Utils diff --git a/src/Perturbation/selection.irp.f b/src/Perturbation/selection.irp.f index 4230293a..77313888 100644 --- a/src/Perturbation/selection.irp.f +++ b/src/Perturbation/selection.irp.f @@ -135,7 +135,7 @@ subroutine remove_small_contributions if (N_removed > 0) then N_det = N_det - N_removed SOFT_TOUCH N_det psi_det psi_coef - call write_int(output_dets,N_removed, 'Removed determinants') + call write_int(output_determinants,N_removed, 'Removed determinants') endif end diff --git a/src/Properties/NEEDED_MODULES b/src/Properties/NEEDED_MODULES index 9095dbdf..62dbbe42 100644 --- a/src/Properties/NEEDED_MODULES +++ b/src/Properties/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Selectors_full/NEEDED_MODULES b/src/Selectors_full/NEEDED_MODULES index 7d973bce..a848a687 100644 --- a/src/Selectors_full/NEEDED_MODULES +++ b/src/Selectors_full/NEEDED_MODULES @@ -1,2 +1,2 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files Hartree_Fock MOGuess MonoInts MOs Nuclei Output Utils diff --git a/src/Selectors_full/README.rst b/src/Selectors_full/README.rst index aaa07bbd..2ca9380a 100644 --- a/src/Selectors_full/README.rst +++ b/src/Selectors_full/README.rst @@ -123,38 +123,38 @@ Documentation .br n_double_selectors = number of double excitations in the selectors determinants -`n_det_selectors `_ +`n_det_selectors `_ For Single reference wave functions, the number of selectors is 1 : the Hartree-Fock determinant -`psi_selectors `_ +`psi_selectors `_ Determinants on which we apply for perturbation. -`psi_selectors_ab `_ +`psi_selectors_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_selectors_coef `_ +`psi_selectors_coef `_ Determinants on which we apply for perturbation. -`psi_selectors_coef_ab `_ +`psi_selectors_coef_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_selectors_diag_h_mat `_ +`psi_selectors_diag_h_mat `_ Diagonal elements of the H matrix for each selectors -`psi_selectors_next_ab `_ +`psi_selectors_next_ab `_ Determinants on which we apply . They are sorted by the 3 highest electrons in the alpha part, then by the 3 highest electrons in the beta part to accelerate the research of connected determinants. -`psi_selectors_size `_ +`psi_selectors_size `_ Undocumented @@ -168,7 +168,7 @@ Needed Modules * `AOs `_ * `Bielec_integrals `_ * `Bitmask `_ -* `Dets `_ +* `Determinants `_ * `Electrons `_ * `Ezfio_files `_ * `Hartree_Fock `_ diff --git a/src/Selectors_full/selectors.irp.f b/src/Selectors_full/selectors.irp.f index 986241f5..73ae6371 100644 --- a/src/Selectors_full/selectors.irp.f +++ b/src/Selectors_full/selectors.irp.f @@ -1,17 +1,5 @@ use bitmasks -BEGIN_SHELL [ /usr/bin/python ] -from ezfio_with_default import EZFIO_Provider -T = EZFIO_Provider() -T.set_type ( "double precision" ) -T.set_name ( "threshold_selectors" ) -T.set_doc ( "Percentage of the norm of the state-averaged wave function to consider for the selectors" ) -T.set_ezfio_dir ( "determinants" ) -T.set_ezfio_name( "threshold_selectors" ) -T.set_output ( "output_dets" ) -print T -END_SHELL - BEGIN_PROVIDER [ integer, psi_selectors_size ] implicit none psi_selectors_size = psi_det_size @@ -25,7 +13,7 @@ BEGIN_PROVIDER [ integer, N_det_selectors] END_DOC integer :: i double precision :: norm - call write_time(output_dets) + call write_time(output_determinants) norm = 0.d0 N_det_selectors = N_det do i=1,N_det @@ -36,7 +24,7 @@ BEGIN_PROVIDER [ integer, N_det_selectors] endif enddo N_det_selectors = max(N_det_selectors,1) - call write_int(output_dets,N_det_selectors,'Number of selectors') + call write_int(output_determinants,N_det_selectors,'Number of selectors') END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_selectors, (N_int,2,psi_selectors_size) ] diff --git a/src/Selectors_no_sorted/NEEDED_MODULES b/src/Selectors_no_sorted/NEEDED_MODULES index 7f2f0ca8..c5e6c2d3 100644 --- a/src/Selectors_no_sorted/NEEDED_MODULES +++ b/src/Selectors_no_sorted/NEEDED_MODULES @@ -1 +1 @@ -AOs Bielec_integrals Bitmask Dets Electrons Ezfio_files MonoInts MOs Nuclei Output Utils +AOs Bielec_integrals Bitmask Determinants Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Selectors_no_sorted/selectors.irp.f b/src/Selectors_no_sorted/selectors.irp.f index d6c20804..8080e99c 100644 --- a/src/Selectors_no_sorted/selectors.irp.f +++ b/src/Selectors_no_sorted/selectors.irp.f @@ -15,11 +15,11 @@ BEGIN_PROVIDER [ integer, N_det_selectors] END_DOC integer :: i double precision :: norm - call write_time(output_dets) + call write_time(output_determinants) norm = 0.d0 N_det_selectors = N_det N_det_selectors = max(N_det_selectors,1) - call write_int(output_dets,N_det_selectors,'Number of selectors') + call write_int(output_determinants,N_det_selectors,'Number of selectors') END_PROVIDER From 3e2a3dfe0e9562712e59035a1366f21cb30d2b89 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 15:41:19 +0200 Subject: [PATCH 13/20] Put ezfio_filanme in output_ --- src/Output/NEEDED_MODULES | 2 +- src/Output/output.irp.f | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/Output/NEEDED_MODULES b/src/Output/NEEDED_MODULES index 5d0065cc..f684b5aa 100644 --- a/src/Output/NEEDED_MODULES +++ b/src/Output/NEEDED_MODULES @@ -1 +1 @@ -Utils +Utils Ezfio_files diff --git a/src/Output/output.irp.f b/src/Output/output.irp.f index d227dda8..85f5cc0e 100644 --- a/src/Output/output.irp.f +++ b/src/Output/output.irp.f @@ -19,7 +19,7 @@ BEGIN_SHELL [ /bin/bash ] BEGIN_DOC ! Output file for $NAME END_DOC - PROVIDE output_wall_time_0 output_cpu_time_0 + PROVIDE output_wall_time_0 output_cpu_time_0 ezfio_filename integer :: getUnitAndOpen call ezfio_set_output_empty(.False.) IRP_IF COARRAY From 242f7b0612bac8054bb7985de720de35907a0b3e Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 16:45:06 +0200 Subject: [PATCH 14/20] Add H_apply_template.f --- scripts/ezfio_interface/ei_handler.py | 1 - src/Determinants/H_apply_template.f | 542 ++++++++++++++++++++++++++ 2 files changed, 542 insertions(+), 1 deletion(-) create mode 100644 src/Determinants/H_apply_template.f diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index e5c08895..6d18d071 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -278,7 +278,6 @@ def get_dict_config_file(config_file_path, module_lower): try: d[pvd]["default"] = is_bool(default_raw) - print is_bool(default_raw) except TypeError: d[pvd]["default"] = Type(None, default_raw, default_raw) diff --git a/src/Determinants/H_apply_template.f b/src/Determinants/H_apply_template.f new file mode 100644 index 00000000..a9a282ae --- /dev/null +++ b/src/Determinants/H_apply_template.f @@ -0,0 +1,542 @@ +subroutine $subroutine_diexc(key_in, hole_1,particl_1, hole_2, particl_2, i_generator, iproc_in $parameters ) + use omp_lib + use bitmasks + implicit none + BEGIN_DOC + ! Generate all double excitations of key_in using the bit masks of holes and + ! particles. + ! Assume N_int is already provided. + END_DOC + integer,parameter :: size_max = $size_max + $declarations + integer ,intent(in) :: i_generator + integer(bit_kind),intent(in) :: key_in(N_int,2) + integer(bit_kind),allocatable :: keys_out(:,:,:) + integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) + integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2) + integer, intent(in) :: iproc_in + integer(bit_kind), allocatable :: hole_save(:,:) + integer(bit_kind), allocatable :: key(:,:),hole(:,:), particle(:,:) + integer(bit_kind), allocatable :: hole_tmp(:,:), particle_tmp(:,:) + integer :: ii,i,jj,j,k,ispin,l + integer, allocatable :: occ_particle(:,:), occ_hole(:,:) + integer, allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) + integer :: kk,pp,other_spin,key_idx + integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) + integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) + + double precision :: mo_bielec_integral + logical :: is_a_two_holes_two_particles + integer, allocatable :: ia_ja_pairs(:,:,:) + integer, allocatable :: ib_jb_pairs(:,:) + double precision :: diag_H_mat_elem + integer :: iproc + integer(omp_lock_kind), save :: lck, ifirst=0 + if (ifirst == 0) then +!$ call omp_init_lock(lck) + ifirst=1 + endif + + logical :: check_double_excitation + check_double_excitation = .True. + iproc = iproc_in + + + $initialization + + $omp_parallel +!$ iproc = omp_get_thread_num() + allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & + key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& + particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & + occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& + occ_hole_tmp(N_int*bit_kind_size,2)) + $init_thread + + + + !!!! First couple hole particle + do j = 1, N_int + hole(j,1) = iand(hole_1(j,1),key_in(j,1)) + hole(j,2) = iand(hole_1(j,2),key_in(j,2)) + particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) + particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) + enddo + call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) + call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) + call bitstring_to_list(hole(1,1),occ_hole(1,1),N_elec_in_key_hole_1(1),N_int) + call bitstring_to_list(hole(1,2),occ_hole(1,2),N_elec_in_key_hole_1(2),N_int) + allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2), & + ib_jb_pairs(2,0:(elec_alpha_num)*mo_tot_num)) + + do ispin=1,2 + i=0 + do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole + i_a = occ_hole(ii,ispin) + ASSERT (i_a > 0) + ASSERT (i_a <= mo_tot_num) + + do jj=1,N_elec_in_key_part_1(ispin) !particle + j_a = occ_particle(jj,ispin) + ASSERT (j_a > 0) + ASSERT (j_a <= mo_tot_num) + i += 1 + ia_ja_pairs(1,i,ispin) = i_a + ia_ja_pairs(2,i,ispin) = j_a + enddo + enddo + ia_ja_pairs(1,0,ispin) = i + enddo + + key_idx = 0 + + integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b + integer(bit_kind) :: test(N_int,2) + double precision :: accu + logical, allocatable :: array_pairs(:,:) + allocate(array_pairs(mo_tot_num,mo_tot_num)) + accu = 0.d0 + do ispin=1,2 + other_spin = iand(ispin,1)+1 + if (abort_here) then + exit + endif + $omp_do + do ii=1,ia_ja_pairs(1,0,ispin) + if (abort_here) then + cycle + endif + i_a = ia_ja_pairs(1,ii,ispin) + ASSERT (i_a > 0) + ASSERT (i_a <= mo_tot_num) + j_a = ia_ja_pairs(2,ii,ispin) + ASSERT (j_a > 0) + ASSERT (j_a <= mo_tot_num) + hole = key_in + k = ishft(i_a-1,-bit_kind_shift)+1 + j = i_a-ishft(k-1,bit_kind_shift)-1 + hole(k,ispin) = ibclr(hole(k,ispin),j) + k_a = ishft(j_a-1,-bit_kind_shift)+1 + l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 + hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) + + !!!! Second couple hole particle + do j = 1, N_int + hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1)) + hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2)) + particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1)) + particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2)) + enddo + + call bitstring_to_list(particle_tmp(1,1),occ_particle_tmp(1,1),N_elec_in_key_part_2(1),N_int) + call bitstring_to_list(particle_tmp(1,2),occ_particle_tmp(1,2),N_elec_in_key_part_2(2),N_int) + call bitstring_to_list(hole_tmp (1,1),occ_hole_tmp (1,1),N_elec_in_key_hole_2(1),N_int) + call bitstring_to_list(hole_tmp (1,2),occ_hole_tmp (1,2),N_elec_in_key_hole_2(2),N_int) + + ! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : mono exc :: orb(i_a,ispin) --> orb(j_a,ispin) + hole_save = hole + + ! Build array of the non-zero integrals of second excitation + $filter_integrals + if (ispin == 1) then + integer :: jjj + + i=0 + do kk = 1,N_elec_in_key_hole_2(other_spin) + i_b = occ_hole_tmp(kk,other_spin) + ASSERT (i_b > 0) + ASSERT (i_b <= mo_tot_num) + do jjj=1,N_elec_in_key_part_2(other_spin) ! particule + j_b = occ_particle_tmp(jjj,other_spin) + ASSERT (j_b > 0) + ASSERT (j_b <= mo_tot_num) + if (array_pairs(i_b,j_b)) then + i+= 1 + ib_jb_pairs(1,i) = i_b + ib_jb_pairs(2,i) = j_b + endif + enddo + enddo + ib_jb_pairs(1,0) = i + + do kk = 1,ib_jb_pairs(1,0) + hole = hole_save + i_b = ib_jb_pairs(1,kk) + j_b = ib_jb_pairs(2,kk) + k = ishft(i_b-1,-bit_kind_shift)+1 + j = i_b-ishft(k-1,bit_kind_shift)-1 + hole(k,other_spin) = ibclr(hole(k,other_spin),j) + key = hole + k = ishft(j_b-1,-bit_kind_shift)+1 + l = j_b-ishft(k-1,bit_kind_shift)-1 + key(k,other_spin) = ibset(key(k,other_spin),l) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = key(k,1) + keys_out(k,2,key_idx) = key(k,2) + enddo + ASSERT (key_idx <= size_max) + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + if (abort_here) then + exit + endif + enddo + endif + + ! does all the mono excitations of the same spin + i=0 + do kk = 1,N_elec_in_key_hole_2(ispin) + i_b = occ_hole_tmp(kk,ispin) + if (i_b <= i_a.or.i_b == j_a) cycle + ASSERT (i_b > 0) + ASSERT (i_b <= mo_tot_num) + do jjj=1,N_elec_in_key_part_2(ispin) ! particule + j_b = occ_particle_tmp(jjj,ispin) + ASSERT (j_b > 0) + ASSERT (j_b <= mo_tot_num) + if (j_b <= j_a) cycle + if (array_pairs(i_b,j_b)) then + i+= 1 + ib_jb_pairs(1,i) = i_b + ib_jb_pairs(2,i) = j_b + endif + enddo + enddo + ib_jb_pairs(1,0) = i + + do kk = 1,ib_jb_pairs(1,0) + hole = hole_save + i_b = ib_jb_pairs(1,kk) + j_b = ib_jb_pairs(2,kk) + k = ishft(i_b-1,-bit_kind_shift)+1 + j = i_b-ishft(k-1,bit_kind_shift)-1 + hole(k,ispin) = ibclr(hole(k,ispin),j) + key = hole + k = ishft(j_b-1,-bit_kind_shift)+1 + l = j_b-ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibset(key(k,ispin),l) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = key(k,1) + keys_out(k,2,key_idx) = key(k,2) + enddo + ASSERT (key_idx <= size_max) + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + if (abort_here) then + exit + endif + enddo ! kk + + enddo ! ii + $omp_enddo + enddo ! ispin + $keys_work + $deinit_thread + deallocate (ia_ja_pairs, ib_jb_pairs, & + keys_out, hole_save, & + key,hole, particle, hole_tmp,& + particle_tmp, occ_particle, & + occ_hole, occ_particle_tmp,& + occ_hole_tmp,array_pairs) + $omp_end_parallel + $finalization +end + +subroutine $subroutine_monoexc(key_in, hole_1,particl_1,i_generator,iproc_in $parameters ) + use omp_lib + use bitmasks + implicit none + BEGIN_DOC + ! Generate all single excitations of key_in using the bit masks of holes and + ! particles. + ! Assume N_int is already provided. + END_DOC + integer,parameter :: size_max = $size_max + $declarations + integer ,intent(in) :: i_generator + integer(bit_kind),intent(in) :: key_in(N_int,2) + integer(bit_kind),intent(in) :: hole_1(N_int,2), particl_1(N_int,2) + integer, intent(in) :: iproc_in + integer(bit_kind),allocatable :: keys_out(:,:,:) + integer(bit_kind),allocatable :: hole_save(:,:) + integer(bit_kind),allocatable :: key(:,:),hole(:,:), particle(:,:) + integer(bit_kind),allocatable :: hole_tmp(:,:), particle_tmp(:,:) + integer(bit_kind),allocatable :: hole_2(:,:), particl_2(:,:) + integer :: ii,i,jj,j,k,ispin,l + integer,allocatable :: occ_particle(:,:), occ_hole(:,:) + integer,allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) + integer,allocatable :: ib_jb_pairs(:,:) + integer :: kk,pp,other_spin,key_idx + integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) + integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) + logical :: is_a_two_holes_two_particles + + integer, allocatable :: ia_ja_pairs(:,:,:) + logical, allocatable :: array_pairs(:,:) + double precision :: diag_H_mat_elem + integer(omp_lock_kind), save :: lck, ifirst=0 + integer :: iproc + + logical :: check_double_excitation + iproc = iproc_in + + check_double_excitation = .True. + $check_double_excitation + + + if (ifirst == 0) then + ifirst=1 +!$ call omp_init_lock(lck) + endif + + $initialization + + $omp_parallel +!$ iproc = omp_get_thread_num() + allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & + key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& + particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & + occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& + occ_hole_tmp(N_int*bit_kind_size,2)) + $init_thread + !!!! First couple hole particle + do j = 1, N_int + hole(j,1) = iand(hole_1(j,1),key_in(j,1)) + hole(j,2) = iand(hole_1(j,2),key_in(j,2)) + particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) + particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) + enddo + + call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) + call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) + call bitstring_to_list(hole (1,1),occ_hole (1,1),N_elec_in_key_hole_1(1),N_int) + call bitstring_to_list(hole (1,2),occ_hole (1,2),N_elec_in_key_hole_1(2),N_int) + allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2)) + + do ispin=1,2 + i=0 + do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole + i_a = occ_hole(ii,ispin) + do jj=1,N_elec_in_key_part_1(ispin) !particule + j_a = occ_particle(jj,ispin) + i += 1 + ia_ja_pairs(1,i,ispin) = i_a + ia_ja_pairs(2,i,ispin) = j_a + enddo + enddo + ia_ja_pairs(1,0,ispin) = i + enddo + + key_idx = 0 + + integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b + integer(bit_kind) :: test(N_int,2) + double precision :: accu + accu = 0.d0 + do ispin=1,2 + other_spin = iand(ispin,1)+1 + $omp_do + do ii=1,ia_ja_pairs(1,0,ispin) + i_a = ia_ja_pairs(1,ii,ispin) + j_a = ia_ja_pairs(2,ii,ispin) + hole = key_in + k = ishft(i_a-1,-bit_kind_shift)+1 + j = i_a-ishft(k-1,bit_kind_shift)-1 + $filterhole + hole(k,ispin) = ibclr(hole(k,ispin),j) + k_a = ishft(j_a-1,-bit_kind_shift)+1 + l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 + $filterparticle + hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = hole(k,1) + keys_out(k,2,key_idx) = hole(k,2) + enddo + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + enddo ! ii + $omp_enddo + enddo ! ispin + $keys_work + $deinit_thread + deallocate (ia_ja_pairs, & + keys_out, hole_save, & + key,hole, particle, hole_tmp,& + particle_tmp, occ_particle, & + occ_hole, occ_particle_tmp,& + occ_hole_tmp) + $omp_end_parallel + $finalization + +end + + +subroutine $subroutine($params_main) + implicit none + use omp_lib + use bitmasks + BEGIN_DOC + ! Calls H_apply on the HF determinant and selects all connected single and double + ! excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + END_DOC + + $decls_main + + integer :: i_generator, nmax + double precision :: wall_0, wall_1 + integer(omp_lock_kind) :: lck + integer(bit_kind), allocatable :: mask(:,:,:) + integer :: ispin, k + integer :: iproc + + $initialization + PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators + + + nmax = mod( N_det_generators,nproc ) + + + !$ call omp_init_lock(lck) + call start_progress(N_det_generators,'Selection (norm)',0.d0) + + call wall_time(wall_0) + + iproc = 0 + allocate( mask(N_int,2,6) ) + do i_generator=1,nmax + + progress_bar(1) = i_generator + + if (abort_here) then + exit + endif + $skip + + ! Create bit masks for holes and particles + do ispin=1,2 + do k=1,N_int + mask(k,ispin,s_hole) = & + iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,s_part) = & + iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole1) = & + iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part1) = & + iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole2) = & + iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part2) = & + iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + enddo + enddo + if($do_double_excitations)then + call $subroutine_diexc(psi_det_generators(1,1,i_generator), & + mask(1,1,d_hole1), mask(1,1,d_part1), & + mask(1,1,d_hole2), mask(1,1,d_part2), & + i_generator, iproc $params_post) + endif + if($do_mono_excitations)then + call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & + mask(1,1,s_hole ), mask(1,1,s_part ), & + i_generator, iproc $params_post) + endif + call wall_time(wall_1) + $printout_always + if (wall_1 - wall_0 > 2.d0) then + $printout_now + wall_0 = wall_1 + endif + enddo + + deallocate( mask ) + + !$OMP PARALLEL DEFAULT(SHARED) & + !$OMP PRIVATE(i_generator,wall_1,wall_0,ispin,k,mask,iproc) + call wall_time(wall_0) + !$ iproc = omp_get_thread_num() + allocate( mask(N_int,2,6) ) + !$OMP DO SCHEDULE(dynamic,1) + do i_generator=nmax+1,N_det_generators + if (iproc == 0) then + progress_bar(1) = i_generator + endif + if (abort_here) then + cycle + endif + $skip + + ! Create bit masks for holes and particles + do ispin=1,2 + do k=1,N_int + mask(k,ispin,s_hole) = & + iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,s_part) = & + iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole1) = & + iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part1) = & + iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole2) = & + iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part2) = & + iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & + not (psi_det_generators(k,ispin,i_generator)) ) + enddo + enddo + + if($do_double_excitations)then + call $subroutine_diexc(psi_det_generators(1,1,i_generator), & + mask(1,1,d_hole1), mask(1,1,d_part1), & + mask(1,1,d_hole2), mask(1,1,d_part2), & + i_generator, iproc $params_post) + endif + if($do_mono_excitations)then + call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & + mask(1,1,s_hole ), mask(1,1,s_part ), & + i_generator, iproc $params_post) + endif + !$ call omp_set_lock(lck) + call wall_time(wall_1) + $printout_always + if (wall_1 - wall_0 > 2.d0) then + $printout_now + wall_0 = wall_1 + endif + !$ call omp_unset_lock(lck) + enddo + !$OMP END DO + deallocate( mask ) + !$OMP END PARALLEL + !$ call omp_destroy_lock(lck) + + abort_here = abort_all + call stop_progress + + $copy_buffer + $generate_psi_guess + +end + From 952e3f2954737f69b083b8f4979b0f869b1fcd31 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 16:58:16 +0200 Subject: [PATCH 15/20] Update README.rst --- src/Output/README.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/src/Output/README.rst b/src/Output/README.rst index adcae302..7b510fc1 100644 --- a/src/Output/README.rst +++ b/src/Output/README.rst @@ -32,6 +32,7 @@ Needed Modules .. NEEDED_MODULES file. * `Utils `_ +* `Ezfio_files `_ Documentation ============= From 8054b1e58ace6286a628fad6983c7084ee7a946e Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 17:17:36 +0200 Subject: [PATCH 16/20] New version of int.f90 for big alpha but not to much --- src/MonoInts/int.f90 | 70 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 62 insertions(+), 8 deletions(-) diff --git a/src/MonoInts/int.f90 b/src/MonoInts/int.f90 index c7d2ac84..85b5c71e 100644 --- a/src/MonoInts/int.f90 +++ b/src/MonoInts/int.f90 @@ -140,7 +140,7 @@ end ! __ __ _ __ ___ ___ _ _ __| | ___ ! \ \ / / | '_ \/ __|/ _ \ | | |/ _` |/ _ \ ! \ V / | |_) \__ \ __/ |_| | (_| | (_) | -! \_/ | .__/|___/\___|\__,_|\__,_|\___/ +! \_/ | .__/|___/\___|\__,_|\____|\___/ ! | | ! |_| @@ -200,7 +200,7 @@ double precision, intent(in) :: v_kl(kmax_max,0:lmax_max),dz_kl(kmax_max,0:lmax_ double precision :: fourpi,f,prod,prodp,binom,accu,bigR,bigI,ylm double precision :: theta_AC0,phi_AC0,theta_BC0,phi_BC0,ac,bc,big -double precision :: areal,freal,breal,t1,t2,int_prod_bessel +double precision :: areal,freal,breal,t1,t2,int_prod_bessel, int_prod_bessel_num_soph_p double precision :: arg integer :: ntot,ntotA,m,mu,mup,k1,k2,k3,ntotB,k1p,k2p,k3p,lambda,lambdap,ktot @@ -270,7 +270,9 @@ if(ac.eq.0.d0.and.bc.eq.0.d0)then do m=-l,l prod=bigI(0,0,l,m,n_a(1),n_a(2),n_a(3)) prodp=bigI(0,0,l,m,n_b(1),n_b(2),n_b(3)) - accu=accu+prod*prodp*v_kl(k,l)*freal*int_prod_bessel(ktot+2,g_a+g_b+dz_kl(k,l),0,0,areal,breal) + + accu=accu+prod*prodp*v_kl(k,l)*int_prod_bessel_num_soph_p(ktot+2,g_a+g_b+dz_kl(k,l),0,0,areal,breal,arg) + enddo enddo enddo @@ -303,7 +305,7 @@ else if(ac.ne.0.d0.and.bc.ne.0.d0)then do k=1,kmax do l=0,lmax array_R(ktot,k,l,lambda,lambdap)= freal & - *int_prod_bessel(ktot+2,g_a+g_b+dz_kl(k,l),lambda,lambdap,areal,breal) + *int_prod_bessel_num_soph_p(ktot+2,g_a+g_b+dz_kl(k,l),lambda,lambdap,areal,breal,arg) enddo enddo enddo @@ -426,8 +428,8 @@ else if(ac.eq.0.d0.and.bc.ne.0.d0)then do l=0,lmax array_R(ktot,k,l,0,lambdap)= freal & - *int_prod_bessel(ktot+2,g_a+g_b+dz_kl(k,l),0,lambdap,areal,breal) - enddo + * int_prod_bessel_num_soph_p(ktot+2,g_a+g_b+dz_kl(k,l),0,lambdap,areal,breal,arg) + enddo enddo enddo enddo @@ -513,8 +515,7 @@ else if(ac.ne.0.d0.and.bc.eq.0.d0)then do l=0,lmax array_R(ktot,k,l,lambda,0)= freal & - *int_prod_bessel(ktot+2,g_a+g_b+dz_kl(k,l),lambda,0,areal,breal) - + * int_prod_bessel_num_soph_p(ktot+2,g_a+g_b+dz_kl(k,l),lambda,0,areal,breal,arg) enddo enddo enddo @@ -1974,6 +1975,59 @@ end stop 'pb in int_prod_bessel!!' end + + double precision function int_prod_bessel_num_soph_p(l,gam,n,m,a,b,arg) + implicit none + integer n,m,l + double precision gam,a,b,arg,arg_new + double precision bessel_mod,factor +logical not_done +double precision bigA,xold,x,dx,accu,intnew,intold,intold2,u,v,freal +integer iter +double precision n0,nI,i,eps + u=(a+b)/(2.d0*dsqrt(gam)) + arg_new=u**2-arg + freal=dexp(arg_new) + v=u/dsqrt(gam) + +bigA=v+dsqrt(-dlog(1.d-15)/gam) +n0=5 +accu=0.d0 +dx=bigA/(n0-1.d0) +iter=0 +do i=1.d0,n0 + x=(i-1.d0)*dx + accu=accu+x**l*dexp(-gam*(x-v)**2)*bessel_mod(a*x,n)*bessel_mod(b*x,m)*dexp(-(a+b)*x) +enddo +accu=accu*freal +intold=accu*dx + +eps=1.d-08 +nI=n0-1.d0 +dx=dx/2.d0 +not_done=.true. + +do while(not_done) + iter=iter+1 + accu=0.d0 + do i=1.d0,nI + x=dx+(i-1.d0)*2.d0*dx + accu=accu+dx*x**l*dexp(-gam*(x-v)**2)*bessel_mod(a*x,n)*bessel_mod(b*x,m)*dexp(-(a+b)*x) + enddo + accu=accu*freal + intnew=intold/2.d0+accu + if(iter.gt.1.and.dabs(intnew-intold).lt.eps.and.dabs(intnew-intold2).lt.eps)then + not_done=.false. + else + intold2=intold + intold=intnew + dx=dx/2.d0 + nI=2.d0*nI + endif +enddo +int_prod_bessel_num_soph_p=intold +end + !! Calculation of !! !! I= \int dx x**l *exp(-gam*x**2) M_n(ax) From 67a44ee43cc96113c41679af9bf0545c28c8f7d7 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 17:21:27 +0200 Subject: [PATCH 17/20] Add all the mising file... --- ocaml/Input_determinants.ml | 32 +- src/Determinants/ASSUMPTIONS.rst | 7 + src/Determinants/EZFIO.cfg | 100 ++ src/Determinants/H_apply.irp.f | 229 +++ src/Determinants/Makefile | 6 + src/Determinants/NEEDED_MODULES | 1 + src/Determinants/README.rst | 696 +++++++++ src/Determinants/SC2.irp.f | 215 +++ src/Determinants/connected_to_ref.irp.f | 357 +++++ src/Determinants/create_excitations.irp.f | 36 + src/Determinants/davidson.irp.f | 418 ++++++ src/Determinants/density_matrix.irp.f | 214 +++ src/Determinants/det_svd.irp.f | 61 + src/Determinants/determinants.irp.f | 9 - src/Determinants/determinants_bitmasks.irp.f | 57 + src/Determinants/diagonalize_CI.irp.f | 109 ++ src/Determinants/diagonalize_CI_SC2.irp.f | 59 + src/Determinants/diagonalize_CI_mono.irp.f | 72 + src/Determinants/excitations_utils.irp.f | 16 + src/Determinants/filter_connected.irp.f | 611 ++++++++ src/Determinants/guess_doublet.irp.f | 79 + src/Determinants/guess_singlet.irp.f | 44 + src/Determinants/guess_triplet.irp.f | 48 + src/Determinants/occ_pattern.irp.f | 339 +++++ src/Determinants/options.irp.f | 22 + .../program_beginer_determinants.irp.f | 138 ++ src/Determinants/psi_cas.irp.f | 114 ++ src/Determinants/ref_bitmask.irp.f | 57 + src/Determinants/s2.irp.f | 106 ++ src/Determinants/save_for_casino.irp.f | 268 ++++ src/Determinants/save_for_qmcchem.irp.f | 51 + src/Determinants/save_natorb.irp.f | 6 + src/Determinants/slater_rules.irp.f | 1301 +++++++++++++++++ .../spindeterminants.ezfio_config | 17 + src/Determinants/spindeterminants.irp.f | 615 ++++++++ src/Determinants/truncate_wf.irp.f | 18 + src/Determinants/utils.irp.f | 20 + src/Properties/EZFIO.cfg | 5 + 38 files changed, 6527 insertions(+), 26 deletions(-) create mode 100644 src/Determinants/ASSUMPTIONS.rst create mode 100644 src/Determinants/EZFIO.cfg create mode 100644 src/Determinants/H_apply.irp.f create mode 100644 src/Determinants/Makefile create mode 100644 src/Determinants/NEEDED_MODULES create mode 100644 src/Determinants/README.rst create mode 100644 src/Determinants/SC2.irp.f create mode 100644 src/Determinants/connected_to_ref.irp.f create mode 100644 src/Determinants/create_excitations.irp.f create mode 100644 src/Determinants/davidson.irp.f create mode 100644 src/Determinants/density_matrix.irp.f create mode 100644 src/Determinants/det_svd.irp.f create mode 100644 src/Determinants/determinants_bitmasks.irp.f create mode 100644 src/Determinants/diagonalize_CI.irp.f create mode 100644 src/Determinants/diagonalize_CI_SC2.irp.f create mode 100644 src/Determinants/diagonalize_CI_mono.irp.f create mode 100644 src/Determinants/excitations_utils.irp.f create mode 100644 src/Determinants/filter_connected.irp.f create mode 100644 src/Determinants/guess_doublet.irp.f create mode 100644 src/Determinants/guess_singlet.irp.f create mode 100644 src/Determinants/guess_triplet.irp.f create mode 100644 src/Determinants/occ_pattern.irp.f create mode 100644 src/Determinants/options.irp.f create mode 100644 src/Determinants/program_beginer_determinants.irp.f create mode 100644 src/Determinants/psi_cas.irp.f create mode 100644 src/Determinants/ref_bitmask.irp.f create mode 100644 src/Determinants/s2.irp.f create mode 100644 src/Determinants/save_for_casino.irp.f create mode 100644 src/Determinants/save_for_qmcchem.irp.f create mode 100644 src/Determinants/save_natorb.irp.f create mode 100644 src/Determinants/slater_rules.irp.f create mode 100644 src/Determinants/spindeterminants.ezfio_config create mode 100644 src/Determinants/spindeterminants.irp.f create mode 100644 src/Determinants/truncate_wf.irp.f create mode 100644 src/Determinants/utils.irp.f create mode 100644 src/Properties/EZFIO.cfg diff --git a/ocaml/Input_determinants.ml b/ocaml/Input_determinants.ml index df046231..fa08e72b 100644 --- a/ocaml/Input_determinants.ml +++ b/ocaml/Input_determinants.ml @@ -10,10 +10,10 @@ module Determinants : sig (* Generate type *) type t = { - n_det_max_jacobi : Strictly_positive_int.t; + n_det_max_jacobi : int; threshold_generators : Threshold.t; threshold_selectors : Threshold.t; - n_states : Strictly_positive_int.t; + n_states : States_number.t; s2_eig : bool; read_wf : bool; only_single_double_dm : bool; @@ -28,10 +28,10 @@ end = struct (* Generate type *) type t = { - n_det_max_jacobi : Strictly_positive_int.t; + n_det_max_jacobi : int; threshold_generators : Threshold.t; threshold_selectors : Threshold.t; - n_states : Strictly_positive_int.t; + n_states : States_number.t; s2_eig : bool; read_wf : bool; only_single_double_dm : bool; @@ -52,12 +52,10 @@ end = struct |> Ezfio.set_determinants_n_det_max_jacobi ; Ezfio.get_determinants_n_det_max_jacobi () - |> Strictly_positive_int.of_int ;; (* Write snippet for n_det_max_jacobi *) - let write_n_det_max_jacobi var = - Strictly_positive_int.to_int var - |> Ezfio.set_determinants_n_det_max_jacobi + let write_n_det_max_jacobi = + Ezfio.set_determinants_n_det_max_jacobi ;; (* Read snippet for n_states *) @@ -68,11 +66,11 @@ end = struct |> Ezfio.set_determinants_n_states ; Ezfio.get_determinants_n_states () - |> Strictly_positive_int.of_int + |> States_number.of_int ;; (* Write snippet for n_states *) let write_n_states var = - Strictly_positive_int.to_int var + States_number.to_int var |> Ezfio.set_determinants_n_states ;; @@ -196,10 +194,10 @@ end = struct read_wf = %s only_single_double_dm = %s " - (Strictly_positive_int.to_string b.n_det_max_jacobi) + (Int.to_string b.n_det_max_jacobi) (Threshold.to_string b.threshold_generators) (Threshold.to_string b.threshold_selectors) - (Strictly_positive_int.to_string b.n_states) + (States_number.to_string b.n_states) (Bool.to_string b.s2_eig) (Bool.to_string b.read_wf) (Bool.to_string b.only_single_double_dm) @@ -211,11 +209,11 @@ end = struct n_det_max_jacobi = %s - Percentage of the norm of the state-averaged wave function to consider for the generators :: + Thresholds on generators (fraction of the norm) :: threshold_generators = %s - Percentage of the norm of the state-averaged wave function to consider for the selectors :: + Thresholds on selectors (fraction of the norm) :: threshold_selectors = %s @@ -231,15 +229,15 @@ end = struct read_wf = %s - If true, The One body DM is calculated with ignoing the Double <-> Doubles extra diag elements :: + If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements :: only_single_double_dm = %s " - (Strictly_positive_int.to_string b.n_det_max_jacobi) + (Int.to_string b.n_det_max_jacobi) (Threshold.to_string b.threshold_generators) (Threshold.to_string b.threshold_selectors) - (Strictly_positive_int.to_string b.n_states) + (States_number.to_string b.n_states) (Bool.to_string b.s2_eig) (Bool.to_string b.read_wf) (Bool.to_string b.only_single_double_dm) diff --git a/src/Determinants/ASSUMPTIONS.rst b/src/Determinants/ASSUMPTIONS.rst new file mode 100644 index 00000000..e9e24d09 --- /dev/null +++ b/src/Determinants/ASSUMPTIONS.rst @@ -0,0 +1,7 @@ +* The MOs are orthonormal +* All the determinants have the same number of electrons +* The determinants are orthonormal +* The number of generator determinants <= the number of determinants +* All the determinants in the H_apply buffer are supposed to be different from the + wave function determinants +* All the determinants in the H_apply buffer are supposed to be unique diff --git a/src/Determinants/EZFIO.cfg b/src/Determinants/EZFIO.cfg new file mode 100644 index 00000000..32b4d5f7 --- /dev/null +++ b/src/Determinants/EZFIO.cfg @@ -0,0 +1,100 @@ +[N_states] +type: States_number +doc: Number of states to consider +interface: input +default: 1 + +[N_det_max_jacobi] +type: integer +doc: Maximum number of determinants diagonalized by Jacobi +interface: input +default: 1000 + +[n_states_diag] +type: integer +doc: n_states_diag +interface: Ocaml + +[read_wf] +type: logical +doc: If true, read the wave function from the EZFIO file +interface: input +default: False + +[only_single_double_dm] +type: logical +doc: If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements +interface: input +default: False + +[s2_eig] +type: logical +doc: Force the wave function to be an eigenfunction of S^2 +interface: input +default: False + +[threshold_generators] +type: Threshold +doc: Thresholds on generators (fraction of the norm) +interface: input +default: 0.99 + +[threshold_selectors] +type: Threshold +doc: Thresholds on selectors (fraction of the norm) +interface: input +default: 0.999 + +[n_int] +interface: OCaml +doc: n_int +type: N_int_number + +[bit_kind] +interface: OCaml +doc: bit_kind +type: Bit_kind + +[mo_label] +interface: OCaml +doc: o_label +type: character*(64) + +[n_det] +interface: OCaml +doc: n_det +type: integer + +[psi_coef] +interface: OCaml +doc: psi_coef +type: double precision +size: (determinants_n_det,determinants_n_states) + +[psi_det] +interface: OCaml +doc: psi_det +type: integer*8 +size: (determinants_n_int*determinants_bit_kind/8,2,determinants_n_det) + +[det_num] +interface: OCaml +doc: det_num +type: integer + +[det_occ] +interface: OCaml +doc: det_occ +type: integer +size: (electrons_elec_alpha_num,determinants_det_num,2) + +[det_coef] +interface: OCaml +doc: det_coef +type: double precision +size: (determinants_det_num) + +[expected_s2] +interface: OCaml +doc: expcted_s2 +type: double precision \ No newline at end of file diff --git a/src/Determinants/H_apply.irp.f b/src/Determinants/H_apply.irp.f new file mode 100644 index 00000000..801d00a5 --- /dev/null +++ b/src/Determinants/H_apply.irp.f @@ -0,0 +1,229 @@ +use bitmasks +use omp_lib + +type H_apply_buffer_type +integer :: N_det +integer :: sze +integer(bit_kind), pointer :: det(:,:,:) +double precision , pointer :: coef(:,:) +double precision , pointer :: e2(:,:) +end type H_apply_buffer_type + +type(H_apply_buffer_type), pointer :: H_apply_buffer(:) + + + BEGIN_PROVIDER [ logical, H_apply_buffer_allocated ] +&BEGIN_PROVIDER [ integer(omp_lock_kind), H_apply_buffer_lock, (64,0:nproc-1) ] + use omp_lib + implicit none + BEGIN_DOC + ! Buffer of determinants/coefficients/perturbative energy for H_apply. + ! Uninitialized. Filled by H_apply subroutines. + END_DOC + integer :: iproc, sze + sze = 10000 + if (.not.associated(H_apply_buffer)) then + allocate(H_apply_buffer(0:nproc-1)) + iproc = 0 + !$OMP PARALLEL PRIVATE(iproc) DEFAULT(NONE) & + !$OMP SHARED(H_apply_buffer,N_int,sze,N_states,H_apply_buffer_lock) + !$ iproc = omp_get_thread_num() + H_apply_buffer(iproc)%N_det = 0 + H_apply_buffer(iproc)%sze = sze + allocate ( & + H_apply_buffer(iproc)%det(N_int,2,sze), & + H_apply_buffer(iproc)%coef(sze,N_states), & + H_apply_buffer(iproc)%e2(sze,N_states) & + ) + H_apply_buffer(iproc)%det = 0_bit_kind + H_apply_buffer(iproc)%coef = 0.d0 + H_apply_buffer(iproc)%e2 = 0.d0 + call omp_init_lock(H_apply_buffer_lock(1,iproc)) + !$OMP END PARALLEL + endif + +END_PROVIDER + + +subroutine resize_H_apply_buffer(new_size,iproc) + implicit none + integer, intent(in) :: new_size, iproc + integer(bit_kind), pointer :: buffer_det(:,:,:) + double precision, pointer :: buffer_coef(:,:) + double precision, pointer :: buffer_e2(:,:) + integer :: i,j,k + integer :: Ndet + PROVIDE H_apply_buffer_allocated + + ASSERT (new_size > 0) + ASSERT (iproc >= 0) + ASSERT (iproc < nproc) + + call omp_set_lock(H_apply_buffer_lock(1,iproc)) + allocate ( buffer_det(N_int,2,new_size), & + buffer_coef(new_size,N_states), & + buffer_e2(new_size,N_states) ) + + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + do k=1,N_int + buffer_det(k,1,i) = H_apply_buffer(iproc)%det(k,1,i) + buffer_det(k,2,i) = H_apply_buffer(iproc)%det(k,2,i) + enddo + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num ) + enddo + deallocate(H_apply_buffer(iproc)%det) + H_apply_buffer(iproc)%det => buffer_det + + do k=1,N_states + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + buffer_coef(i,k) = H_apply_buffer(iproc)%coef(i,k) + enddo + enddo + deallocate(H_apply_buffer(iproc)%coef) + H_apply_buffer(iproc)%coef => buffer_coef + + do k=1,N_states + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + buffer_e2(i,k) = H_apply_buffer(iproc)%e2(i,k) + enddo + enddo + deallocate(H_apply_buffer(iproc)%e2) + H_apply_buffer(iproc)%e2 => buffer_e2 + + H_apply_buffer(iproc)%sze = new_size + H_apply_buffer(iproc)%N_det = min(new_size,H_apply_buffer(iproc)%N_det) + call omp_unset_lock(H_apply_buffer_lock(1,iproc)) + +end + +subroutine copy_H_apply_buffer_to_wf + use omp_lib + implicit none + BEGIN_DOC +! Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det +! after calling this function. +! After calling this subroutine, N_det, psi_det and psi_coef need to be touched + END_DOC + integer(bit_kind), allocatable :: buffer_det(:,:,:) + double precision, allocatable :: buffer_coef(:,:) + integer :: i,j,k + integer :: N_det_old + integer :: iproc + + PROVIDE H_apply_buffer_allocated + + ASSERT (N_int > 0) + ASSERT (N_det > 0) + + allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) ) + + do i=1,N_det + do k=1,N_int + ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num) + buffer_det(k,1,i) = psi_det(k,1,i) + buffer_det(k,2,i) = psi_det(k,2,i) + enddo + enddo + do k=1,N_states + do i=1,N_det + buffer_coef(i,k) = psi_coef(i,k) + enddo + enddo + + N_det_old = N_det + do j=0,nproc-1 + N_det = N_det + H_apply_buffer(j)%N_det + enddo + + if (psi_det_size < N_det) then + psi_det_size = N_det + TOUCH psi_det_size + endif + do i=1,N_det_old + do k=1,N_int + psi_det(k,1,i) = buffer_det(k,1,i) + psi_det(k,2,i) = buffer_det(k,2,i) + enddo + ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num ) + enddo + do k=1,N_states + do i=1,N_det_old + psi_coef(i,k) = buffer_coef(i,k) + enddo + enddo + !$OMP PARALLEL DEFAULT(SHARED) & + !$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) & + !$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states) + j=0 + !$ j=omp_get_thread_num() + do k=0,j-1 + N_det_old += H_apply_buffer(k)%N_det + enddo + do i=1,H_apply_buffer(j)%N_det + do k=1,N_int + psi_det(k,1,i+N_det_old) = H_apply_buffer(j)%det(k,1,i) + psi_det(k,2,i+N_det_old) = H_apply_buffer(j)%det(k,2,i) + enddo + ASSERT (sum(popcnt(psi_det(:,1,i+N_det_old))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i+N_det_old))) == elec_beta_num ) + enddo + do k=1,N_states + do i=1,H_apply_buffer(j)%N_det + psi_coef(i+N_det_old,k) = H_apply_buffer(j)%coef(i,k) + enddo + enddo + !$OMP BARRIER + H_apply_buffer(j)%N_det = 0 + !$OMP END PARALLEL + call normalize(psi_coef,N_det) + SOFT_TOUCH N_det psi_det psi_coef + +end + + +subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc) + use bitmasks + implicit none + BEGIN_DOC + ! Fill the H_apply buffer with determiants for CISD + END_DOC + + integer, intent(in) :: n_selected, Nint, iproc + integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) + integer :: i,j,k + integer :: new_size + PROVIDE H_apply_buffer_allocated + new_size = H_apply_buffer(iproc)%N_det + n_selected + if (new_size > H_apply_buffer(iproc)%sze) then + call resize_h_apply_buffer(max(2*H_apply_buffer(iproc)%sze,new_size),iproc) + endif + call omp_set_lock(H_apply_buffer_lock(1,iproc)) + do i=1,H_apply_buffer(iproc)%N_det + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) + enddo + do i=1,n_selected + do j=1,N_int + H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i) + H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i) + enddo + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num) + enddo + do j=1,N_states + do i=1,N_selected + H_apply_buffer(iproc)%coef(i,j) = 0.d0 + enddo + enddo + H_apply_buffer(iproc)%N_det = new_size + do i=1,H_apply_buffer(iproc)%N_det + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) + enddo + call omp_unset_lock(H_apply_buffer_lock(1,iproc)) +end + + diff --git a/src/Determinants/Makefile b/src/Determinants/Makefile new file mode 100644 index 00000000..092d879d --- /dev/null +++ b/src/Determinants/Makefile @@ -0,0 +1,6 @@ +# Define here all new external source files and objects.Don't forget to prefix the +# object files with IRPF90_temp/ +SRC=H_apply_template.f +OBJ= + +include $(QPACKAGE_ROOT)/src/Makefile.common diff --git a/src/Determinants/NEEDED_MODULES b/src/Determinants/NEEDED_MODULES new file mode 100644 index 00000000..824c75ed --- /dev/null +++ b/src/Determinants/NEEDED_MODULES @@ -0,0 +1 @@ +AOs Bielec_integrals Bitmask Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Determinants/README.rst b/src/Determinants/README.rst new file mode 100644 index 00000000..445c8b5e --- /dev/null +++ b/src/Determinants/README.rst @@ -0,0 +1,696 @@ +=========== +Dets Module +=========== + +This module contains the determinants of the CI wave function. + +H is applied on the list of generator determinants. Selected determinants +are added into the *H_apply buffer*. Then the new wave function is +constructred as the concatenation of the odl wave function and +some determinants of the H_apply buffer. Generator determinants are built +as a subset of the determinants of the wave function. + + +Assumptions +=========== + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +* The MOs are orthonormal +* All the determinants have the same number of electrons +* The determinants are orthonormal +* The number of generator determinants <= the number of determinants +* All the determinants in the H_apply buffer are supposed to be different from the + wave function determinants +* All the determinants in the H_apply buffer are supposed to be unique + + +Needed Modules +============== + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +* `AOs `_ +* `Bielec_integrals `_ +* `Bitmask `_ +* `Electrons `_ +* `Ezfio_files `_ +* `MonoInts `_ +* `MOs `_ +* `Nuclei `_ +* `Output `_ +* `Utils `_ + +Documentation +============= + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +`copy_h_apply_buffer_to_wf `_ + Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det + after calling this function. + After calling this subroutine, N_det, psi_det and psi_coef need to be touched + +`fill_h_apply_buffer_no_selection `_ + Fill the H_apply buffer with determiants for CISD + +`h_apply_buffer_allocated `_ + Buffer of determinants/coefficients/perturbative energy for H_apply. + Uninitialized. Filled by H_apply subroutines. + +`h_apply_buffer_lock `_ + Buffer of determinants/coefficients/perturbative energy for H_apply. + Uninitialized. Filled by H_apply subroutines. + +`resize_h_apply_buffer `_ + Undocumented + +`cisd_sc2 `_ + CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + Initial guess vectors are not necessarily orthonormal + +`connected_to_ref `_ + Undocumented + +`connected_to_ref_by_mono `_ + Undocumented + +`det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`get_index_in_psi_det_sorted_bit `_ + Returns the index of the determinant in the ``psi_det_sorted_bit`` array + +`is_in_wavefunction `_ + True if the determinant ``det`` is in the wave function + +`occ_pattern_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`do_mono_excitation `_ + Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin + on key_in + ispin = 1 == alpha + ispin = 2 == beta + i_ok = 1 == the excitation is possible + i_ok = -1 == the excitation is not possible + +`davidson_converged `_ + True if the Davidson algorithm is converged + +`davidson_criterion `_ + Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + +`davidson_diag `_ + Davidson diagonalization. + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit number for the I/O + .br + Initial guess vectors are not necessarily orthonormal + +`davidson_diag_hjj `_ + Davidson diagonalization with specific diagonal elements of the H matrix + .br + H_jj : specific diagonal H matrix elements to diagonalize de Davidson + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit for the I/O + .br + Initial guess vectors are not necessarily orthonormal + +`davidson_iter_max `_ + Max number of Davidson iterations + +`davidson_sze_max `_ + Max number of Davidson sizes + +`davidson_threshold `_ + Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + +`one_body_dm_mo `_ + One-body density matrix + +`one_body_dm_mo_alpha `_ + Alpha and beta one-body density matrix for each state + +`one_body_dm_mo_beta `_ + Alpha and beta one-body density matrix for each state + +`one_body_single_double_dm_mo_alpha `_ + Alpha and beta one-body density matrix for each state + +`one_body_single_double_dm_mo_beta `_ + Alpha and beta one-body density matrix for each state + +`one_body_spin_density_mo `_ + rho(alpha) - rho(beta) + +`save_natural_mos `_ + Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + +`set_natural_mos `_ + Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + +`state_average_weight `_ + Weights in the state-average calculation of the density matrix + +`det_svd `_ + Computes the SVD of the Alpha x Beta determinant coefficient matrix + +`filter_3_highest_electrons `_ + Returns a determinant with only the 3 highest electrons + +`int_of_3_highest_electrons `_ + Returns an integer*8 as : + .br + |_<--- 21 bits ---><--- 21 bits ---><--- 21 bits --->| + .br + |0<--- i1 ---><--- i2 ---><--- i3 --->| + .br + It encodes the value of the indices of the 3 highest MOs + in descending order + .br + +`max_degree_exc `_ + Maximum degree of excitation in the wf + +`n_det `_ + Number of determinants in the wave function + +`psi_average_norm_contrib `_ + Contribution of determinants to the state-averaged density + +`psi_average_norm_contrib_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_coef `_ + The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file + is empty + +`psi_coef_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_coef_sorted_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`psi_coef_sorted_bit `_ + Determinants on which we apply for perturbation. + They are sorted by determinants interpreted as integers. Useful + to accelerate the search of a random determinant in the wave + function. + +`psi_det `_ + The wave function determinants. Initialized with Hartree-Fock if the EZFIO file + is empty + +`psi_det_size `_ + Size of the psi_det/psi_coef arrays + +`psi_det_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_det_sorted_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`psi_det_sorted_bit `_ + Determinants on which we apply for perturbation. + They are sorted by determinants interpreted as integers. Useful + to accelerate the search of a random determinant in the wave + function. + +`psi_det_sorted_next_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`read_dets `_ + Reads the determinants from the EZFIO file + +`save_wavefunction `_ + Save the wave function into the EZFIO file + +`save_wavefunction_general `_ + Save the wave function into the EZFIO file + +`save_wavefunction_unsorted `_ + Save the wave function into the EZFIO file + +`sort_dets_by_3_highest_electrons `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`sort_dets_by_det_search_key `_ + Determinants are sorted are sorted according to their det_search_key. + Useful to accelerate the search of a random determinant in the wave + function. + +`double_exc_bitmask `_ + double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 + double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 + double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 + double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 + for a given couple of hole/particle excitations i. + +`n_double_exc_bitmasks `_ + Number of double excitation bitmasks + +`n_single_exc_bitmasks `_ + Number of single excitation bitmasks + +`single_exc_bitmask `_ + single_exc_bitmask(:,1,i) is the bitmask for holes + single_exc_bitmask(:,2,i) is the bitmask for particles + for a given couple of hole/particle excitations i. + +`ci_eigenvectors `_ + Eigenvectors/values of the CI matrix + +`ci_eigenvectors_s2 `_ + Eigenvectors/values of the CI matrix + +`ci_electronic_energy `_ + Eigenvectors/values of the CI matrix + +`ci_energy `_ + N_states lowest eigenvalues of the CI matrix + +`diag_algorithm `_ + Diagonalization algorithm (Davidson or Lapack) + +`diagonalize_ci `_ + Replace the coefficients of the CI states by the coefficients of the + eigenstates of the CI matrix + +`ci_sc2_eigenvectors `_ + Eigenvectors/values of the CI matrix + +`ci_sc2_electronic_energy `_ + Eigenvectors/values of the CI matrix + +`ci_sc2_energy `_ + N_states_diag lowest eigenvalues of the CI matrix + +`diagonalize_ci_sc2 `_ + Replace the coefficients of the CI states_diag by the coefficients of the + eigenstates of the CI matrix + +`threshold_convergence_sc2 `_ + convergence of the correlation energy of SC2 iterations + +`ci_eigenvectors_mono `_ + Eigenvectors/values of the CI matrix + +`ci_eigenvectors_s2_mono `_ + Eigenvectors/values of the CI matrix + +`ci_electronic_energy_mono `_ + Eigenvectors/values of the CI matrix + +`diagonalize_ci_mono `_ + Replace the coefficients of the CI states by the coefficients of the + eigenstates of the CI matrix + +`apply_mono `_ + Undocumented + +`filter_connected `_ + Filters out the determinants that are not connected by H + .br + returns the array idx which contains the index of the + .br + determinants in the array key1 that interact + .br + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + +`filter_connected_davidson `_ + Filters out the determinants that are not connected by H + returns the array idx which contains the index of the + determinants in the array key1 that interact + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + key1 should come from psi_det_sorted_ab. + +`filter_connected_i_h_psi0 `_ + returns the array idx which contains the index of the + .br + determinants in the array key1 that interact + .br + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + +`filter_connected_i_h_psi0_sc2 `_ + standard filter_connected_i_H_psi but returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`filter_connected_sorted_ab `_ + Filters out the determinants that are not connected by H + returns the array idx which contains the index of the + determinants in the array key1 that interact + via the H operator with key2. + idx(0) is the number of determinants that interact with key1 + .br + Determinants are taken from the psi_det_sorted_ab array + +`put_gess `_ + Undocumented + +`det_to_occ_pattern `_ + Transform a determinant to an occupation pattern + +`make_s2_eigenfunction `_ + Undocumented + +`n_occ_pattern `_ + array of the occ_pattern present in the wf + psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + +`occ_pattern_to_dets `_ + Generate all possible determinants for a give occ_pattern + +`occ_pattern_to_dets_size `_ + Number of possible determinants for a given occ_pattern + +`psi_occ_pattern `_ + array of the occ_pattern present in the wf + psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + +`rec_occ_pattern_to_dets `_ + Undocumented + +`n_states_diag `_ + Number of states to consider for the diagonalization + +`pouet `_ + Undocumented + +`routine `_ + Undocumented + +`idx_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`idx_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`n_det_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`n_det_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`psi_cas_coef `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`psi_cas_coef_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_cas_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_non_cas_coef `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_non_cas_coef_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_non_cas_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`bi_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`kinetic_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`mono_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`nucl_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`expected_s2 `_ + Expected value of S2 : S*(S+1) + +`get_s2 `_ + Returns + +`get_s2_u0 `_ + Undocumented + +`s2_values `_ + array of the averaged values of the S^2 operator on the various states + +`s_z `_ + z component of the Spin + +`s_z2_sz `_ + z component of the Spin + +`prog_save_casino `_ + Undocumented + +`save_casino `_ + Undocumented + +`save_dets_qmcchem `_ + Undocumented + +`save_for_qmc `_ + Undocumented + +`save_natorb `_ + Undocumented + +`a_operator `_ + Needed for diag_H_mat_elem + +`ac_operator `_ + Needed for diag_H_mat_elem + +`decode_exc `_ + Decodes the exc arrays returned by get_excitation. + h1,h2 : Holes + p1,p2 : Particles + s1,s2 : Spins (1:alpha, 2:beta) + degree : Degree of excitation + +`det_connections `_ + Build connection proxy between determinants + +`diag_h_mat_elem `_ + Computes + +`get_double_excitation `_ + Returns the two excitation operators between two doubly excited determinants and the phase + +`get_excitation `_ + Returns the excitation operators between two determinants and the phase + +`get_excitation_degree `_ + Returns the excitation degree between two determinants + +`get_excitation_degree_vector `_ + Applies get_excitation_degree to an array of determinants + +`get_mono_excitation `_ + Returns the excitation operator between two singly excited determinants and the phase + +`get_occ_from_key `_ + Returns a list of occupation numbers from a bitstring + +`h_u_0 `_ + Computes v_0 = H|u_0> + .br + n : number of determinants + .br + H_jj : array of + +`i_h_j `_ + Returns where i and j are determinants + +`i_h_j_verbose `_ + Returns where i and j are determinants + +`i_h_psi `_ + for the various Nstates + +`i_h_psi_sc2 `_ + for the various Nstate + .br + returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`i_h_psi_sc2_verbose `_ + for the various Nstate + .br + returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`i_h_psi_sec_ord `_ + for the various Nstates + +`n_con_int `_ + Number of integers to represent the connections between determinants + +`create_wf_of_psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`generate_all_alpha_beta_det_products `_ + Create a wave function from all possible alpha x beta determinants + +`get_index_in_psi_det_alpha_unique `_ + Returns the index of the determinant in the ``psi_det_alpha_unique`` array + +`get_index_in_psi_det_beta_unique `_ + Returns the index of the determinant in the ``psi_det_beta_unique`` array + +`n_det_alpha_unique `_ + Unique alpha determinants + +`n_det_beta_unique `_ + Unique beta determinants + +`psi_det_alpha `_ + List of alpha determinants of psi_det + +`psi_det_alpha_unique `_ + Unique alpha determinants + +`psi_det_beta `_ + List of beta determinants of psi_det + +`psi_det_beta_unique `_ + Unique beta determinants + +`psi_svd_alpha `_ + SVD wave function + +`psi_svd_beta `_ + SVD wave function + +`psi_svd_coefs `_ + SVD wave function + +`psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_columns `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_rows `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_values `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`spin_det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`write_spindeterminants `_ + Undocumented + +`cisd `_ + Undocumented + +`h_matrix_all_dets `_ + H matrix on the basis of the slater determinants defined by psi_det + + + diff --git a/src/Determinants/SC2.irp.f b/src/Determinants/SC2.irp.f new file mode 100644 index 00000000..440b2870 --- /dev/null +++ b/src/Determinants/SC2.irp.f @@ -0,0 +1,215 @@ +subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence) + use bitmasks + implicit none + BEGIN_DOC + ! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + double precision, intent(in) :: convergence + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + integer :: iter + integer :: i,j,k,l,m + logical :: converged + double precision :: overlap(N_st,N_st) + double precision :: u_dot_v, u_dot_u + + integer :: degree,N_double,index_hf + double precision :: hij_elec, e_corr_double,e_corr,diag_h_mat_elem,inv_c0 + double precision :: e_corr_double_before,accu,cpu_2,cpu_1 + integer,allocatable :: degree_exc(:), index_double(:) + integer :: i_ok + double precision,allocatable :: e_corr_array(:),H_jj_ref(:),H_jj_dressed(:),hij_double(:) + integer(bit_kind), allocatable :: doubles(:,:,:) + + + allocate (doubles(Nint,2,sze),e_corr_array(sze),H_jj_ref(sze),H_jj_dressed(sze),& + index_double(sze), degree_exc(sze), hij_double(sze)) + call write_time(output_determinants) + write(output_determinants,'(A)') '' + write(output_determinants,'(A)') 'CISD SC2' + write(output_determinants,'(A)') '========' + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(sze,N_st, & + !$OMP H_jj_ref,Nint,dets_in,u_in) & + !$OMP PRIVATE(i) + + !$OMP DO SCHEDULE(guided) + do i=1,sze + H_jj_ref(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) + enddo + !$OMP END DO NOWAIT + !$OMP END PARALLEL + + N_double = 0 + e_corr = 0.d0 + e_corr_double = 0.d0 + do i = 1, sze + call get_excitation_degree(ref_bitmask,dets_in(1,1,i),degree,Nint) + degree_exc(i) = degree+1 + if(degree==0)then + index_hf=i + else if (degree == 2)then + N_double += 1 + index_double(N_double) = i + doubles(:,:,N_double) = dets_in(:,:,i) + call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) + hij_double(N_double) = hij_elec + e_corr_array(N_double) = u_in(i,1)* hij_elec + e_corr_double += e_corr_array(N_double) + e_corr += e_corr_array(N_double) + else if (degree == 1)then + call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) + e_corr += u_in(i,1)* hij_elec + endif + enddo + inv_c0 = 1.d0/u_in(index_hf,1) + do i = 1, N_double + e_corr_array(i) = e_corr_array(i) * inv_c0 + enddo + e_corr = e_corr * inv_c0 + e_corr_double = e_corr_double * inv_c0 + converged = .False. + e_corr_double_before = e_corr_double + iter = 0 + do while (.not.converged) + if (abort_here) then + exit + endif + iter +=1 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(i,j,degree,accu) & + !$OMP SHARED(H_jj_dressed,sze,H_jj_ref,index_hf,N_int,N_double,& + !$OMP dets_in,doubles,degree_exc,e_corr_array,e_corr_double) + !$OMP DO SCHEDULE(STATIC) + do i=1,sze + H_jj_dressed(i) = H_jj_ref(i) + if (i==index_hf)cycle + accu = -e_corr_double + select case (N_int) + case (1) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case (2) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & + popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & + popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case (3) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & + popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & + popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + & + popcnt(xor( dets_in(3,1,i),doubles(3,1,j))) + & + popcnt(xor( dets_in(3,2,i),doubles(3,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case default + do j=1,N_double + call get_excitation_degree(dets_in(1,1,i),doubles(1,1,j),degree,N_int) + if (degree<=degree_exc(i)) then + accu += e_corr_array(j) + endif + enddo + end select + H_jj_dressed(i) -= accu + enddo + !$OMP END DO + !$OMP END PARALLEL + + if(sze<=N_det_max_jacobi)then + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:) + allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze)) + do j=1,sze + do i=1,sze + H_matrix_tmp(i,j) = H_matrix_all_dets(i,j) + enddo + enddo + do i = 1,sze + H_matrix_tmp(i,i) = H_jj_dressed(i) + enddo + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_tmp,size(H_matrix_all_dets,1),sze) + do j=1,min(N_states_diag,sze) + do i=1,sze + u_in(i,j) = eigenvectors(i,j) + enddo + energies(j) = eigenvalues(j) + enddo + deallocate (H_matrix_tmp, eigenvalues, eigenvectors) + else + call davidson_diag_hjj(dets_in,u_in,H_jj_dressed,energies,dim_in,sze,N_st,Nint,output_determinants) + endif + + e_corr_double = 0.d0 + inv_c0 = 1.d0/u_in(index_hf,1) + do i = 1, N_double + e_corr_array(i) = u_in(index_double(i),1)*inv_c0 * hij_double(i) + e_corr_double += e_corr_array(i) + enddo + write(output_determinants,'(A,I3)') 'SC2 Iteration ', iter + write(output_determinants,'(A)') '------------------' + write(output_determinants,'(A)') '' + write(output_determinants,'(A)') '===== ================' + write(output_determinants,'(A)') 'State Energy ' + write(output_determinants,'(A)') '===== ================' + do i=1,N_st + write(output_determinants,'(I5,X,F16.10)') i, energies(i)+nuclear_repulsion + enddo + write(output_determinants,'(A)') '===== ================' + write(output_determinants,'(A)') '' + call write_double(output_determinants,(e_corr_double - e_corr_double_before),& + 'Delta(E_corr)') + converged = dabs(e_corr_double - e_corr_double_before) < convergence + converged = converged .or. abort_here + if (converged) then + exit + endif + e_corr_double_before = e_corr_double + + enddo + + call write_time(output_determinants) + deallocate (doubles,e_corr_array,H_jj_ref,H_jj_dressed, & + index_double, degree_exc, hij_double) + +end + + diff --git a/src/Determinants/connected_to_ref.irp.f b/src/Determinants/connected_to_ref.irp.f new file mode 100644 index 00000000..2d40b621 --- /dev/null +++ b/src/Determinants/connected_to_ref.irp.f @@ -0,0 +1,357 @@ +integer*8 function det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint,2) + integer :: i + det_search_key = iand(det(1,1),det(1,2)) + do i=2,Nint + det_search_key = ieor(det_search_key,iand(det(i,1),det(i,2))) + enddo +end + + +integer*8 function occ_pattern_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint,2) + integer :: i + occ_pattern_search_key = ieor(det(1,1),det(1,2)) + do i=2,Nint + occ_pattern_search_key = ieor(occ_pattern_search_key,iand(det(i,1),det(i,2))) + enddo +end + + + +logical function is_in_wavefunction(key,Nint,Ndet) + use bitmasks + implicit none + BEGIN_DOC +! True if the determinant ``det`` is in the wave function + END_DOC + integer, intent(in) :: Nint, Ndet + integer(bit_kind), intent(in) :: key(Nint,2) + integer, external :: get_index_in_psi_det_sorted_bit + + !DIR$ FORCEINLINE + is_in_wavefunction = get_index_in_psi_det_sorted_bit(key,Nint) > 0 +end + +integer function get_index_in_psi_det_sorted_bit(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_sorted_bit`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_sorted_bit = 0 + ibegin = 1 + iend = N_det+1 + + !DIR$ FORCEINLINE + det_ref = det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = det_search_key(psi_det_sorted_bit(1,1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = det_search_key(psi_det_sorted_bit(1,1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det) then + return + endif + + !DIR$ FORCEINLINE + do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) + if ( (key(1,1) /= psi_det_sorted_bit(1,1,i)).or. & + (key(1,2) /= psi_det_sorted_bit(1,2,i)) ) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if ( (key(l,1) /= psi_det_sorted_bit(l,1,i)).or. & + (key(l,2) /= psi_det_sorted_bit(l,2,i)) ) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_sorted_bit = i +! exit + return + endif + endif + i += 1 + if (i > N_det) then +! exit + return + endif + + enddo + +! DEBUG is_in_wf +! if (is_in_wavefunction) then +! degree = 1 +! do i=1,N_det +! integer :: degree +! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) +! if (degree == 0) then +! exit +! endif +! enddo +! if (degree /=0) then +! stop 'pouet 1' +! endif +! else +! do i=1,N_det +! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) +! if (degree == 0) then +! stop 'pouet 2' +! endif +! enddo +! endif +! END DEBUG is_in_wf +end + +integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet) + use bitmasks + implicit none + integer, intent(in) :: Nint, N_past_in, Ndet + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: N_past + integer :: i, l + integer :: degree_x2 + logical :: t + double precision :: hij_elec + + ! output : 0 : not connected + ! i : connected to determinant i of the past + ! -i : is the ith determinant of the refernce wf keys + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + connected_to_ref = 0 + N_past = max(1,N_past_in) + if (Nint == 1) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + + else if (Nint==2) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + else if (Nint==3) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + & + popcnt(xor( key(3,1), keys(3,1,i))) + & + popcnt(xor( key(3,2), keys(3,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + else + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + !DEC$ LOOP COUNT MIN(3) + do l=2,Nint + degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& + popcnt(xor( key(l,2), keys(l,2,i))) + enddo + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + endif + +end + + + +integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) + use bitmasks + implicit none + integer, intent(in) :: Nint, N_past_in, Ndet + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: N_past + integer :: i, l + integer :: degree_x2 + logical :: t + double precision :: hij_elec + + ! output : 0 : not connected + ! i : connected to determinant i of the past + ! -i : is the ith determinant of the refernce wf keys + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + connected_to_ref_by_mono = 0 + N_past = max(1,N_past_in) + if (Nint == 1) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + + else if (Nint==2) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + else if (Nint==3) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + & + popcnt(xor( key(3,1), keys(3,1,i))) + & + popcnt(xor( key(3,2), keys(3,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + else + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + !DEC$ LOOP COUNT MIN(3) + do l=2,Nint + degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& + popcnt(xor( key(l,2), keys(l,2,i))) + enddo + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + endif + +end + + diff --git a/src/Determinants/create_excitations.irp.f b/src/Determinants/create_excitations.irp.f new file mode 100644 index 00000000..a33525c7 --- /dev/null +++ b/src/Determinants/create_excitations.irp.f @@ -0,0 +1,36 @@ +subroutine do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) + implicit none + BEGIN_DOC + ! Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin + ! on key_in + ! ispin = 1 == alpha + ! ispin = 2 == beta + ! i_ok = 1 == the excitation is possible + ! i_ok = -1 == the excitation is not possible + END_DOC + integer, intent(in) :: i_hole,i_particle,ispin + integer(bit_kind), intent(inout) :: key_in(N_int,2) + integer, intent(out) :: i_ok + integer :: k,j,i + use bitmasks + ASSERT (i_hole > 0 ) + ASSERT (i_particle <= mo_tot_num) + i_ok = 1 + ! hole + k = ishft(i_hole-1,-bit_kind_shift)+1 + j = i_hole-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin) = ibclr(key_in(k,ispin),j) + + ! particle + k = ishft(i_particle-1,-bit_kind_shift)+1 + j = i_particle-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin) = ibset(key_in(k,ispin),j) + integer :: n_elec_tmp + n_elec_tmp = 0 + do i = 1, N_int + n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2)) + enddo + if(n_elec_tmp .ne. elec_num)then + i_ok = -1 + endif +end diff --git a/src/Determinants/davidson.irp.f b/src/Determinants/davidson.irp.f new file mode 100644 index 00000000..bdc979c4 --- /dev/null +++ b/src/Determinants/davidson.irp.f @@ -0,0 +1,418 @@ +BEGIN_PROVIDER [ integer, davidson_iter_max ] + implicit none + BEGIN_DOC + ! Max number of Davidson iterations + END_DOC + davidson_iter_max = 100 +END_PROVIDER + +BEGIN_PROVIDER [ integer, davidson_sze_max ] + implicit none + BEGIN_DOC + ! Max number of Davidson sizes + END_DOC + ASSERT (davidson_sze_max <= davidson_iter_max) + davidson_sze_max = 8*N_states_diag +END_PROVIDER + +subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit) + use bitmasks + implicit none + BEGIN_DOC + ! Davidson diagonalization. + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! iunit : Unit number for the I/O + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint, iunit + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + double precision, allocatable :: H_jj(:) + + double precision :: diag_h_mat_elem + integer :: i + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + PROVIDE mo_bielec_integrals_in_map + allocate(H_jj(sze)) + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(sze,H_jj,dets_in,Nint) & + !$OMP PRIVATE(i) + !$OMP DO SCHEDULE(guided) + do i=1,sze + H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) + enddo + !$OMP END DO + !$OMP END PARALLEL + + call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) + deallocate (H_jj) +end + +subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) + use bitmasks + implicit none + BEGIN_DOC + ! Davidson diagonalization with specific diagonal elements of the H matrix + ! + ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! iunit : Unit for the I/O + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(in) :: H_jj(sze) + integer, intent(in) :: iunit + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + + integer :: iter + integer :: i,j,k,l,m + logical :: converged + + double precision :: overlap(N_st,N_st) + double precision :: u_dot_v, u_dot_u + + integer, allocatable :: kl_pairs(:,:) + integer :: k_pairs, kl + + integer :: iter2 + double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:) + double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:) + double precision :: diag_h_mat_elem + double precision :: residual_norm(N_st) + character*(16384) :: write_buffer + double precision :: to_print(2,N_st) + double precision :: cpu, wall + + PROVIDE det_connections + + call write_time(iunit) + call wall_time(wall) + call cpu_time(cpu) + write(iunit,'(A)') '' + write(iunit,'(A)') 'Davidson Diagonalization' + write(iunit,'(A)') '------------------------' + write(iunit,'(A)') '' + call write_int(iunit,N_st,'Number of states') + call write_int(iunit,sze,'Number of determinants') + write(iunit,'(A)') '' + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + write_buffer = ' Iter' + do i=1,N_st + write_buffer = trim(write_buffer)//' Energy Residual' + enddo + write(iunit,'(A)') trim(write_buffer) + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + + allocate( & + kl_pairs(2,N_st*(N_st+1)/2), & + W(sze,N_st,davidson_sze_max), & + U(sze,N_st,davidson_sze_max), & + R(sze,N_st), & + h(N_st,davidson_sze_max,N_st,davidson_sze_max), & + y(N_st,davidson_sze_max,N_st,davidson_sze_max), & + lambda(N_st*davidson_sze_max)) + + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + ! Initialization + ! ============== + + k_pairs=0 + do l=1,N_st + do k=1,l + k_pairs+=1 + kl_pairs(1,k_pairs) = k + kl_pairs(2,k_pairs) = l + enddo + enddo + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, & + !$OMP Nint,dets_in,u_in) & + !$OMP PRIVATE(k,l,kl,i) + + + ! Orthonormalize initial guess + ! ============================ + + !$OMP DO + do kl=1,k_pairs + k = kl_pairs(1,kl) + l = kl_pairs(2,kl) + if (k/=l) then + overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze) + overlap(l,k) = overlap(k,l) + else + overlap(k,k) = u_dot_u(U_in(1,k),sze) + endif + enddo + !$OMP END DO + !$OMP END PARALLEL + + call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze) + + ! Davidson iterations + ! =================== + + converged = .False. + + do while (.not.converged) + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st) + do k=1,N_st + !$OMP DO + do i=1,sze + U(i,k,1) = u_in(i,k) + enddo + !$OMP END DO + enddo + !$OMP END PARALLEL + + do iter=1,davidson_sze_max-1 + + ! Compute W_k = H |u_k> + ! ---------------------- + + do k=1,N_st + call H_u_0(W(1,k,iter),U(1,k,iter),H_jj,sze,dets_in,Nint) + enddo + + ! Compute h_kl = = + ! ------------------------------------------- + + do l=1,N_st + do k=1,N_st + do iter2=1,iter-1 + h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze) + h(k,iter,l,iter2) = h(k,iter2,l,iter) + enddo + enddo + do k=1,l + h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze) + h(l,iter,k,iter) = h(k,iter,l,iter) + enddo + enddo + + !DEBUG H MATRIX + !do i=1,iter + ! print '(10(x,F16.10))', h(1,i,1,1:i) + !enddo + !print *, '' + !END + + ! Diagonalize h + ! ------------- + call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter) + + ! Express eigenvectors of h in the determinant basis + ! -------------------------------------------------- + + do k=1,N_st + do i=1,sze + U(i,k,iter+1) = 0.d0 + W(i,k,iter+1) = 0.d0 + do l=1,N_st + do iter2=1,iter + U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1) + W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1) + enddo + enddo + enddo + enddo + + ! Compute residual vector + ! ----------------------- + + do k=1,N_st + do i=1,sze + R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1) + enddo + residual_norm(k) = u_dot_u(R(1,k),sze) + to_print(1,k) = lambda(k) + nuclear_repulsion + to_print(2,k) = residual_norm(k) + enddo + + write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))'), iter, to_print(:,1:N_st) + call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged) + if (converged) then + exit + endif + + + ! Davidson step + ! ------------- + + do k=1,N_st + do i=1,sze + U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k) + enddo + enddo + + ! Gram-Schmidt + ! ------------ + + double precision :: c + do k=1,N_st + do iter2=1,iter + do l=1,N_st + c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze) + do i=1,sze + U(i,k,iter+1) -= c * U(i,l,iter2) + enddo + enddo + enddo + do l=1,k-1 + c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze) + do i=1,sze + U(i,k,iter+1) -= c * U(i,l,iter+1) + enddo + enddo + call normalize( U(1,k,iter+1), sze ) + enddo + + !DEBUG : CHECK OVERLAP + !print *, '===' + !do k=1,iter+1 + ! do l=1,k + ! c = u_dot_v(U(1,1,k),U(1,1,l),sze) + ! print *, k,l, c + ! enddo + !enddo + !print *, '===' + !pause + !END DEBUG + + + enddo + + if (.not.converged) then + iter = davidson_sze_max-1 + endif + + ! Re-contract to u_in + ! ----------- + + do k=1,N_st + energies(k) = lambda(k) + do i=1,sze + u_in(i,k) = 0.d0 + do iter2=1,iter + do l=1,N_st + u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1) + enddo + enddo + enddo + enddo + + enddo + + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + write(iunit,'(A)') '' + call write_time(iunit) + + deallocate ( & + kl_pairs, & + W, & + U, & + R, & + h, & + y, & + lambda & + ) + abort_here = abort_all +end + + BEGIN_PROVIDER [ character(64), davidson_criterion ] +&BEGIN_PROVIDER [ double precision, davidson_threshold ] + implicit none + BEGIN_DOC + ! Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + END_DOC + davidson_criterion = 'residual' + davidson_threshold = 1.d-6 +END_PROVIDER + +subroutine davidson_converged(energy,residual,wall,iterations,cpu,N_st,converged) + implicit none + BEGIN_DOC +! True if the Davidson algorithm is converged + END_DOC + integer, intent(in) :: N_st, iterations + logical, intent(out) :: converged + double precision, intent(in) :: energy(N_st), residual(N_st) + double precision, intent(in) :: wall, cpu + double precision :: E(N_st), time + double precision, allocatable, save :: energy_old(:) + + if (.not.allocated(energy_old)) then + allocate(energy_old(N_st)) + energy_old = 0.d0 + endif + + E = energy - energy_old + energy_old = energy + if (davidson_criterion == 'energy') then + converged = dabs(maxval(E(1:N_st))) < davidson_threshold + else if (davidson_criterion == 'residual') then + converged = dabs(maxval(residual(1:N_st))) < davidson_threshold + else if (davidson_criterion == 'both') then + converged = dabs(maxval(residual(1:N_st))) + dabs(maxval(E(1:N_st)) ) & + < davidson_threshold + else if (davidson_criterion == 'wall_time') then + call wall_time(time) + converged = time - wall > davidson_threshold + else if (davidson_criterion == 'cpu_time') then + call cpu_time(time) + converged = time - cpu > davidson_threshold + else if (davidson_criterion == 'iterations') then + converged = iterations >= int(davidson_threshold) + endif + converged = converged.or.abort_here +end diff --git a/src/Determinants/density_matrix.irp.f b/src/Determinants/density_matrix.irp.f new file mode 100644 index 00000000..f72b337c --- /dev/null +++ b/src/Determinants/density_matrix.irp.f @@ -0,0 +1,214 @@ + BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] +&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! Alpha and beta one-body density matrix for each state + END_DOC + + integer :: j,k,l,m + integer :: occ(N_int*bit_kind_size,2) + double precision :: ck, cl, ckl + double precision :: phase + integer :: h1,h2,p1,p2,s1,s2, degree + integer :: exc(0:2,2,2),n_occ_alpha + double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) + + if(only_single_double_dm)then + print*,'ONLY DOUBLE DM' + one_body_dm_mo_alpha = one_body_single_double_dm_mo_alpha + one_body_dm_mo_beta = one_body_single_double_dm_mo_beta + else + one_body_dm_mo_alpha = 0.d0 + one_body_dm_mo_beta = 0.d0 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & + !$OMP tmp_a, tmp_b, n_occ_alpha)& + !$OMP SHARED(psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& + !$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,& + !$OMP mo_tot_num) + allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) + tmp_a = 0.d0 + tmp_b = 0.d0 + !$OMP DO SCHEDULE(dynamic) + do k=1,N_det + call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) + call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) + do m=1,N_states + ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) + do l=1,elec_alpha_num + j = occ(l,1) + tmp_a(j,j) += ck + enddo + do l=1,elec_beta_num + j = occ(l,2) + tmp_b(j,j) += ck + enddo + enddo + do l=1,k-1 + call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) + if (degree /= 1) then + cycle + endif + call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + do m=1,N_states + ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) + if (s1==1) then + tmp_a(h1,p1) += ckl + tmp_a(p1,h1) += ckl + else + tmp_b(h1,p1) += ckl + tmp_b(p1,h1) += ckl + endif + enddo + enddo + enddo + !$OMP END DO NOWAIT + !$OMP CRITICAL + one_body_dm_mo_alpha = one_body_dm_mo_alpha + tmp_a + !$OMP END CRITICAL + !$OMP CRITICAL + one_body_dm_mo_beta = one_body_dm_mo_beta + tmp_b + !$OMP END CRITICAL + deallocate(tmp_a,tmp_b) + !$OMP BARRIER + !$OMP END PARALLEL + + endif +END_PROVIDER + + BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] +&BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! Alpha and beta one-body density matrix for each state + END_DOC + + integer :: j,k,l,m + integer :: occ(N_int*bit_kind_size,2) + double precision :: ck, cl, ckl + double precision :: phase + integer :: h1,h2,p1,p2,s1,s2, degree + integer :: exc(0:2,2,2),n_occ_alpha + double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) + integer :: degree_respect_to_HF_k + integer :: degree_respect_to_HF_l + + PROVIDE elec_alpha_num elec_beta_num + + one_body_single_double_dm_mo_alpha = 0.d0 + one_body_single_double_dm_mo_beta = 0.d0 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & + !$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)& + !$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& + !$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,mo_tot_num_align,& + !$OMP mo_tot_num) + allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) + tmp_a = 0.d0 + tmp_b = 0.d0 + !$OMP DO SCHEDULE(dynamic) + do k=1,N_det + call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) + call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) + call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int) + + do m=1,N_states + ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) + call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int) + if(degree_respect_to_HF_l.le.0)then + do l=1,elec_alpha_num + j = occ(l,1) + tmp_a(j,j) += ck + enddo + do l=1,elec_beta_num + j = occ(l,2) + tmp_b(j,j) += ck + enddo + endif + enddo + do l=1,k-1 + call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int) + if(degree_respect_to_HF_k.ne.0)cycle + if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle + call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) + if (degree /= 1) then + cycle + endif + call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + do m=1,N_states + ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) + if (s1==1) then + tmp_a(h1,p1) += ckl + tmp_a(p1,h1) += ckl + else + tmp_b(h1,p1) += ckl + tmp_b(p1,h1) += ckl + endif + enddo + enddo + enddo + !$OMP END DO NOWAIT + !$OMP CRITICAL + one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a + !$OMP END CRITICAL + !$OMP CRITICAL + one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b + !$OMP END CRITICAL + deallocate(tmp_a,tmp_b) + !$OMP BARRIER + !$OMP END PARALLEL +END_PROVIDER + +BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! One-body density matrix + END_DOC + one_body_dm_mo = one_body_dm_mo_alpha + one_body_dm_mo_beta +END_PROVIDER + +BEGIN_PROVIDER [ double precision, one_body_spin_density_mo, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! rho(alpha) - rho(beta) + END_DOC + one_body_spin_density_mo = one_body_dm_mo_alpha - one_body_dm_mo_beta +END_PROVIDER + +subroutine set_natural_mos + implicit none + BEGIN_DOC + ! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + END_DOC + character*(64) :: label + double precision, allocatable :: tmp(:,:) + allocate(tmp(size(one_body_dm_mo,1),size(one_body_dm_mo,2))) + + ! Negation to have the occupied MOs first after the diagonalization + tmp = -one_body_dm_mo + label = "Natural" + call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label) + deallocate(tmp) + +end +subroutine save_natural_mos + implicit none + BEGIN_DOC + ! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + END_DOC + call set_natural_mos + call save_mos + +end + + +BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ] + implicit none + BEGIN_DOC + ! Weights in the state-average calculation of the density matrix + END_DOC + state_average_weight = 1.d0/dble(N_states) +END_PROVIDER + diff --git a/src/Determinants/det_svd.irp.f b/src/Determinants/det_svd.irp.f new file mode 100644 index 00000000..0a57acf3 --- /dev/null +++ b/src/Determinants/det_svd.irp.f @@ -0,0 +1,61 @@ +program det_svd + implicit none + BEGIN_DOC +! Computes the SVD of the Alpha x Beta determinant coefficient matrix + END_DOC + integer :: i,j,k + + read_wf = .True. + TOUCH read_wf + + print *, 'SVD matrix before filling' + print *, '=========================' + print *, '' + print *, 'N_det = ', N_det + print *, 'N_det_alpha = ', N_det_alpha_unique + print *, 'N_det_beta = ', N_det_beta_unique + print *, '' + +! do i=1,N_det_alpha_unique +! do j=1,N_det_beta_unique +! print *, i,j,psi_svd_matrix(i,j,:) +! enddo +! enddo + + print *, '' + print *, 'Energy = ', ci_energy + print *, '' + + print *, psi_svd_coefs(1:20,1) + + call generate_all_alpha_beta_det_products + print *, '' + print *, 'Energy = ', ci_energy + print *, '' + + print *, 'SVD matrix after filling' + print *, '========================' + print *, '' + print *, 'N_det = ', N_det + print *, 'N_det_alpha = ', N_det_alpha_unique + print *, 'N_det_beta = ', N_det_beta_unique + print *, '' + print *, '' + call diagonalize_ci + print *, 'Energy = ', ci_energy + + do i=1,N_det_alpha_unique + do j=1,N_det_beta_unique + do k=1,N_states + if (dabs(psi_svd_matrix(i,j,k)) < 1.d-15) then + psi_svd_matrix(i,j,k) = 0.d0 + endif + enddo + enddo + enddo + + print *, '' + print *, psi_svd_coefs(1:20,1) + call save_wavefunction + +end diff --git a/src/Determinants/determinants.irp.f b/src/Determinants/determinants.irp.f index 03315836..a70d0fe8 100644 --- a/src/Determinants/determinants.irp.f +++ b/src/Determinants/determinants.irp.f @@ -68,9 +68,6 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_det, (N_int,2,psi_det_size) ] ! The wave function determinants. Initialized with Hartree-Fock if the EZFIO file ! is empty END_DOC - - PROVIDE ezfio_filename - integer :: i logical :: exists character*64 :: label @@ -237,8 +234,6 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states_diag) ] ! is empty END_DOC - PROVIDE ezfio_filename - integer :: i,k, N_int2 logical :: exists double precision, allocatable :: psi_coef_read(:,:) @@ -602,8 +597,6 @@ subroutine read_dets(det,Nint,Ndet) integer :: i,k equivalence (det_8, det_bk) - PROVIDE ezfio_filename - call ezfio_get_determinants_N_int(N_int2) ASSERT (N_int2 == Nint) call ezfio_get_determinants_bit_kind(k) @@ -672,8 +665,6 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef) integer :: i,k PROVIDE progress_bar - PROVIDE ezfio_filename - call start_progress(7,'Saving wfunction',0.d0) progress_bar(1) = 1 diff --git a/src/Determinants/determinants_bitmasks.irp.f b/src/Determinants/determinants_bitmasks.irp.f new file mode 100644 index 00000000..8343fa84 --- /dev/null +++ b/src/Determinants/determinants_bitmasks.irp.f @@ -0,0 +1,57 @@ +use bitmasks + +integer, parameter :: hole_ = 1 +integer, parameter :: particle_ = 2 +integer, parameter :: hole2_ = 3 +integer, parameter :: particle2_= 4 + +BEGIN_PROVIDER [ integer, N_single_exc_bitmasks ] + implicit none + BEGIN_DOC + ! Number of single excitation bitmasks + END_DOC + N_single_exc_bitmasks = 1 + !TODO : Read from input! +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), single_exc_bitmask, (N_int, 2, N_single_exc_bitmasks) ] + implicit none + BEGIN_DOC + ! single_exc_bitmask(:,1,i) is the bitmask for holes + ! single_exc_bitmask(:,2,i) is the bitmask for particles + ! for a given couple of hole/particle excitations i. + END_DOC + + single_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) + single_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) + !TODO : Read from input! +END_PROVIDER + + +BEGIN_PROVIDER [ integer, N_double_exc_bitmasks ] + implicit none + BEGIN_DOC + ! Number of double excitation bitmasks + END_DOC + N_double_exc_bitmasks = 1 + !TODO : Read from input! +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), double_exc_bitmask, (N_int, 4, N_double_exc_bitmasks) ] + implicit none + BEGIN_DOC + ! double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 + ! double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 + ! double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 + ! double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 + ! for a given couple of hole/particle excitations i. + END_DOC + + double_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) + double_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) + double_exc_bitmask(:,hole2_,1) = HF_bitmask(:,1) + double_exc_bitmask(:,particle2_,1) = not(HF_bitmask(:,2)) + + !TODO : Read from input! +END_PROVIDER + diff --git a/src/Determinants/diagonalize_CI.irp.f b/src/Determinants/diagonalize_CI.irp.f new file mode 100644 index 00000000..0e697ab3 --- /dev/null +++ b/src/Determinants/diagonalize_CI.irp.f @@ -0,0 +1,109 @@ +BEGIN_PROVIDER [ character*(64), diag_algorithm ] + implicit none + BEGIN_DOC + ! Diagonalization algorithm (Davidson or Lapack) + END_DOC + if (N_det > N_det_max_jacobi) then + diag_algorithm = "Davidson" + else + diag_algorithm = "Lapack" + endif + + if (N_det < N_states_diag) then + diag_algorithm = "Lapack" + endif + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] + implicit none + BEGIN_DOC + ! N_states lowest eigenvalues of the CI matrix + END_DOC + + integer :: j + character*(8) :: st + call write_time(output_determinants) + do j=1,N_states_diag + CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion + write(st,'(I4)') j + call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st)) + call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_eigenvectors(i,j) = psi_coef(i,j) + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & + size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) + + else if (diag_algorithm == "Lapack") then + + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) + allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) + allocate (eigenvalues(N_det)) + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) + CI_electronic_energy(:) = 0.d0 + do i=1,N_det + CI_eigenvectors(i,1) = eigenvectors(i,1) + enddo + integer :: i_state + double precision :: s2 + i_state = 0 + do j=1,N_det + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) + if(dabs(s2-expected_s2).le.0.3d0)then + i_state += 1 + do i=1,N_det + CI_eigenvectors(i,i_state) = eigenvectors(i,j) + enddo + CI_electronic_energy(i_state) = eigenvalues(j) + CI_eigenvectors_s2(i_state) = s2 + endif + if (i_state.ge.N_states_diag) then + exit + endif + enddo +! if(i_state < min(N_states_diag,N_det))then +! print *, 'pb with the number of states' +! print *, 'i_state = ',i_state +! print *, 'N_states_diag ',N_states_diag +! print *,'stopping ...' +! stop +! endif + deallocate(eigenvectors,eigenvalues) + endif + +END_PROVIDER + +subroutine diagonalize_CI + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_eigenvectors(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2 +end diff --git a/src/Determinants/diagonalize_CI_SC2.irp.f b/src/Determinants/diagonalize_CI_SC2.irp.f new file mode 100644 index 00000000..3b0d7904 --- /dev/null +++ b/src/Determinants/diagonalize_CI_SC2.irp.f @@ -0,0 +1,59 @@ +BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states_diag) ] + implicit none + BEGIN_DOC + ! N_states_diag lowest eigenvalues of the CI matrix + END_DOC + + integer :: j + character*(8) :: st + call write_time(output_determinants) + do j=1,N_states_diag + CI_SC2_energy(j) = CI_SC2_electronic_energy(j) + nuclear_repulsion + write(st,'(I4)') j + call write_double(output_determinants,CI_SC2_energy(j),'Energy of state '//trim(st)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [ double precision, threshold_convergence_SC2] + implicit none + BEGIN_DOC + ! convergence of the correlation energy of SC2 iterations + END_DOC + threshold_convergence_SC2 = 1.d-10 + + END_PROVIDER + BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_SC2_eigenvectors(i,j) = psi_coef(i,j) + enddo +! TODO : check comment +! CI_SC2_electronic_energy(j) = CI_electronic_energy(j) + enddo + + call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, & + size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2) +END_PROVIDER + +subroutine diagonalize_CI_SC2 + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states_diag by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_SC2_eigenvectors(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors +end diff --git a/src/Determinants/diagonalize_CI_mono.irp.f b/src/Determinants/diagonalize_CI_mono.irp.f new file mode 100644 index 00000000..1c9a4de3 --- /dev/null +++ b/src/Determinants/diagonalize_CI_mono.irp.f @@ -0,0 +1,72 @@ + BEGIN_PROVIDER [ double precision, CI_electronic_energy_mono, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_mono, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_mono, (N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_eigenvectors_mono(i,j) = psi_coef(i,j) + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag(psi_det,CI_eigenvectors_mono,CI_electronic_energy, & + size(CI_eigenvectors_mono,1),N_det,N_states_diag,N_int,output_determinants) + + else if (diag_algorithm == "Lapack") then + + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) + allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) + allocate (eigenvalues(N_det)) + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) + CI_electronic_energy_mono(:) = 0.d0 + do i=1,N_det + CI_eigenvectors_mono(i,1) = eigenvectors(i,1) + enddo + integer :: i_state + double precision :: s2 + i_state = 0 + do j=1,N_det + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) + if(dabs(s2-expected_s2).le.0.3d0)then + print*,'j = ',j + print*,'e = ',eigenvalues(j) + print*,'c = ',dabs(eigenvectors(1,j)) + if(dabs(eigenvectors(1,j)).gt.0.9d0)then + i_state += 1 + do i=1,N_det + CI_eigenvectors_mono(i,i_state) = eigenvectors(i,j) + enddo + CI_electronic_energy_mono(i_state) = eigenvalues(j) + CI_eigenvectors_s2_mono(i_state) = s2 + endif + endif + if (i_state.ge.N_states_diag) then + exit + endif + enddo + deallocate(eigenvectors,eigenvalues) + endif + +END_PROVIDER + +subroutine diagonalize_CI_mono + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_eigenvectors_mono(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_electronic_energy_mono CI_eigenvectors_mono CI_eigenvectors_s2_mono +end diff --git a/src/Determinants/excitations_utils.irp.f b/src/Determinants/excitations_utils.irp.f new file mode 100644 index 00000000..46e38b08 --- /dev/null +++ b/src/Determinants/excitations_utils.irp.f @@ -0,0 +1,16 @@ +subroutine apply_mono(i_hole,i_particle,ispin_excit,key_in,Nint) + implicit none + integer, intent(in) :: i_hole,i_particle,ispin_excit,Nint + integer(bit_kind), intent(inout) :: key_in(Nint,2) + integer :: k,j + use bitmasks + ! hole + k = ishft(i_hole-1,-bit_kind_shift)+1 + j = i_hole-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin_excit) = ibclr(key_in(k,ispin_excit),j) + + k = ishft(i_particle-1,-bit_kind_shift)+1 + j = i_particle-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin_excit) = ibset(key_in(k,ispin_excit),j) + +end diff --git a/src/Determinants/filter_connected.irp.f b/src/Determinants/filter_connected.irp.f new file mode 100644 index 00000000..93a6ee7b --- /dev/null +++ b/src/Determinants/filter_connected.irp.f @@ -0,0 +1,611 @@ + +subroutine filter_connected(key1,key2,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! + ! returns the array idx which contains the index of the + ! + ! determinants in the array key1 that interact + ! + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,l + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) & + + popcnt( xor( key1(1,2,i), key2(1,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do j=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +& + popcnt(xor( key1(j,2,i), key2(j,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + + +subroutine filter_connected_sorted_ab(key1,key2,next,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! returns the array idx which contains the index of the + ! determinants in the array key1 that interact + ! via the H operator with key2. + ! idx(0) is the number of determinants that interact with key1 + ! + ! Determinants are taken from the psi_det_sorted_ab array + END_DOC + integer, intent(in) :: Nint, sze + integer, intent(in) :: next(2,N_det) + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,l + integer :: degree_x2 + integer(bit_kind) :: det3_1(Nint,2), det3_2(Nint,2) + + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + call filter_3_highest_electrons( key2(1,1), det3_2(1,1), Nint) + if (Nint==1) then + + i = 1 + do while ( i<= sze ) + call filter_3_highest_electrons( key1(1,1,i), det3_1(1,1), Nint) + degree_x2 = popcnt( xor( det3_1(1,1), det3_2(1,1))) + if (degree_x2 > 4) then + i = next(1,i) + cycle + else + degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1)) ) + if (degree_x2 <= 4) then + degree_x2 += popcnt( xor( key1(1,2,i), key2(1,2)) ) + if (degree_x2 <= 4) then + idx(l) = i + l += 1 + endif + endif + i += 1 + endif + enddo + + else + + print *, 'Not implemented', irp_here + stop 1 + + endif + idx(0) = l-1 +end + + + + +subroutine filter_connected_davidson(key1,key2,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! returns the array idx which contains the index of the + ! determinants in the array key1 that interact + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + ! key1 should come from psi_det_sorted_ab. + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,k,l + integer :: degree_x2 + integer :: j_int, j_start + integer*8 :: itmp + + PROVIDE N_con_int det_connections + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + if (Nint==1) then + + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else if (Nint==2) then + + + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(2,1,j), key2(2,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + & + popcnt(xor( key1(2,2,j), key2(2,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + & + popcnt(xor( key1(2,1,j), key2(2,1))) + & + popcnt(xor( key1(2,2,j), key2(2,2))) + & + popcnt(xor( key1(3,1,j), key2(3,1))) + & + popcnt(xor( key1(3,2,j), key2(3,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else + + !DIR$ LOOP COUNT (1000) + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do k=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(k,1,j), key2(k,1))) +& + popcnt(xor( key1(k,2,j), key2(k,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + endif + idx(0) = l-1 +end + +subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx) + use bitmasks + BEGIN_DOC + ! returns the array idx which contains the index of the + ! + ! determinants in the array key1 that interact + ! + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + END_DOC + implicit none + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,l,m + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sze > 0) + + l=1 + + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + +subroutine filter_connected_i_H_psi0_SC2(key1,key2,Nint,sze,idx,idx_repeat) + use bitmasks + BEGIN_DOC + ! standard filter_connected_i_H_psi but returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + integer, intent(out) :: idx_repeat(0:sze) + + integer :: i,l,l_repeat,m + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sze > 0) + + integer :: degree + degree = popcnt(xor( ref_bitmask(1,1), key2(1,1))) + & + popcnt(xor( ref_bitmask(1,2), key2(1,2))) + !DEC$ NOUNROLL + do m=2,Nint + degree = degree+ popcnt(xor( ref_bitmask(m,1), key2(m,1))) + & + popcnt(xor( ref_bitmask(m,2), key2(m,2))) + enddo + degree = ishft(degree,-1) + + l_repeat=1 + l=1 + if(degree == 2)then + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + else if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + endif + elseif(degree==1)then + if (Nint==1) then + + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + endif + + else +! print*,'more than a double excitation, can not apply the ' +! print*,'SC2 dressing of the diagonal element .....' +! print*,'stop !!' +! print*,'degree = ',degree +! stop + idx(0) = 0 + idx_repeat(0) = 0 + endif + idx(0) = l-1 + idx_repeat(0) = l_repeat-1 +end + diff --git a/src/Determinants/guess_doublet.irp.f b/src/Determinants/guess_doublet.irp.f new file mode 100644 index 00000000..a44697c1 --- /dev/null +++ b/src/Determinants/guess_doublet.irp.f @@ -0,0 +1,79 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,3) + double precision :: psi_coef_tmp(3,1) + + integer :: iorb,jorb,korb + print*,'which open shells ?' + read(5,*)iorb,jorb,korb + print*,iorb,jorb,korb + N_states= 1 + N_det= 3 + + + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = iorb + list(4,1) = jorb + list(3,2) = korb + print*,'passed' + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + print*,'passed' + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + print*,'passed' + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(3.d0) + + print*,'passed 1' + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = iorb + list(4,1) = korb + list(3,2) = jorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = 1.d0/dsqrt(3.d0) + + print*,'passed 2' + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = korb + list(4,1) = jorb + list(3,2) = iorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,3) = string(i,j) + enddo + enddo + psi_coef(3,1) = 1.d0/dsqrt(3.d0) + print*,'passed 3' + + call save_wavefunction +end diff --git a/src/Determinants/guess_singlet.irp.f b/src/Determinants/guess_singlet.irp.f new file mode 100644 index 00000000..50f8dc4e --- /dev/null +++ b/src/Determinants/guess_singlet.irp.f @@ -0,0 +1,44 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,2) + double precision :: psi_coef_tmp(2,1) + + integer :: iorb,jorb + print*,'which open shells ?' + read(5,*)iorb,jorb + N_states= 1 + N_det= 2 + + + list = 0 + list(1,1) = iorb + list(1,2) = jorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(2.d0) + + list = 0 + list(1,1) = jorb + list(1,2) = iorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = 1.d0/dsqrt(2.d0) + + call save_wavefunction +end diff --git a/src/Determinants/guess_triplet.irp.f b/src/Determinants/guess_triplet.irp.f new file mode 100644 index 00000000..77f88c3e --- /dev/null +++ b/src/Determinants/guess_triplet.irp.f @@ -0,0 +1,48 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,2) + double precision :: psi_coef_tmp(2,1) + + integer :: iorb,jorb + print*,'which open shells ?' + read(5,*)iorb,jorb + N_states= 1 + N_det= 2 + print*,'iorb = ',iorb + print*,'jorb = ',jorb + + + list = 0 + list(1,1) = iorb + list(1,2) = jorb + string = 0 + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(2.d0) + + list = 0 + list(1,1) = jorb + list(1,2) = iorb + string = 0 + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = -1.d0/dsqrt(2.d0) + + call save_wavefunction +end diff --git a/src/Determinants/occ_pattern.irp.f b/src/Determinants/occ_pattern.irp.f new file mode 100644 index 00000000..a0fd4a3c --- /dev/null +++ b/src/Determinants/occ_pattern.irp.f @@ -0,0 +1,339 @@ +use bitmasks +subroutine det_to_occ_pattern(d,o,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Transform a determinant to an occupation pattern + END_DOC + integer ,intent(in) :: Nint + integer(bit_kind),intent(in) :: d(Nint,2) + integer(bit_kind),intent(out) :: o(Nint,2) + + integer :: k + + do k=1,Nint + o(k,1) = ieor(d(k,1),d(k,2)) + o(k,2) = iand(d(k,1),d(k,2)) + enddo +end + +subroutine occ_pattern_to_dets_size(o,sze,n_alpha,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Number of possible determinants for a given occ_pattern + END_DOC + integer ,intent(in) :: Nint, n_alpha + integer(bit_kind),intent(in) :: o(Nint,2) + integer, intent(out) :: sze + integer :: amax,bmax,k + double precision, external :: binom_func + + amax = n_alpha + bmax = 0 + do k=1,Nint + bmax += popcnt( o(k,1) ) + amax -= popcnt( o(k,2) ) + enddo + sze = int( min(binom_func(bmax, amax), 1.d8) ) + +end + +subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Generate all possible determinants for a give occ_pattern + END_DOC + integer ,intent(in) :: Nint, n_alpha + integer ,intent(inout) :: sze + integer(bit_kind),intent(in) :: o(Nint,2) + integer(bit_kind),intent(out) :: d(Nint,2,sze) + + integer :: i, k, nt, na, nd, amax + integer :: list_todo(n_alpha) + integer :: list_a(n_alpha) + + amax = n_alpha + do k=1,Nint + amax -= popcnt( o(k,2) ) + enddo + + call bitstring_to_list(o(1,1), list_todo, nt, Nint) + + na = 0 + nd = 0 + d = 0 + call rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) + + sze = nd + + do i=1,nd + ! Doubly occupied orbitals + do k=1,Nint + d(k,1,i) = ior(d(k,1,i),o(k,2)) + d(k,2,i) = ior(d(k,2,i),o(k,2)) + enddo + enddo + +! !TODO DEBUG +! integer :: j,s +! do i=1,nd +! do j=1,i-1 +! na=0 +! do k=1,Nint +! if((d(k,1,j) /= d(k,1,i)).or. & +! (d(k,2,j) /= d(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( j== 0 ) then +! print *, 'det ',i,' and ',j,' equal:' +! call debug_det(d(1,1,j),Nint) +! call debug_det(d(1,1,i),Nint) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG +end + +recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) + use bitmasks + implicit none + + integer, intent(in) :: nt, sze, amax, Nint,na + integer,intent(inout) :: list_todo(nt) + integer, intent(inout) :: list_a(na+1),nd + integer(bit_kind),intent(inout) :: d(Nint,2,sze) + + if (na == amax) then + nd += 1 + if (na > 0) then + call list_to_bitstring( d(1,1,nd), list_a, na, Nint) + endif + if (nt > 0) then + call list_to_bitstring( d(1,2,nd), list_todo, nt, Nint) + endif + else + integer :: i, j, k + integer :: list_todo_tmp(nt) + do i=1,nt + if (na > 0) then + if (list_todo(i) < list_a(na)) then + cycle + endif + endif + list_a(na+1) = list_todo(i) + k=1 + do j=1,nt + if (i/=j) then + list_todo_tmp(k) = list_todo(j) + k += 1 + endif + enddo + call rec_occ_pattern_to_dets(list_todo_tmp,nt-1,list_a,na+1,d,nd,sze,amax,Nint) + enddo + endif + +end + + BEGIN_PROVIDER [ integer(bit_kind), psi_occ_pattern, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_occ_pattern ] + implicit none + BEGIN_DOC + ! array of the occ_pattern present in the wf + ! psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + ! psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + END_DOC + integer :: i,j,k + + ! create + do i = 1, N_det + do k = 1, N_int + psi_occ_pattern(k,1,i) = ieor(psi_det(k,1,i),psi_det(k,2,i)) + psi_occ_pattern(k,2,i) = iand(psi_det(k,1,i),psi_det(k,2,i)) + enddo + enddo + + ! Sort + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8, external :: occ_pattern_search_key + integer(bit_kind), allocatable :: tmp_array(:,:,:) + logical,allocatable :: duplicate(:) + + + allocate ( iorder(N_det), duplicate(N_det), bit_tmp(N_det), tmp_array(N_int,2,psi_det_size) ) + + do i=1,N_det + iorder(i) = i + !$DIR FORCEINLINE + bit_tmp(i) = occ_pattern_search_key(psi_occ_pattern(1,1,i),N_int) + enddo + call i8sort(bit_tmp,iorder,N_det) + !DIR$ IVDEP + do i=1,N_det + do k=1,N_int + tmp_array(k,1,i) = psi_occ_pattern(k,1,iorder(i)) + tmp_array(k,2,i) = psi_occ_pattern(k,2,iorder(i)) + enddo + duplicate(i) = .False. + enddo + + i=1 + integer (bit_kind) :: occ_pattern_tmp + do i=1,N_det + duplicate(i) = .False. + enddo + + do i=1,N_det-1 + if (duplicate(i)) then + cycle + endif + j = i+1 + do while (bit_tmp(j)==bit_tmp(i)) + if (duplicate(j)) then + j+=1 + cycle + endif + duplicate(j) = .True. + do k=1,N_int + if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) & + .or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then + duplicate(j) = .False. + exit + endif + enddo + j+=1 + if (j>N_det) then + exit + endif + enddo + enddo + + N_occ_pattern=0 + do i=1,N_det + if (duplicate(i)) then + cycle + endif + N_occ_pattern += 1 + do k=1,N_int + psi_occ_pattern(k,1,N_occ_pattern) = tmp_array(k,1,i) + psi_occ_pattern(k,2,N_occ_pattern) = tmp_array(k,2,i) + enddo + enddo + + deallocate(iorder,duplicate,bit_tmp,tmp_array) +! !TODO DEBUG +! integer :: s +! do i=1,N_occ_pattern +! do j=i+1,N_occ_pattern +! s = 0 +! do k=1,N_int +! if((psi_occ_pattern(k,1,j) /= psi_occ_pattern(k,1,i)).or. & +! (psi_occ_pattern(k,2,j) /= psi_occ_pattern(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error : occ ', j, 'already in wf' +! call debug_det(psi_occ_pattern(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG +END_PROVIDER + +subroutine make_s2_eigenfunction + implicit none + integer :: i,j,k + integer :: smax, s + integer(bit_kind), allocatable :: d(:,:,:), det_buffer(:,:,:) + integer :: N_det_new + integer, parameter :: bufsze = 1000 + logical, external :: is_in_wavefunction + +! !TODO DEBUG +! do i=1,N_det +! do j=i+1,N_det +! s = 0 +! do k=1,N_int +! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & +! (psi_det(k,2,j) /= psi_det(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error0: det ', j, 'already in wf' +! call debug_det(psi_det(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG + + allocate (d(N_int,2,1), det_buffer(N_int,2,bufsze) ) + smax = 1 + N_det_new = 0 + + do i=1,N_occ_pattern + call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int) + s += 1 + if (s > smax) then + deallocate(d) + allocate ( d(N_int,2,s) ) + smax = s + endif + call occ_pattern_to_dets(psi_occ_pattern(1,1,i),d,s,elec_alpha_num,N_int) + do j=1,s + if (.not. is_in_wavefunction( d(1,1,j), N_int, N_det)) then + N_det_new += 1 + do k=1,N_int + det_buffer(k,1,N_det_new) = d(k,1,j) + det_buffer(k,2,N_det_new) = d(k,2,j) + enddo + if (N_det_new == bufsze) then + call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,0) + N_det_new = 0 + endif + endif + enddo + enddo + + if (N_det_new > 0) then + call fill_H_apply_buffer_no_selection(N_det_new,det_buffer,N_int,0) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH N_det psi_coef psi_det + endif + + deallocate(d,det_buffer) + + +! !TODO DEBUG +! do i=1,N_det +! do j=i+1,N_det +! s = 0 +! do k=1,N_int +! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & +! (psi_det(k,2,j) /= psi_det(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error : det ', j, 'already in wf at ', i +! call debug_det(psi_det(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG + call write_int(output_determinants,N_det_new, 'Added deteminants for S^2') + +end + diff --git a/src/Determinants/options.irp.f b/src/Determinants/options.irp.f new file mode 100644 index 00000000..d4283128 --- /dev/null +++ b/src/Determinants/options.irp.f @@ -0,0 +1,22 @@ +BEGIN_PROVIDER [ integer, N_states_diag ] + implicit none + BEGIN_DOC +! Number of states to consider for the diagonalization + END_DOC + + logical :: has + PROVIDE ezfio_filename + call ezfio_has_determinants_n_states_diag(has) + if (has) then + call ezfio_get_determinants_n_states_diag(N_states_diag) + else + N_states_diag = N_states + endif + + call write_time(output_determinants) + call write_int(output_determinants, N_states_diag, & + 'N_states_diag') + + +END_PROVIDER + diff --git a/src/Determinants/program_beginer_determinants.irp.f b/src/Determinants/program_beginer_determinants.irp.f new file mode 100644 index 00000000..6375af22 --- /dev/null +++ b/src/Determinants/program_beginer_determinants.irp.f @@ -0,0 +1,138 @@ +program pouet + implicit none + print*,'HF energy = ',ref_bitmask_energy + nuclear_repulsion + call routine + +end +subroutine routine + use bitmasks + implicit none + integer :: i,j,k,l + double precision :: hij,get_mo_bielec_integral + double precision :: hmono,h_bi_ispin,h_bi_other_spin + integer(bit_kind),allocatable :: key_tmp(:,:) + integer, allocatable :: occ(:,:) + integer :: n_occ_alpha, n_occ_beta + ! First checks + print*,'N_int = ',N_int + print*,'mo_tot_num = ',mo_tot_num + print*,'mo_tot_num / 64+1= ',mo_tot_num/64+1 + ! We print the HF determinant + do i = 1, N_int + print*,'ref_bitmask(i,1) = ',ref_bitmask(i,1) + print*,'ref_bitmask(i,2) = ',ref_bitmask(i,2) + enddo + print*,'' + print*,'Hartree Fock determinant ...' + call debug_det(ref_bitmask,N_int) + allocate(key_tmp(N_int,2)) + ! We initialize key_tmp to the Hartree Fock one + key_tmp = ref_bitmask + integer :: i_hole,i_particle,ispin,i_ok,other_spin + ! We do a mono excitation on the top of the HF determinant + write(*,*)'Enter the (hole, particle) couple for the mono excitation ...' + read(5,*)i_hole,i_particle +!!i_hole = 4 +!!i_particle = 20 + write(*,*)'Enter the ispin variable ...' + write(*,*)'ispin = 1 ==> alpha ' + write(*,*)'ispin = 2 ==> beta ' + read(5,*)ispin + if(ispin == 1)then + other_spin = 2 + else if(ispin == 2)then + other_spin = 1 + else + print*,'PB !! ' + print*,'ispin must be 1 or 2 !' + stop + endif +!!ispin = 1 + call do_mono_excitation(key_tmp,i_hole,i_particle,ispin,i_ok) + ! We check if it the excitation was possible with "i_ok" + if(i_ok == -1)then + print*,'i_ok = ',i_ok + print*,'You can not do this excitation because of Pauli principle ...' + print*,'check your hole particle couple, there must be something wrong ...' + stop + + endif + print*,'New det = ' + call debug_det(key_tmp,N_int) + call i_H_j(key_tmp,ref_bitmask,N_int,hij) + ! We calculate the H matrix element between the new determinant and HF + print*,' = ',hij + print*,'' + print*,'' + print*,'Recalculating it old school style ....' + print*,'' + print*,'' + ! We recalculate this old school style !!! + ! Mono electronic part + hmono = mo_mono_elec_integral(i_hole,i_particle) + print*,'' + print*,'Mono electronic part ' + print*,'' + print*,' = ',hmono + h_bi_ispin = 0.d0 + h_bi_other_spin = 0.d0 + print*,'' + print*,'Getting all the info for the calculation of the bi electronic part ...' + print*,'' + allocate (occ(N_int*bit_kind_size,2)) + ! We get the occupation of the alpha electrons in occ(:,1) + call bitstring_to_list(key_tmp(1,1), occ(1,1), n_occ_alpha, N_int) + print*,'n_occ_alpha = ',n_occ_alpha + print*,'elec_alpha_num = ',elec_alpha_num + ! We get the occupation of the beta electrons in occ(:,2) + call bitstring_to_list(key_tmp(1,2), occ(1,2), n_occ_beta, N_int) + print*,'n_occ_beta = ',n_occ_beta + print*,'elec_beta_num = ',elec_beta_num + ! We print the occupation of the alpha electrons + print*,'Alpha electrons !' + do i = 1, n_occ_alpha + print*,'i = ',i + print*,'occ(i,1) = ',occ(i,1) + enddo + ! We print the occupation of the beta electrons + print*,'Alpha electrons !' + do i = 1, n_occ_beta + print*,'i = ',i + print*,'occ(i,2) = ',occ(i,2) + enddo + integer :: exc(0:2,2,2),degree,h1,p1,h2,p2,s1,s2 + double precision :: phase + + call get_excitation_degree(key_tmp,ref_bitmask,degree,N_int) + print*,'degree = ',degree + call get_mono_excitation(ref_bitmask,key_tmp,exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + print*,'h1 = ',h1 + print*,'p1 = ',p1 + print*,'s1 = ',s1 + print*,'phase = ',phase + do i = 1, elec_num_tab(ispin) + integer :: orb_occupied + orb_occupied = occ(i,ispin) + h_bi_ispin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) & + -get_mo_bielec_integral(i_hole,i_particle,orb_occupied,orb_occupied,mo_integrals_map) + enddo + print*,'h_bi_ispin = ',h_bi_ispin + + do i = 1, elec_num_tab(other_spin) + orb_occupied = occ(i,other_spin) + h_bi_other_spin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) + enddo + print*,'h_bi_other_spin = ',h_bi_other_spin + print*,'h_bi_ispin + h_bi_other_spin = ',h_bi_ispin + h_bi_other_spin + + print*,'Total matrix element = ',phase*(h_bi_ispin + h_bi_other_spin + hmono) +!i = 1 +!j = 1 +!k = 1 +!l = 1 +!hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) +!print*,' = ',hij + + +end diff --git a/src/Determinants/psi_cas.irp.f b/src/Determinants/psi_cas.irp.f new file mode 100644 index 00000000..8ca081d6 --- /dev/null +++ b/src/Determinants/psi_cas.irp.f @@ -0,0 +1,114 @@ +use bitmasks + + BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_cas_coef, (psi_det_size,n_states) ] +&BEGIN_PROVIDER [ integer, idx_cas, (psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_cas ] + implicit none + BEGIN_DOC + ! CAS wave function, defined from the application of the CAS bitmask on the + ! determinants. idx_cas gives the indice of the CAS determinant in psi_det. + END_DOC + integer :: i, k, l + logical :: good + N_det_cas = 0 + do i=1,N_det + do l=1,n_cas_bitmask + good = .True. + do k=1,N_int + good = good .and. ( & + iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == & + iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( & + iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == & + iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) ) + enddo + if (good) then + exit + endif + enddo + if (good) then + N_det_cas = N_det_cas+1 + do k=1,N_int + psi_cas(k,1,N_det_cas) = psi_det(k,1,i) + psi_cas(k,2,N_det_cas) = psi_det(k,2,i) + enddo + idx_cas(N_det_cas) = i + do k=1,N_states + psi_cas_coef(N_det_cas,k) = psi_coef(i,k) + enddo + endif + enddo + call write_int(output_determinants,N_det_cas, 'Number of determinants in the CAS') + +END_PROVIDER + + + BEGIN_PROVIDER [ integer(bit_kind), psi_cas_sorted_bit, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_cas_coef_sorted_bit, (psi_det_size,N_states) ] + implicit none + BEGIN_DOC + ! CAS determinants sorted to accelerate the search of a random determinant in the wave + ! function. + END_DOC + call sort_dets_by_det_search_key(N_det_cas, psi_cas, psi_cas_coef, & + psi_cas_sorted_bit, psi_cas_coef_sorted_bit) + +END_PROVIDER + + + + BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_non_cas_coef, (psi_det_size,n_states) ] +&BEGIN_PROVIDER [ integer, idx_non_cas, (psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_non_cas ] + implicit none + BEGIN_DOC + ! Set of determinants which are not part of the CAS, defined from the application + ! of the CAS bitmask on the determinants. + ! idx_non_cas gives the indice of the determinant in psi_det. + END_DOC + integer :: i_non_cas,j,k + integer :: degree + logical :: in_cas + i_non_cas =0 + do k=1,N_det + in_cas = .False. + do j=1,N_det_cas + call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int) + if (degree == 0) then + in_cas = .True. + exit + endif + enddo + if (.not.in_cas) then + double precision :: hij + i_non_cas += 1 + do j=1,N_int + psi_non_cas(j,1,i_non_cas) = psi_det(j,1,k) + psi_non_cas(j,2,i_non_cas) = psi_det(j,2,k) + enddo + do j=1,N_states + psi_non_cas_coef(i_non_cas,j) = psi_coef(k,j) + enddo + idx_non_cas(i_non_cas) = k + endif + enddo + N_det_non_cas = i_non_cas +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas_sorted_bit, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_non_cas_coef_sorted_bit, (psi_det_size,N_states) ] + implicit none + BEGIN_DOC + ! CAS determinants sorted to accelerate the search of a random determinant in the wave + ! function. + END_DOC + call sort_dets_by_det_search_key(N_det_cas, psi_non_cas, psi_non_cas_coef, & + psi_non_cas_sorted_bit, psi_non_cas_coef_sorted_bit) + +END_PROVIDER + + + + + diff --git a/src/Determinants/ref_bitmask.irp.f b/src/Determinants/ref_bitmask.irp.f new file mode 100644 index 00000000..7f760562 --- /dev/null +++ b/src/Determinants/ref_bitmask.irp.f @@ -0,0 +1,57 @@ + BEGIN_PROVIDER [ double precision, ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, mono_elec_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, kinetic_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, nucl_elec_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, bi_elec_ref_bitmask_energy ] + use bitmasks + implicit none + BEGIN_DOC + ! Energy of the reference bitmask used in Slater rules + END_DOC + + integer :: occ(N_int*bit_kind_size,2) + integer :: i,j + + call bitstring_to_list(ref_bitmask(1,1), occ(1,1), i, N_int) + call bitstring_to_list(ref_bitmask(1,2), occ(1,2), i, N_int) + + + ref_bitmask_energy = 0.d0 + mono_elec_ref_bitmask_energy = 0.d0 + kinetic_ref_bitmask_energy = 0.d0 + nucl_elec_ref_bitmask_energy = 0.d0 + bi_elec_ref_bitmask_energy = 0.d0 + + do i = 1, elec_beta_num + ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) + mo_mono_elec_integral(occ(i,2),occ(i,2)) + kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) + mo_kinetic_integral(occ(i,2),occ(i,2)) + nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) + mo_nucl_elec_integral(occ(i,2),occ(i,2)) + enddo + + do i = elec_beta_num+1,elec_alpha_num + ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) + kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) + nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) + enddo + + do j= 1, elec_alpha_num + do i = j+1, elec_alpha_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) + ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) + enddo + enddo + + do j= 1, elec_beta_num + do i = j+1, elec_beta_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) + ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) + enddo + do i= 1, elec_alpha_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) + ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) + enddo + enddo + mono_elec_ref_bitmask_energy = kinetic_ref_bitmask_energy + nucl_elec_ref_bitmask_energy + +END_PROVIDER + diff --git a/src/Determinants/s2.irp.f b/src/Determinants/s2.irp.f new file mode 100644 index 00000000..cd1d9fda --- /dev/null +++ b/src/Determinants/s2.irp.f @@ -0,0 +1,106 @@ +subroutine get_s2(key_i,key_j,phase,Nint) + implicit none + use bitmasks + BEGIN_DOC +! Returns + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2) + integer(bit_kind), intent(in) :: key_j(Nint,2) + double precision, intent(out) :: phase + integer :: exc(0:2,2,2) + integer :: degree + double precision :: phase_spsm + integer :: nup, i + + phase = 0.d0 + !$FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case(2) + call get_double_excitation(key_i,key_j,exc,phase_spsm,Nint) + if (exc(0,1,1) == 1) then ! Mono alpha + mono-beta + if ( (exc(1,1,1) == exc(1,2,2)).and.(exc(1,1,2) == exc(1,2,1)) ) then + phase = -phase_spsm + endif + endif + case(0) + nup = 0 + do i=1,Nint + nup += popcnt(iand(xor(key_i(i,1),key_i(i,2)),key_i(i,1))) + enddo + phase = dble(nup) + end select +end + +BEGIN_PROVIDER [ double precision, S_z ] +&BEGIN_PROVIDER [ double precision, S_z2_Sz ] + implicit none + BEGIN_DOC +! z component of the Spin + END_DOC + + S_z = 0.5d0*dble(elec_alpha_num-elec_beta_num) + S_z2_Sz = S_z*(S_z-1.d0) + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, expected_s2] + implicit none + BEGIN_DOC +! Expected value of S2 : S*(S+1) + END_DOC + logical :: has_expected_s2 + + call ezfio_has_determinants_expected_s2(has_expected_s2) + if (has_expected_s2) then + call ezfio_get_determinants_expected_s2(expected_s2) + else + double precision :: S + S = (elec_alpha_num-elec_beta_num)*0.5d0 + expected_s2 = S * (S+1.d0) +! expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num)) + endif + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, s2_values, (N_states) ] + implicit none + BEGIN_DOC +! array of the averaged values of the S^2 operator on the various states + END_DOC + integer :: i + double precision :: s2 + do i = 1, N_states + call get_s2_u0(psi_det,psi_coef(1,i),n_det,psi_det_size,s2) + s2_values(i) = s2 + enddo + +END_PROVIDER + + +subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2) + implicit none + use bitmasks + integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax) + integer, intent(in) :: n,nmax + double precision, intent(in) :: psi_coefs_tmp(nmax) + double precision, intent(out) :: s2 + integer :: i,j,l + double precision :: s2_tmp + s2 = S_z2_Sz + !$OMP PARALLEL DO DEFAULT(NONE) & + !$OMP PRIVATE(i,j,s2_tmp) SHARED(n,psi_coefs_tmp,psi_keys_tmp,N_int) & + !$OMP REDUCTION(+:s2) SCHEDULE(dynamic) + do i = 1, n + call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),s2_tmp,N_int) +! print*,'s2_tmp = ',s2_tmp + do j = 1, n + call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),s2_tmp,N_int) + if (s2_tmp == 0.d0) cycle + s2 += psi_coefs_tmp(i)*psi_coefs_tmp(j)*s2_tmp + enddo + enddo + !$OMP END PARALLEL DO +end + diff --git a/src/Determinants/save_for_casino.irp.f b/src/Determinants/save_for_casino.irp.f new file mode 100644 index 00000000..631f79bd --- /dev/null +++ b/src/Determinants/save_for_casino.irp.f @@ -0,0 +1,268 @@ +subroutine save_casino + use bitmasks + implicit none + character*(128) :: message + integer :: getUnitAndOpen, iunit + integer, allocatable :: itmp(:) + integer :: n_ao_new + real, allocatable :: rtmp(:) + PROVIDE ezfio_filename + + iunit = getUnitAndOpen('gwfn.data','w') + print *, 'Title?' + read(*,*) message + write(iunit,'(A)') trim(message) + write(iunit,'(A)') '' + write(iunit,'(A)') 'BASIC_INFO' + write(iunit,'(A)') '----------' + write(iunit,'(A)') 'Generated by:' + write(iunit,'(A)') 'Quantum package' + write(iunit,'(A)') 'Method:' + print *, 'Method?' + read(*,*) message + write(iunit,'(A)') trim(message) + write(iunit,'(A)') 'DFT Functional:' + write(iunit,'(A)') 'none' + write(iunit,'(A)') 'Periodicity:' + write(iunit,'(A)') '0' + write(iunit,'(A)') 'Spin unrestricted:' + write(iunit,'(A)') '.false.' + write(iunit,'(A)') 'nuclear-nuclear repulsion energy (au/atom):' + write(iunit,*) nuclear_repulsion + write(iunit,'(A)') 'Number of electrons per primitive cell:' + write(iunit,*) elec_num + write(iunit,*) '' + + + write(iunit,*) 'GEOMETRY' + write(iunit,'(A)') '--------' + write(iunit,'(A)') 'Number of atoms:' + write(iunit,*) nucl_num + write(iunit,'(A)') 'Atomic positions (au):' + integer :: i + do i=1,nucl_num + write(iunit,'(3(1PE20.13))') nucl_coord(i,1:3) + enddo + write(iunit,'(A)') 'Atomic numbers for each atom:' + ! Add 200 if pseudopotential + allocate(itmp(nucl_num)) + do i=1,nucl_num + itmp(i) = int(nucl_charge(i)) + enddo + write(iunit,'(8(I10))') itmp(1:nucl_num) + deallocate(itmp) + write(iunit,'(A)') 'Valence charges for each atom:' + write(iunit,'(4(1PE20.13))') nucl_charge(1:nucl_num) + write(iunit,'(A)') '' + + + write(iunit,'(A)') 'BASIS SET' + write(iunit,'(A)') '---------' + write(iunit,'(A)') 'Number of Gaussian centres' + write(iunit,*) nucl_num + write(iunit,'(A)') 'Number of shells per primitive cell' + integer :: icount + icount = 0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + icount += 1 + endif + enddo + write(iunit,*) icount + write(iunit,'(A)') 'Number of basis functions (''AO'') per primitive cell' + icount = 0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + icount += 2*ao_l(i)+1 + endif + enddo + n_ao_new = icount + write(iunit,*) n_ao_new + write(iunit,'(A)') 'Number of Gaussian primitives per primitive cell' + allocate(itmp(ao_num)) + integer :: l + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + itmp(l) = ao_prim_num(i) + endif + enddo + write(iunit,'(8(I10))') sum(itmp(1:l)) + write(iunit,'(A)') 'Highest shell angular momentum (s/p/d/f... 1/2/3/4...)' + write(iunit,*) maxval(ao_l(1:ao_num))+1 + write(iunit,'(A)') 'Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + if (ao_l(i) > 0) then + itmp(l) = ao_l(i)+2 + else + itmp(l) = ao_l(i)+1 + endif + endif + enddo + write(iunit,'(8(I10))') itmp(1:l) + write(iunit,'(A)') 'Number of primitive Gaussians in each shell' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + itmp(l) = ao_prim_num(i) + endif + enddo + write(iunit,'(8(I10))') itmp(1:l) + deallocate(itmp) + write(iunit,'(A)') 'Sequence number of first shell on each centre' + allocate(itmp(nucl_num)) + l=0 + icount = 1 + itmp(icount) = 1 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l = l+1 + if (ao_nucl(i) == icount) then + continue + else if (ao_nucl(i) == icount+1) then + icount += 1 + itmp(icount) = l + else + print *, 'Problem in order of centers of basis functions' + stop 1 + endif + endif + enddo + ! Check + if (icount /= nucl_num) then + print *, 'Error :' + print *, ' icount :', icount + print *, ' nucl_num:', nucl_num + stop 2 + endif + write(iunit,'(8(I10))') itmp(1:nucl_num) + deallocate(itmp) + write(iunit,'(A)') 'Exponents of Gaussian primitives' + allocate(rtmp(ao_num)) + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + do j=1,ao_prim_num(i) + l+=1 + rtmp(l) = ao_expo(i,ao_prim_num(i)-j+1) + enddo + endif + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + write(iunit,'(A)') 'Normalized contraction coefficients' + l=0 + integer :: j + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + do j=1,ao_prim_num(i) + l+=1 + rtmp(l) = ao_coef(i,ao_prim_num(i)-j+1) + enddo + endif + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + deallocate(rtmp) + write(iunit,'(A)') 'Position of each shell (au)' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + write(iunit,'(3(1PE20.13))') nucl_coord( ao_nucl(i), 1:3 ) + endif + enddo + write(iunit,'(A)') + + + write(iunit,'(A)') 'MULTIDETERMINANT INFORMATION' + write(iunit,'(A)') '----------------------------' + write(iunit,'(A)') 'GS' + write(iunit,'(A)') 'ORBITAL COEFFICIENTS' + write(iunit,'(A)') '------------------------' + + ! Transformation cartesian -> spherical + double precision :: tf2(6,5), tf3(10,7), tf4(15,9) + integer :: check2(3,6), check3(3,10), check4(3,15) + check2(:,1) = (/ 2, 0, 0 /) + check2(:,2) = (/ 1, 1, 0 /) + check2(:,3) = (/ 1, 0, 1 /) + check2(:,4) = (/ 0, 2, 0 /) + check2(:,5) = (/ 0, 1, 1 /) + check2(:,6) = (/ 0, 0, 2 /) + + check3(:,1) = (/ 3, 0, 0 /) + check3(:,2) = (/ 2, 1, 0 /) + check3(:,3) = (/ 2, 0, 1 /) + check3(:,4) = (/ 1, 2, 0 /) + check3(:,5) = (/ 1, 1, 1 /) + check3(:,6) = (/ 1, 0, 2 /) + check3(:,7) = (/ 0, 3, 0 /) + check3(:,8) = (/ 0, 2, 1 /) + check3(:,9) = (/ 0, 1, 2 /) + check3(:,10) = (/ 0, 0, 3 /) + + check4(:,1) = (/ 4, 0, 0 /) + check4(:,2) = (/ 3, 1, 0 /) + check4(:,3) = (/ 3, 0, 1 /) + check4(:,4) = (/ 2, 2, 0 /) + check4(:,5) = (/ 2, 1, 1 /) + check4(:,6) = (/ 2, 0, 2 /) + check4(:,7) = (/ 1, 3, 0 /) + check4(:,8) = (/ 1, 2, 1 /) + check4(:,9) = (/ 1, 1, 2 /) + check4(:,10) = (/ 1, 0, 3 /) + check4(:,11) = (/ 0, 4, 0 /) + check4(:,12) = (/ 0, 3, 1 /) + check4(:,13) = (/ 0, 2, 2 /) + check4(:,14) = (/ 0, 1, 3 /) + check4(:,15) = (/ 0, 0, 4 /) + +! tf2 = (/ +! -0.5, 0, 0, -0.5, 0, 1.0, & +! 0, 0, 1.0, 0, 0, 0, & +! 0, 0, 0, 0, 1.0, 0, & +! 0.86602540378443864676, 0, 0, -0.86602540378443864676, 0, 0, & +! 0, 1.0, 0, 0, 0, 0, & +! /) +! tf3 = (/ +! 0, 0, -0.67082039324993690892, 0, 0, 0, 0, -0.67082039324993690892, 0, 1.0, & +! -0.61237243569579452455, 0, 0, -0.27386127875258305673, 0, 1.0954451150103322269, 0, 0, 0, 0, & +! 0, -0.27386127875258305673, 0, 0, 0, 0, -0.61237243569579452455, 0, 1.0954451150103322269, 0, & +! 0, 0, 0.86602540378443864676, 0, 0, 0, 0, -0.86602540378443864676, 0, 0, & +! 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, & +! 0.790569415042094833, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, & +! 0, 1.0606601717798212866, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & +! /) +! tf4 = (/ +! 0.375, 0, 0, 0.21957751641341996535, 0, -0.87831006565367986142, 0, 0, 0, 0, 0.375, 0, -0.87831006565367986142, 0, 1.0, & +! 0, 0, -0.89642145700079522998, 0, 0, 0, 0, -0.40089186286863657703, 0, 1.19522860933439364, 0, 0, 0, 0, 0, & +! 0, 0, 0, 0, -0.40089186286863657703, 0, 0, 0, 0, 0, 0, -0.89642145700079522998, 0, 1.19522860933439364, 0, & +! -0.5590169943749474241, 0, 0, 0, 0, 0.9819805060619657157, 0, 0, 0, 0, 0.5590169943749474241, 0, -0.9819805060619657157, 0, 0, & +! 0, -0.42257712736425828875, 0, 0, 0, 0, -0.42257712736425828875, 0, 1.1338934190276816816, 0, 0, 0, 0, 0, 0, & +! 0, 0, 0.790569415042094833, 0, 0, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, 0, & +! 0, 0, 0, 0, 1.0606601717798212866, 0, 0, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & +! 0.73950997288745200532, 0, 0, -1.2990381056766579701, 0, 0, 0, 0, 0, 0, 0.73950997288745200532, 0, 0, 0, 0, & +! 0, 1.1180339887498948482, 0, 0, 0, 0, -1.1180339887498948482, 0, 0, 0, 0, 0, 0, 0, 0, & +! /) +! + + + allocate(rtmp(ao_num*mo_tot_num)) + l=0 + do i=1,mo_tot_num + do j=1,ao_num + l += 1 + rtmp(l) = mo_coef(j,i) + enddo + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + deallocate(rtmp) + close(iunit) +end + +program prog_save_casino + call save_casino +end diff --git a/src/Determinants/save_for_qmcchem.irp.f b/src/Determinants/save_for_qmcchem.irp.f new file mode 100644 index 00000000..b707ff7c --- /dev/null +++ b/src/Determinants/save_for_qmcchem.irp.f @@ -0,0 +1,51 @@ +subroutine save_dets_qmcchem + use bitmasks + implicit none + character :: c(mo_tot_num) + integer :: i,k + + integer, allocatable :: occ(:,:,:), occ_tmp(:,:) + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: occ, occ_tmp + + read_wf = .True. + TOUCH read_wf + call ezfio_set_determinants_det_num(N_det) + call ezfio_set_determinants_det_coef(psi_coef_sorted(1,1)) + + allocate (occ(elec_alpha_num,N_det,2)) + ! OMP PARALLEL DEFAULT(NONE) & + ! OMP PRIVATE(occ_tmp,i,k)& + ! OMP SHARED(N_det,psi_det_sorted,elec_alpha_num, & + ! OMP occ,elec_beta_num,N_int) + allocate (occ_tmp(N_int*bit_kind_size,2)) + occ_tmp = 0 + ! OMP DO + do i=1,N_det + call bitstring_to_list(psi_det_sorted(1,1,i), occ_tmp(1,1), elec_alpha_num, N_int ) + call bitstring_to_list(psi_det_sorted(1,2,i), occ_tmp(1,2), elec_beta_num, N_int ) + do k=1,elec_alpha_num + occ(k,i,1) = occ_tmp(k,1) + occ(k,i,2) = occ_tmp(k,2) + enddo + enddo + ! OMP END DO + deallocate(occ_tmp) + ! OMP END PARALLEL + call ezfio_set_determinants_det_occ(occ) + call write_int(output_determinants,N_det,'Determinants saved for QMC') + deallocate(occ) + open(unit=31,file=trim(ezfio_filename)//'/mo_basis/mo_classif') + write(31,'(I1)') 1 + write(31,*) mo_tot_num + do i=1,mo_tot_num + write(31,'(A)') 'a' + enddo + close(31) + call system('gzip -f '//trim(ezfio_filename)//'/mo_basis/mo_classif') + +end + +program save_for_qmc + call save_dets_qmcchem + call write_spindeterminants +end diff --git a/src/Determinants/save_natorb.irp.f b/src/Determinants/save_natorb.irp.f new file mode 100644 index 00000000..e56f9821 --- /dev/null +++ b/src/Determinants/save_natorb.irp.f @@ -0,0 +1,6 @@ +program save_natorb + read_wf = .True. + touch read_wf + call save_natural_mos +end + diff --git a/src/Determinants/slater_rules.irp.f b/src/Determinants/slater_rules.irp.f new file mode 100644 index 00000000..7d431879 --- /dev/null +++ b/src/Determinants/slater_rules.irp.f @@ -0,0 +1,1301 @@ +subroutine get_excitation_degree(key1,key2,degree,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation degree between two determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key1(Nint,2) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: degree + + integer :: l + + ASSERT (Nint > 0) + + degree = popcnt(xor( key1(1,1), key2(1,1))) + & + popcnt(xor( key1(1,2), key2(1,2))) + !DEC$ NOUNROLL + do l=2,Nint + degree = degree+ popcnt(xor( key1(l,1), key2(l,1))) + & + popcnt(xor( key1(l,2), key2(l,2))) + enddo + ASSERT (degree >= 0) + degree = ishft(degree,-1) + +end + + + +subroutine get_excitation(det1,det2,exc,degree,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation operators between two determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + integer, intent(out) :: degree + double precision, intent(out) :: phase + ! exc(number,hole/particle,spin) + ! ex : + ! exc(0,1,1) = number of holes alpha + ! exc(0,2,1) = number of particle alpha + ! exc(0,2,2) = number of particle beta + ! exc(1,2,1) = first particle alpha + ! exc(1,1,1) = first hole alpha + ! exc(1,2,2) = first particle beta + ! exc(1,1,2) = first hole beta + + ASSERT (Nint > 0) + + !DIR$ FORCEINLINE + call get_excitation_degree(det1,det2,degree,Nint) + select case (degree) + + case (3:) + degree = -1 + return + + case (2) + call get_double_excitation(det1,det2,exc,phase,Nint) + return + + case (1) + call get_mono_excitation(det1,det2,exc,phase,Nint) + return + + case(0) + return + + end select +end + +subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + use bitmasks + implicit none + BEGIN_DOC + ! Decodes the exc arrays returned by get_excitation. + ! h1,h2 : Holes + ! p1,p2 : Particles + ! s1,s2 : Spins (1:alpha, 2:beta) + ! degree : Degree of excitation + END_DOC + integer, intent(in) :: exc(0:2,2,2),degree + integer, intent(out) :: h1,h2,p1,p2,s1,s2 + ASSERT (degree > 0) + ASSERT (degree < 3) + + select case(degree) + case(2) + if (exc(0,1,1) == 2) then + h1 = exc(1,1,1) + h2 = exc(2,1,1) + p1 = exc(1,2,1) + p2 = exc(2,2,1) + s1 = 1 + s2 = 1 + else if (exc(0,1,2) == 2) then + h1 = exc(1,1,2) + h2 = exc(2,1,2) + p1 = exc(1,2,2) + p2 = exc(2,2,2) + s1 = 2 + s2 = 2 + else + h1 = exc(1,1,1) + h2 = exc(1,1,2) + p1 = exc(1,2,1) + p2 = exc(1,2,2) + s1 = 1 + s2 = 2 + endif + case(1) + if (exc(0,1,1) == 1) then + h1 = exc(1,1,1) + h2 = 0 + p1 = exc(1,2,1) + p2 = 0 + s1 = 1 + s2 = 0 + else + h1 = exc(1,1,2) + h2 = 0 + p1 = exc(1,2,2) + p2 = 0 + s1 = 2 + s2 = 0 + endif + case(0) + h1 = 0 + p1 = 0 + h2 = 0 + p2 = 0 + s1 = 0 + s2 = 0 + end select +end + +subroutine get_double_excitation(det1,det2,exc,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the two excitation operators between two doubly excited determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + double precision, intent(out) :: phase + integer :: tz + integer :: l, ispin, idx_hole, idx_particle, ishift + integer :: nperm + integer :: i,j,k,m,n + integer :: high, low + integer :: a,b,c,d + integer(bit_kind) :: hole, particle, tmp + double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) + + ASSERT (Nint > 0) + nperm = 0 + exc(0,1,1) = 0 + exc(0,2,1) = 0 + exc(0,1,2) = 0 + exc(0,2,2) = 0 + do ispin = 1,2 + idx_particle = 0 + idx_hole = 0 + ishift = 1-bit_kind_size + do l=1,Nint + ishift = ishift + bit_kind_size + if (det1(l,ispin) == det2(l,ispin)) then + cycle + endif + tmp = xor( det1(l,ispin), det2(l,ispin) ) + particle = iand(tmp, det2(l,ispin)) + hole = iand(tmp, det1(l,ispin)) + do while (particle /= 0_bit_kind) + tz = trailz(particle) + idx_particle = idx_particle + 1 + exc(0,2,ispin) = exc(0,2,ispin) + 1 + exc(idx_particle,2,ispin) = tz+ishift + particle = iand(particle,particle-1_bit_kind) + enddo + if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2 + exit + endif + do while (hole /= 0_bit_kind) + tz = trailz(hole) + idx_hole = idx_hole + 1 + exc(0,1,ispin) = exc(0,1,ispin) + 1 + exc(idx_hole,1,ispin) = tz+ishift + hole = iand(hole,hole-1_bit_kind) + enddo + if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin) + exit + endif + enddo + + ! TODO : Voir si il faut sortir i,n,k,m du case. + + select case (exc(0,1,ispin)) + case(0) + cycle + + case(1) + low = min(exc(1,1,ispin), exc(1,2,ispin)) + high = max(exc(1,1,ispin), exc(1,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + + if (j==k) then + nperm = nperm + popcnt(iand(det1(j,ispin), & + iand( ibset(0_bit_kind,m-1)-1_bit_kind, & + ibclr(-1_bit_kind,n)+1_bit_kind ) )) + else + nperm = nperm + popcnt(iand(det1(k,ispin), & + ibset(0_bit_kind,m-1)-1_bit_kind)) + & + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) + do i=j+1,k-1 + nperm = nperm + popcnt(det1(i,ispin)) + end do + endif + + case (2) + + do i=1,2 + low = min(exc(i,1,ispin), exc(i,2,ispin)) + high = max(exc(i,1,ispin), exc(i,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + + if (j==k) then + nperm = nperm + popcnt(iand(det1(j,ispin), & + iand( ibset(0_bit_kind,m-1)-1_bit_kind, & + ibclr(-1_bit_kind,n)+1_bit_kind ) )) + else + nperm = nperm + popcnt(iand(det1(k,ispin), & + ibset(0_bit_kind,m-1)-1_bit_kind)) + & + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) + do l=j+1,k-1 + nperm = nperm + popcnt(det1(l,ispin)) + end do + endif + + enddo + + a = min(exc(1,1,ispin), exc(1,2,ispin)) + b = max(exc(1,1,ispin), exc(1,2,ispin)) + c = min(exc(2,1,ispin), exc(2,2,ispin)) + d = max(exc(2,1,ispin), exc(2,2,ispin)) + if (c>a .and. cb) then + nperm = nperm + 1 + endif + exit + end select + + enddo + phase = phase_dble(iand(nperm,1)) + +end + +subroutine get_mono_excitation(det1,det2,exc,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation operator between two singly excited determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + double precision, intent(out) :: phase + integer :: tz + integer :: l, ispin, idx_hole, idx_particle, ishift + integer :: nperm + integer :: i,j,k,m,n + integer :: high, low + integer :: a,b,c,d + integer(bit_kind) :: hole, particle, tmp + double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) + + ASSERT (Nint > 0) + nperm = 0 + exc(0,1,1) = 0 + exc(0,2,1) = 0 + exc(0,1,2) = 0 + exc(0,2,2) = 0 + do ispin = 1,2 + ishift = 1-bit_kind_size + do l=1,Nint + ishift = ishift + bit_kind_size + if (det1(l,ispin) == det2(l,ispin)) then + cycle + endif + tmp = xor( det1(l,ispin), det2(l,ispin) ) + particle = iand(tmp, det2(l,ispin)) + hole = iand(tmp, det1(l,ispin)) + if (particle /= 0_bit_kind) then + tz = trailz(particle) + exc(0,2,ispin) = 1 + exc(1,2,ispin) = tz+ishift + endif + if (hole /= 0_bit_kind) then + tz = trailz(hole) + exc(0,1,ispin) = 1 + exc(1,1,ispin) = tz+ishift + endif + + if ( iand(exc(0,1,ispin),exc(0,2,ispin)) /= 1) then ! exc(0,1,ispin)/=1 and exc(0,2,ispin) /= 1 + cycle + endif + + low = min(exc(1,1,ispin),exc(1,2,ispin)) + high = max(exc(1,1,ispin),exc(1,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + if (j==k) then + nperm = popcnt(iand(det1(j,ispin), & + iand(ibset(0_bit_kind,m-1)-1_bit_kind,ibclr(-1_bit_kind,n)+1_bit_kind))) + else + nperm = nperm + popcnt(iand(det1(k,ispin),ibset(0_bit_kind,m-1)-1_bit_kind)) +& + popcnt(iand(det1(j,ispin),ibclr(-1_bit_kind,n)+1_bit_kind)) + do i=j+1,k-1 + nperm = nperm + popcnt(det1(i,ispin)) + end do + endif + phase = phase_dble(iand(nperm,1)) + return + + enddo + enddo +end + + + + + +subroutine i_H_j(key_i,key_j,Nint,hij) + use bitmasks + implicit none + BEGIN_DOC + ! Returns where i and j are determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) + double precision, intent(out) :: hij + + integer :: exc(0:2,2,2) + integer :: degree + double precision :: get_mo_bielec_integral + integer :: m,n,p,q + integer :: i,j,k + integer :: occ(Nint*bit_kind_size,2) + double precision :: diag_H_mat_elem, phase,phase_2 + integer :: n_occ_alpha, n_occ_beta + logical :: has_mipi(Nint*bit_kind_size) + double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) + PROVIDE mo_bielec_integrals_in_map mo_integrals_map + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) + ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) + + hij = 0.d0 + !DEC$ FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case (2) + call get_double_excitation(key_i,key_j,exc,phase,Nint) + if (exc(0,1,1) == 1) then + ! Mono alpha, mono beta + hij = phase*get_mo_bielec_integral( & + exc(1,1,1), & + exc(1,1,2), & + exc(1,2,1), & + exc(1,2,2) ,mo_integrals_map) + else if (exc(0,1,1) == 2) then + ! Double alpha + hij = phase*(get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(1,2,1), & + exc(2,2,1) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(2,2,1), & + exc(1,2,1) ,mo_integrals_map) ) + else if (exc(0,1,2) == 2) then + ! Double beta + hij = phase*(get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(1,2,2), & + exc(2,2,2) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(2,2,2), & + exc(1,2,2) ,mo_integrals_map) ) + endif + case (1) + call get_mono_excitation(key_i,key_j,exc,phase,Nint) + call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) + call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) + has_mipi = .False. + if (exc(0,1,1) == 1) then + ! Mono alpha + m = exc(1,1,1) + p = exc(1,2,1) + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) + enddo + do k = 1, elec_beta_num + hij = hij + mipi(occ(k,2)) + enddo + + else + ! Mono beta + m = exc(1,1,2) + p = exc(1,2,2) + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hij = hij + mipi(occ(k,1)) + enddo + do k = 1, elec_beta_num + hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) + enddo + + endif + hij = phase*(hij + mo_mono_elec_integral(m,p)) + + case (0) + hij = diag_H_mat_elem(key_i,Nint) + end select +end + + + + +subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble) + use bitmasks + implicit none + BEGIN_DOC + ! Returns where i and j are determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) + double precision, intent(out) :: hij,hmono,hdouble + + integer :: exc(0:2,2,2) + integer :: degree + double precision :: get_mo_bielec_integral + integer :: m,n,p,q + integer :: i,j,k + integer :: occ(Nint*bit_kind_size,2) + double precision :: diag_H_mat_elem, phase,phase_2 + integer :: n_occ_alpha, n_occ_beta + logical :: has_mipi(Nint*bit_kind_size) + double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) + PROVIDE mo_bielec_integrals_in_map mo_integrals_map + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) + ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) + + hij = 0.d0 + hmono = 0.d0 + hdouble = 0.d0 + !DEC$ FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case (2) + call get_double_excitation(key_i,key_j,exc,phase,Nint) + if (exc(0,1,1) == 1) then + ! Mono alpha, mono beta + hij = phase*get_mo_bielec_integral( & + exc(1,1,1), & + exc(1,1,2), & + exc(1,2,1), & + exc(1,2,2) ,mo_integrals_map) + else if (exc(0,1,1) == 2) then + ! Double alpha + hij = phase*(get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(1,2,1), & + exc(2,2,1) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(2,2,1), & + exc(1,2,1) ,mo_integrals_map) ) + else if (exc(0,1,2) == 2) then + ! Double beta + hij = phase*(get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(1,2,2), & + exc(2,2,2) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(2,2,2), & + exc(1,2,2) ,mo_integrals_map) ) + endif + case (1) + call get_mono_excitation(key_i,key_j,exc,phase,Nint) + call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) + call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) + has_mipi = .False. + if (exc(0,1,1) == 1) then + ! Mono alpha + m = exc(1,1,1) + p = exc(1,2,1) + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hdouble = hdouble + mipi(occ(k,1)) - miip(occ(k,1)) + enddo + do k = 1, elec_beta_num + hdouble = hdouble + mipi(occ(k,2)) + enddo + + else + ! Mono beta + m = exc(1,1,2) + p = exc(1,2,2) + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hdouble = hdouble + mipi(occ(k,1)) + enddo + do k = 1, elec_beta_num + hdouble = hdouble + mipi(occ(k,2)) - miip(occ(k,2)) + enddo + + endif + hmono = mo_mono_elec_integral(m,p) + hij = phase*(hdouble + hmono) + + case (0) + hij = diag_H_mat_elem(key_i,Nint) + end select +end + + + +subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array) + use bitmasks + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + BEGIN_DOC + ! for the various Nstates + END_DOC + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo +end + +subroutine i_H_psi_sec_ord(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_interaction,interactions) + use bitmasks + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + double precision, intent(out) :: interactions(Ndet) + integer,intent(out) :: idx_interaction(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet),n_interact + BEGIN_DOC + ! for the various Nstates + END_DOC + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) + n_interact = 0 + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + if(dabs(hij).ge.1.d-8)then + if(i.ne.1)then + n_interact += 1 + interactions(n_interact) = hij + idx_interaction(n_interact) = i + endif + endif + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo + idx_interaction(0) = n_interact +end + + +subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) + use bitmasks + BEGIN_DOC + ! for the various Nstate + ! + ! returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + integer , intent(out) :: idx_repeat(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo +end + + +subroutine i_H_psi_SC2_verbose(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) + use bitmasks + BEGIN_DOC + ! for the various Nstate + ! + ! returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + integer , intent(out) :: idx_repeat(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) + print*,'--------' + do ii=1,idx(0) + print*,'--' + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + if (i==1)then + print*,'i==1 !!' + endif + print*,coef(i,1) * hij,coef(i,1),hij + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + print*,i_H_psi_array(1) + enddo + print*,'------' +end + + + +subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Applies get_excitation_degree to an array of determinants + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: degree(sze) + integer, intent(out) :: idx(0:sze) + + integer :: i,l + + ASSERT (Nint > 0) + ASSERT (sze > 0) + + l=1 + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft( popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = 0 + !DEC$ LOOP COUNT MIN(4) + do l=1,Nint + degree(l) = degree(l)+ popcnt(xor( key1(l,1,i), key2(l,1))) +& + popcnt(xor( key1(l,2,i), key2(l,2))) + enddo + degree(l) = ishft(degree(l),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + + + + +double precision function diag_H_mat_elem(det_in,Nint) + implicit none + BEGIN_DOC + ! Computes + END_DOC + integer,intent(in) :: Nint + integer(bit_kind),intent(in) :: det_in(Nint,2) + + integer(bit_kind) :: hole(Nint,2) + integer(bit_kind) :: particle(Nint,2) + integer :: i, nexc(2), ispin + integer :: occ_particle(Nint*bit_kind_size,2) + integer :: occ_hole(Nint*bit_kind_size,2) + integer(bit_kind) :: det_tmp(Nint,2) + integer :: na, nb + + ASSERT (Nint > 0) + ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) + + nexc(1) = 0 + nexc(2) = 0 + do i=1,Nint + hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) + hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) + particle(i,1) = iand(hole(i,1),det_in(i,1)) + particle(i,2) = iand(hole(i,2),det_in(i,2)) + hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) + hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) + nexc(1) += popcnt(hole(i,1)) + nexc(2) += popcnt(hole(i,2)) + enddo + + diag_H_mat_elem = ref_bitmask_energy + if (nexc(1)+nexc(2) == 0) then + return + endif + + !call debug_det(det_in,Nint) + integer :: tmp + call bitstring_to_list(particle(1,1), occ_particle(1,1), tmp, Nint) + ASSERT (tmp == nexc(1)) + call bitstring_to_list(particle(1,2), occ_particle(1,2), tmp, Nint) + ASSERT (tmp == nexc(2)) + call bitstring_to_list(hole(1,1), occ_hole(1,1), tmp, Nint) + ASSERT (tmp == nexc(1)) + call bitstring_to_list(hole(1,2), occ_hole(1,2), tmp, Nint) + ASSERT (tmp == nexc(2)) + + det_tmp = ref_bitmask + do ispin=1,2 + na = elec_num_tab(ispin) + nb = elec_num_tab(iand(ispin,1)+1) + do i=1,nexc(ispin) + !DIR$ FORCEINLINE + call ac_operator( occ_particle(i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) + !DIR$ FORCEINLINE + call a_operator ( occ_hole (i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) + enddo + enddo +end + +subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb) + use bitmasks + implicit none + BEGIN_DOC + ! Needed for diag_H_mat_elem + END_DOC + integer, intent(in) :: iorb, ispin, Nint + integer, intent(inout) :: na, nb + integer(bit_kind), intent(inout) :: key(Nint,2) + double precision, intent(inout) :: hjj + + integer :: occ(Nint*bit_kind_size,2) + integer :: other_spin + integer :: k,l,i + + ASSERT (iorb > 0) + ASSERT (ispin > 0) + ASSERT (ispin < 3) + ASSERT (Nint > 0) + + k = ishft(iorb-1,-bit_kind_shift)+1 + ASSERT (k > 0) + l = iorb - ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibclr(key(k,ispin),l) + other_spin = iand(ispin,1)+1 + + !DIR$ FORCEINLINE + call get_occ_from_key(key,occ,Nint) + na -= 1 + + hjj -= mo_mono_elec_integral(iorb,iorb) + + ! Same spin + do i=1,na + hjj -= mo_bielec_integral_jj_anti(occ(i,ispin),iorb) + enddo + + ! Opposite spin + do i=1,nb + hjj -= mo_bielec_integral_jj(occ(i,other_spin),iorb) + enddo + +end + + +subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb) + use bitmasks + implicit none + BEGIN_DOC + ! Needed for diag_H_mat_elem + END_DOC + integer, intent(in) :: iorb, ispin, Nint + integer, intent(inout) :: na, nb + integer(bit_kind), intent(inout) :: key(Nint,2) + double precision, intent(inout) :: hjj + + integer :: occ(Nint*bit_kind_size,2) + integer :: other_spin + integer :: k,l,i + + ASSERT (iorb > 0) + ASSERT (ispin > 0) + ASSERT (ispin < 3) + ASSERT (Nint > 0) + + integer :: tmp + !DIR$ FORCEINLINE + call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) + ASSERT (tmp == elec_alpha_num) + !DIR$ FORCEINLINE + call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) + ASSERT (tmp == elec_beta_num) + + k = ishft(iorb-1,-bit_kind_shift)+1 + ASSERT (k > 0) + l = iorb - ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibset(key(k,ispin),l) + other_spin = iand(ispin,1)+1 + + hjj += mo_mono_elec_integral(iorb,iorb) + + ! Same spin + do i=1,na + hjj += mo_bielec_integral_jj_anti(occ(i,ispin),iorb) + enddo + + ! Opposite spin + do i=1,nb + hjj += mo_bielec_integral_jj(occ(i,other_spin),iorb) + enddo + na += 1 +end + +subroutine get_occ_from_key(key,occ,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns a list of occupation numbers from a bitstring + END_DOC + integer(bit_kind), intent(in) :: key(Nint,2) + integer , intent(in) :: Nint + integer , intent(out) :: occ(Nint*bit_kind_size,2) + integer :: tmp + + call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) + call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) + +end + +subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Computes v_0 = H|u_0> + ! + ! n : number of determinants + ! + ! H_jj : array of + END_DOC + integer, intent(in) :: n,Nint + double precision, intent(out) :: v_0(n) + double precision, intent(in) :: u_0(n) + double precision, intent(in) :: H_jj(n) + integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) + integer, allocatable :: idx(:) + double precision :: hij + double precision, allocatable :: vt(:) + integer :: i,j,k,l, jj + integer :: i0, j0 + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (n>0) + PROVIDE ref_bitmask_energy + integer, parameter :: block_size = 157 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(i,hij,j,k,idx,jj,vt) & + !$OMP SHARED(n,H_jj,u_0,keys_tmp,Nint,v_0) + !$OMP DO SCHEDULE(static) + do i=1,n + v_0(i) = H_jj(i) * u_0(i) + enddo + !$OMP END DO + allocate(idx(0:n), vt(n)) + Vt = 0.d0 + !$OMP DO SCHEDULE(guided) + do i=1,n + idx(0) = i + call filter_connected_davidson(keys_tmp,keys_tmp(1,1,i),Nint,i-1,idx) + do jj=1,idx(0) + j = idx(jj) + if ( (dabs(u_0(j)) > 1.d-7).or.((dabs(u_0(i)) > 1.d-7)) ) then + call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij) + vt (i) = vt (i) + hij*u_0(j) + vt (j) = vt (j) + hij*u_0(i) + endif + enddo + enddo + !$OMP END DO + !$OMP CRITICAL + do i=1,n + v_0(i) = v_0(i) + vt(i) + enddo + !$OMP END CRITICAL + deallocate(idx,vt) + !$OMP END PARALLEL +end + + + +BEGIN_PROVIDER [ integer, N_con_int ] + implicit none + BEGIN_DOC + ! Number of integers to represent the connections between determinants + END_DOC + N_con_int = 1 + ishft(N_det-1,-11) +END_PROVIDER + +BEGIN_PROVIDER [ integer*8, det_connections, (N_con_int,N_det) ] + implicit none + BEGIN_DOC + ! Build connection proxy between determinants + END_DOC + integer :: i,j + integer :: degree + integer :: j_int, j_k, j_l + integer, allocatable :: idx(:) + integer :: thread_num + integer :: omp_get_thread_num + + PROVIDE progress_bar + call start_progress(N_det,'Det connections',0.d0) + + select case(N_int) + + case(1) + + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections, & + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case(2) + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & + popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & + popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case(3) + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & + popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & + popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) + & + popcnt(xor( psi_det(3,1,i),psi_det(3,1,j))) + & + popcnt(xor( psi_det(3,2,i),psi_det(3,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case default + + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + !DIR$ FORCEINLINE + call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) + if (degree < 3) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + end select + call stop_progress + +END_PROVIDER + diff --git a/src/Determinants/spindeterminants.ezfio_config b/src/Determinants/spindeterminants.ezfio_config new file mode 100644 index 00000000..39ccb82b --- /dev/null +++ b/src/Determinants/spindeterminants.ezfio_config @@ -0,0 +1,17 @@ +spindeterminants + n_det_alpha integer + n_det_beta integer + n_det integer + n_int integer + bit_kind integer + n_states integer + psi_det_alpha integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_alpha) + psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta) + psi_coef_matrix_rows integer (spindeterminants_n_det) + psi_coef_matrix_columns integer (spindeterminants_n_det) + psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states) + n_svd_coefs integer + psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states) + psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states) + psi_svd_coefs double precision (spindeterminants_n_svd_coefs,spindeterminants_n_states) + diff --git a/src/Determinants/spindeterminants.irp.f b/src/Determinants/spindeterminants.irp.f new file mode 100644 index 00000000..ffd28f85 --- /dev/null +++ b/src/Determinants/spindeterminants.irp.f @@ -0,0 +1,615 @@ +!==============================================================================! +! ! +! Independent alpha/beta parts ! +! ! +!==============================================================================! + +use bitmasks + +integer*8 function spin_det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint) + integer :: i + spin_det_search_key = det(1) + do i=2,Nint + spin_det_search_key = ieor(spin_det_search_key,det(i)) + enddo +end + + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of alpha determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_alpha(k,i) = psi_det(k,1,i) + enddo + enddo +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of beta determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_beta(k,i) = psi_det(k,2,i) + enddo + enddo +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] + implicit none + BEGIN_DOC + ! Unique alpha determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_alpha_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_alpha_unique += 1 + do k=1,N_int + psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_beta_unique ] + implicit none + BEGIN_DOC + ! Unique beta determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_beta_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_beta_unique += 1 + do k=1,N_int + psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + + + + +integer function get_index_in_psi_det_alpha_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_alpha_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_alpha_unique = 0 + ibegin = 1 + iend = N_det_alpha_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_alpha_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_alpha_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_alpha_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_alpha_unique = i + return + endif + endif + i += 1 + if (i > N_det_alpha_unique) then + return + endif + + enddo + +end + +integer function get_index_in_psi_det_beta_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_beta_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_beta_unique = 0 + ibegin = 1 + iend = N_det_beta_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_beta_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_beta_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_beta_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_beta_unique = i + return + endif + endif + i += 1 + if (i > N_det_beta_unique) then + return + endif + + enddo + +end + + +subroutine write_spindeterminants + use bitmasks + implicit none + integer*8, allocatable :: tmpdet(:,:) + integer :: N_int2 + integer :: i,j,k + integer*8 :: det_8(100) + integer(bit_kind) :: det_bk((100*8)/bit_kind) + equivalence (det_8, det_bk) + + N_int2 = (N_int*bit_kind)/8 + call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique) + call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique) + call ezfio_set_spindeterminants_n_det(N_det) + call ezfio_set_spindeterminants_n_int(N_int) + call ezfio_set_spindeterminants_bit_kind(bit_kind) + call ezfio_set_spindeterminants_n_states(N_states) + + allocate(tmpdet(N_int2,N_det_alpha_unique)) + do i=1,N_det_alpha_unique + do k=1,N_int + det_bk(k) = psi_det_alpha_unique(k,i) + enddo + do k=1,N_int2 + tmpdet(k,i) = det_8(k) + enddo + enddo + call ezfio_set_spindeterminants_psi_det_alpha(psi_det_alpha_unique) + deallocate(tmpdet) + + allocate(tmpdet(N_int2,N_det_beta_unique)) + do i=1,N_det_beta_unique + do k=1,N_int + det_bk(k) = psi_det_beta_unique(k,i) + enddo + do k=1,N_int2 + tmpdet(k,i) = det_8(k) + enddo + enddo + call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique) + deallocate(tmpdet) + + call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_svd_matrix_values) + call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_svd_matrix_rows) + call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_svd_matrix_columns) + + integer :: n_svd_coefs + double precision :: norm, f + f = 1.d0/dble(N_states) + norm = 1.d0 + do n_svd_coefs=1,N_det_alpha_unique + do k=1,N_states + norm -= psi_svd_coefs(n_svd_coefs,k)*psi_svd_coefs(n_svd_coefs,k) + enddo + if (norm < 1.d-4) then + exit + endif + enddo + n_svd_coefs -= 1 + call ezfio_set_spindeterminants_n_svd_coefs(n_svd_coefs) + + double precision, allocatable :: dtmp(:,:,:) + allocate(dtmp(N_det_alpha_unique,n_svd_coefs,N_states)) + do k=1,N_states + do j=1,n_svd_coefs + do i=1,N_det_alpha_unique + dtmp(i,j,k) = psi_svd_alpha(i,j,k) + enddo + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_alpha(dtmp) + deallocate(dtmp) + + allocate(dtmp(N_det_beta_unique,n_svd_coefs,N_states)) + do k=1,N_states + do j=1,n_svd_coefs + do i=1,N_det_beta_unique + dtmp(i,j,k) = psi_svd_beta(i,j,k) + enddo + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_beta(dtmp) + deallocate(dtmp) + + allocate(dtmp(n_svd_coefs,N_states,1)) + do k=1,N_states + do j=1,n_svd_coefs + dtmp(j,k,1) = psi_svd_coefs(j,k) + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_coefs(dtmp) + deallocate(dtmp) + +end + + +!==============================================================================! +! ! +! Alpha x Beta Matrix ! +! ! +!==============================================================================! + +BEGIN_PROVIDER [ double precision, psi_svd_matrix_values, (N_det,N_states) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_rows, (N_det) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_columns, (N_det) ] + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k, l + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + + + PROVIDE psi_coef_sorted_bit + +! l=0 +! do j=1,N_det_beta_unique +! do k=1,N_int +! tmp_det(k,2) = psi_det_beta_unique(k,j) +! enddo +! do i=1,N_det_alpha_unique +! do k=1,N_int +! tmp_det(k,1) = psi_det_alpha_unique(k,i) +! enddo +! idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) +! if (idx > 0) then +! l += 1 +! psi_svd_matrix_rows(l) = i +! psi_svd_matrix_columns(l) = j +! do k=1,N_states +! psi_svd_matrix_values(l,k) = psi_coef_sorted_bit(idx,k) +! enddo +! endif +! enddo +! enddo +! ASSERT (l == N_det) + + integer, allocatable :: iorder(:), to_sort(:) + integer, external :: get_index_in_psi_det_alpha_unique + integer, external :: get_index_in_psi_det_beta_unique + allocate(iorder(N_det), to_sort(N_det)) + do k=1,N_det + i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int) + j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int) + do l=1,N_states + psi_svd_matrix_values(k,l) = psi_coef(k,l) + enddo + psi_svd_matrix_rows(k) = i + psi_svd_matrix_columns(k) = j + to_sort(k) = N_det_alpha_unique * (j-1) + i + iorder(k) = k + enddo + call isort(to_sort, iorder, N_det) + call iset_order(psi_svd_matrix_rows,iorder,N_det) + call iset_order(psi_svd_matrix_columns,iorder,N_det) + call dset_order(psi_svd_matrix_values,iorder,N_det) + deallocate(iorder,to_sort) +END_PROVIDER + +BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k,istate + psi_svd_matrix = 0.d0 + do k=1,N_det + i = psi_svd_matrix_rows(k) + j = psi_svd_matrix_columns(k) + do istate=1,N_states + psi_svd_matrix(i,j,istate) = psi_svd_matrix_values(k,istate) + enddo + enddo +END_PROVIDER + +subroutine create_wf_of_psi_svd_matrix + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + double precision :: norm(N_states) + + call generate_all_alpha_beta_det_products + norm = 0.d0 + do j=1,N_det_beta_unique + do k=1,N_int + tmp_det(k,2) = psi_det_beta_unique(k,j) + enddo + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1) = psi_det_alpha_unique(k,i) + enddo + idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) + if (idx > 0) then + do k=1,N_states + psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) + norm(k) += psi_svd_matrix(i,j,k) + enddo + endif + enddo + enddo + do k=1,N_states + norm(k) = 1.d0/dsqrt(norm(k)) + do i=1,N_det + psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) + enddo + enddo + psi_det = psi_det_sorted_bit + psi_coef = psi_coef_sorted_bit + TOUCH psi_det psi_coef + psi_det = psi_det_sorted + psi_coef = psi_coef_sorted + norm(1) = 0.d0 + do i=1,N_det + norm(1) += psi_average_norm_contrib_sorted(i) + if (norm(1) >= 0.999999d0) then + exit + endif + enddo + N_det = min(i,N_det) + SOFT_TOUCH psi_det psi_coef N_det + +end + +subroutine generate_all_alpha_beta_det_products + implicit none + BEGIN_DOC +! Create a wave function from all possible alpha x beta determinants + END_DOC + integer :: i,j,k,l + integer :: idx, iproc + integer, external :: get_index_in_psi_det_sorted_bit + integer(bit_kind), allocatable :: tmp_det(:,:,:) + logical, external :: is_in_wavefunction + integer, external :: omp_get_thread_num + + !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& + !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& + !$OMP N_det) & + !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) + !$ iproc = omp_get_thread_num() + allocate (tmp_det(N_int,2,N_det_alpha_unique)) + !$OMP DO + do j=1,N_det_beta_unique + l = 1 + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1,l) = psi_det_alpha_unique(k,i) + tmp_det(k,2,l) = psi_det_beta_unique (k,j) + enddo + if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then + l = l+1 + endif + enddo + call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) + enddo + !$OMP END DO NOWAIT + deallocate(tmp_det) + !$OMP END PARALLEL + deallocate (tmp_det) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH psi_det psi_coef N_det +end + + BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC + ! SVD wave function + END_DOC + + integer :: lwork, info, istate + double precision, allocatable :: work(:), tmp(:,:), copy(:,:) + allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & + copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) + + do istate = 1,N_states + copy(:,:) = psi_svd_matrix(:,:,istate) + lwork=-1 + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + lwork = work(1) + deallocate(work) + allocate(work(lwork)) + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + deallocate(work) + if (info /= 0) then + print *, irp_here//': error in det SVD' + stop 1 + endif + integer :: i,j + do j=1,N_det_beta_unique + do i=1,N_det_beta_unique + psi_svd_beta(i,j,istate) = tmp(j,i) + enddo + enddo + deallocate(tmp,copy) + enddo + +END_PROVIDER + + diff --git a/src/Determinants/truncate_wf.irp.f b/src/Determinants/truncate_wf.irp.f new file mode 100644 index 00000000..f867ad7e --- /dev/null +++ b/src/Determinants/truncate_wf.irp.f @@ -0,0 +1,18 @@ +program cisd + implicit none + integer :: i,k + + + double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:) + integer :: N_st, degree + N_det=10000 + do i=1,N_det + do k=1,N_int + psi_det(k,1,i) = psi_det_sorted(k,1,i) + psi_det(k,2,i) = psi_det_sorted(k,2,i) + enddo + psi_coef(k,:) = psi_coef_sorted(k,:) + enddo + TOUCH psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted N_det + call save_wavefunction +end diff --git a/src/Determinants/utils.irp.f b/src/Determinants/utils.irp.f new file mode 100644 index 00000000..22faee83 --- /dev/null +++ b/src/Determinants/utils.irp.f @@ -0,0 +1,20 @@ +BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ] + implicit none + BEGIN_DOC + ! H matrix on the basis of the slater determinants defined by psi_det + END_DOC + integer :: i,j + double precision :: hij + call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij) + !$OMP PARALLEL DO SCHEDULE(GUIDED) PRIVATE(i,j,hij) & + !$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets) + do i =1,N_det + do j =i,N_det + call i_H_j(psi_det(1,1,i),psi_det(1,1,j),N_int,hij) + H_matrix_all_dets(i,j) = hij + H_matrix_all_dets(j,i) = hij + enddo + enddo + !$OMP END PARALLEL DO +END_PROVIDER + diff --git a/src/Properties/EZFIO.cfg b/src/Properties/EZFIO.cfg new file mode 100644 index 00000000..d230011d --- /dev/null +++ b/src/Properties/EZFIO.cfg @@ -0,0 +1,5 @@ +[z_one_point] +type: double precision +doc: z point on which the integrated delta rho is calculated +interface: input +default: 3.9 \ No newline at end of file From d44ccfa2743db18b92eddaa4bef2361b16b639fc Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 18:20:26 +0200 Subject: [PATCH 18/20] mend --- src/Determinants/EZFIO.cfg | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/src/Determinants/EZFIO.cfg b/src/Determinants/EZFIO.cfg index 32b4d5f7..5f63404b 100644 --- a/src/Determinants/EZFIO.cfg +++ b/src/Determinants/EZFIO.cfg @@ -5,16 +5,11 @@ interface: input default: 1 [N_det_max_jacobi] -type: integer +type: Strictly_positive_int doc: Maximum number of determinants diagonalized by Jacobi interface: input default: 1000 -[n_states_diag] -type: integer -doc: n_states_diag -interface: Ocaml - [read_wf] type: logical doc: If true, read the wave function from the EZFIO file @@ -45,6 +40,14 @@ doc: Thresholds on selectors (fraction of the norm) interface: input default: 0.999 + +# Only create the ezfio_config, (no Input_* and no PROVIDER) + +[n_states_diag] +type: integer +doc: n_states_diag +interface: Ocaml + [n_int] interface: OCaml doc: n_int From b35f836af1ca979f4d5fff80059ab6332d3c5277 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 18:20:44 +0200 Subject: [PATCH 19/20] mend --- ocaml/Input_determinants.ml | 249 ------------------------------------ 1 file changed, 249 deletions(-) delete mode 100644 ocaml/Input_determinants.ml diff --git a/ocaml/Input_determinants.ml b/ocaml/Input_determinants.ml deleted file mode 100644 index fa08e72b..00000000 --- a/ocaml/Input_determinants.ml +++ /dev/null @@ -1,249 +0,0 @@ -(* =~=~ *) -(* Init *) -(* =~=~ *) - -open Qptypes;; -open Qputils;; -open Core.Std;; - -module Determinants : sig -(* Generate type *) - type t = - { - n_det_max_jacobi : int; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - n_states : States_number.t; - s2_eig : bool; - read_wf : bool; - only_single_double_dm : bool; - } with sexp - ;; - val read : unit -> t option - val write : t-> unit - val to_string : t -> string - val to_rst : t -> Rst_string.t - val of_rst : Rst_string.t -> t option -end = struct -(* Generate type *) - type t = - { - n_det_max_jacobi : int; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - n_states : States_number.t; - s2_eig : bool; - read_wf : bool; - only_single_double_dm : bool; - } with sexp - ;; - - let get_default = Qpackage.get_ezfio_default "determinants";; - -(* =~=~=~=~=~=~==~=~=~=~=~=~ *) -(* Generate Special Function *) -(* =~=~=~==~=~~=~=~=~=~=~=~=~ *) - -(* Read snippet for n_det_max_jacobi *) - let read_n_det_max_jacobi () = - if not (Ezfio.has_determinants_n_det_max_jacobi ()) then - get_default "n_det_max_jacobi" - |> Int.of_string - |> Ezfio.set_determinants_n_det_max_jacobi - ; - Ezfio.get_determinants_n_det_max_jacobi () - ;; -(* Write snippet for n_det_max_jacobi *) - let write_n_det_max_jacobi = - Ezfio.set_determinants_n_det_max_jacobi - ;; - -(* Read snippet for n_states *) - let read_n_states () = - if not (Ezfio.has_determinants_n_states ()) then - get_default "n_states" - |> Int.of_string - |> Ezfio.set_determinants_n_states - ; - Ezfio.get_determinants_n_states () - |> States_number.of_int - ;; -(* Write snippet for n_states *) - let write_n_states var = - States_number.to_int var - |> Ezfio.set_determinants_n_states - ;; - -(* Read snippet for only_single_double_dm *) - let read_only_single_double_dm () = - if not (Ezfio.has_determinants_only_single_double_dm ()) then - get_default "only_single_double_dm" - |> Bool.of_string - |> Ezfio.set_determinants_only_single_double_dm - ; - Ezfio.get_determinants_only_single_double_dm () - ;; -(* Write snippet for only_single_double_dm *) - let write_only_single_double_dm = - Ezfio.set_determinants_only_single_double_dm - ;; - -(* Read snippet for read_wf *) - let read_read_wf () = - if not (Ezfio.has_determinants_read_wf ()) then - get_default "read_wf" - |> Bool.of_string - |> Ezfio.set_determinants_read_wf - ; - Ezfio.get_determinants_read_wf () - ;; -(* Write snippet for read_wf *) - let write_read_wf = - Ezfio.set_determinants_read_wf - ;; - -(* Read snippet for s2_eig *) - let read_s2_eig () = - if not (Ezfio.has_determinants_s2_eig ()) then - get_default "s2_eig" - |> Bool.of_string - |> Ezfio.set_determinants_s2_eig - ; - Ezfio.get_determinants_s2_eig () - ;; -(* Write snippet for s2_eig *) - let write_s2_eig = - Ezfio.set_determinants_s2_eig - ;; - -(* Read snippet for threshold_generators *) - let read_threshold_generators () = - if not (Ezfio.has_determinants_threshold_generators ()) then - get_default "threshold_generators" - |> Float.of_string - |> Ezfio.set_determinants_threshold_generators - ; - Ezfio.get_determinants_threshold_generators () - |> Threshold.of_float - ;; -(* Write snippet for threshold_generators *) - let write_threshold_generators var = - Threshold.to_float var - |> Ezfio.set_determinants_threshold_generators - ;; - -(* Read snippet for threshold_selectors *) - let read_threshold_selectors () = - if not (Ezfio.has_determinants_threshold_selectors ()) then - get_default "threshold_selectors" - |> Float.of_string - |> Ezfio.set_determinants_threshold_selectors - ; - Ezfio.get_determinants_threshold_selectors () - |> Threshold.of_float - ;; -(* Write snippet for threshold_selectors *) - let write_threshold_selectors var = - Threshold.to_float var - |> Ezfio.set_determinants_threshold_selectors - ;; - -(* =~=~=~=~=~=~=~=~=~=~=~=~ *) -(* Generate Global Function *) -(* =~=~=~=~=~=~=~=~=~=~=~=~ *) - -(* Read all *) - let read() = - Some - { - n_det_max_jacobi = read_n_det_max_jacobi (); - threshold_generators = read_threshold_generators (); - threshold_selectors = read_threshold_selectors (); - n_states = read_n_states (); - s2_eig = read_s2_eig (); - read_wf = read_read_wf (); - only_single_double_dm = read_only_single_double_dm (); - } - ;; -(* Write all *) - let write{ - n_det_max_jacobi; - threshold_generators; - threshold_selectors; - n_states; - s2_eig; - read_wf; - only_single_double_dm; - } = - write_n_det_max_jacobi n_det_max_jacobi; - write_threshold_generators threshold_generators; - write_threshold_selectors threshold_selectors; - write_n_states n_states; - write_s2_eig s2_eig; - write_read_wf read_wf; - write_only_single_double_dm only_single_double_dm; - ;; -(* to_string*) - let to_string b = - Printf.sprintf " - n_det_max_jacobi = %s - threshold_generators = %s - threshold_selectors = %s - n_states = %s - s2_eig = %s - read_wf = %s - only_single_double_dm = %s - " - (Int.to_string b.n_det_max_jacobi) - (Threshold.to_string b.threshold_generators) - (Threshold.to_string b.threshold_selectors) - (States_number.to_string b.n_states) - (Bool.to_string b.s2_eig) - (Bool.to_string b.read_wf) - (Bool.to_string b.only_single_double_dm) - ;; -(* to_rst*) - let to_rst b = - Printf.sprintf " - Maximum number of determinants diagonalized by Jacobi :: - - n_det_max_jacobi = %s - - Thresholds on generators (fraction of the norm) :: - - threshold_generators = %s - - Thresholds on selectors (fraction of the norm) :: - - threshold_selectors = %s - - Number of states to consider :: - - n_states = %s - - Force the wave function to be an eigenfunction of S^2 :: - - s2_eig = %s - - If true, read the wave function from the EZFIO file :: - - read_wf = %s - - If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements :: - - only_single_double_dm = %s - - " - (Int.to_string b.n_det_max_jacobi) - (Threshold.to_string b.threshold_generators) - (Threshold.to_string b.threshold_selectors) - (States_number.to_string b.n_states) - (Bool.to_string b.s2_eig) - (Bool.to_string b.read_wf) - (Bool.to_string b.only_single_double_dm) - |> Rst_string.of_string - ;; - include Generic_input_of_rst;; - let of_rst = of_rst t_of_sexp;; - -end \ No newline at end of file From bf997c558372b02ae1b87fd78c3f628675060697 Mon Sep 17 00:00:00 2001 From: Thomas Applencourt Date: Mon, 20 Apr 2015 16:45:06 +0200 Subject: [PATCH 20/20] Add all the mising file... --- ocaml/Input_determinants.ml | 251 ---- scripts/ezfio_interface/ei_handler.py | 1 - src/Determinants/ASSUMPTIONS.rst | 7 + src/Determinants/EZFIO.cfg | 103 ++ src/Determinants/H_apply.irp.f | 229 +++ src/Determinants/H_apply_template.f | 542 +++++++ src/Determinants/Makefile | 6 + src/Determinants/NEEDED_MODULES | 1 + src/Determinants/README.rst | 696 +++++++++ src/Determinants/SC2.irp.f | 215 +++ src/Determinants/connected_to_ref.irp.f | 357 +++++ src/Determinants/create_excitations.irp.f | 36 + src/Determinants/davidson.irp.f | 418 ++++++ src/Determinants/density_matrix.irp.f | 214 +++ src/Determinants/det_svd.irp.f | 61 + src/Determinants/determinants.irp.f | 9 - src/Determinants/determinants_bitmasks.irp.f | 57 + src/Determinants/diagonalize_CI.irp.f | 109 ++ src/Determinants/diagonalize_CI_SC2.irp.f | 59 + src/Determinants/diagonalize_CI_mono.irp.f | 72 + src/Determinants/excitations_utils.irp.f | 16 + src/Determinants/filter_connected.irp.f | 611 ++++++++ src/Determinants/guess_doublet.irp.f | 79 + src/Determinants/guess_singlet.irp.f | 44 + src/Determinants/guess_triplet.irp.f | 48 + src/Determinants/occ_pattern.irp.f | 339 +++++ src/Determinants/options.irp.f | 22 + .../program_beginer_determinants.irp.f | 138 ++ src/Determinants/psi_cas.irp.f | 114 ++ src/Determinants/ref_bitmask.irp.f | 57 + src/Determinants/s2.irp.f | 106 ++ src/Determinants/save_for_casino.irp.f | 268 ++++ src/Determinants/save_for_qmcchem.irp.f | 51 + src/Determinants/save_natorb.irp.f | 6 + src/Determinants/slater_rules.irp.f | 1301 +++++++++++++++++ .../spindeterminants.ezfio_config | 17 + src/Determinants/spindeterminants.irp.f | 615 ++++++++ src/Determinants/truncate_wf.irp.f | 18 + src/Determinants/utils.irp.f | 20 + src/Output/README.rst | 1 + src/Properties/EZFIO.cfg | 5 + 41 files changed, 7058 insertions(+), 261 deletions(-) delete mode 100644 ocaml/Input_determinants.ml create mode 100644 src/Determinants/ASSUMPTIONS.rst create mode 100644 src/Determinants/EZFIO.cfg create mode 100644 src/Determinants/H_apply.irp.f create mode 100644 src/Determinants/H_apply_template.f create mode 100644 src/Determinants/Makefile create mode 100644 src/Determinants/NEEDED_MODULES create mode 100644 src/Determinants/README.rst create mode 100644 src/Determinants/SC2.irp.f create mode 100644 src/Determinants/connected_to_ref.irp.f create mode 100644 src/Determinants/create_excitations.irp.f create mode 100644 src/Determinants/davidson.irp.f create mode 100644 src/Determinants/density_matrix.irp.f create mode 100644 src/Determinants/det_svd.irp.f create mode 100644 src/Determinants/determinants_bitmasks.irp.f create mode 100644 src/Determinants/diagonalize_CI.irp.f create mode 100644 src/Determinants/diagonalize_CI_SC2.irp.f create mode 100644 src/Determinants/diagonalize_CI_mono.irp.f create mode 100644 src/Determinants/excitations_utils.irp.f create mode 100644 src/Determinants/filter_connected.irp.f create mode 100644 src/Determinants/guess_doublet.irp.f create mode 100644 src/Determinants/guess_singlet.irp.f create mode 100644 src/Determinants/guess_triplet.irp.f create mode 100644 src/Determinants/occ_pattern.irp.f create mode 100644 src/Determinants/options.irp.f create mode 100644 src/Determinants/program_beginer_determinants.irp.f create mode 100644 src/Determinants/psi_cas.irp.f create mode 100644 src/Determinants/ref_bitmask.irp.f create mode 100644 src/Determinants/s2.irp.f create mode 100644 src/Determinants/save_for_casino.irp.f create mode 100644 src/Determinants/save_for_qmcchem.irp.f create mode 100644 src/Determinants/save_natorb.irp.f create mode 100644 src/Determinants/slater_rules.irp.f create mode 100644 src/Determinants/spindeterminants.ezfio_config create mode 100644 src/Determinants/spindeterminants.irp.f create mode 100644 src/Determinants/truncate_wf.irp.f create mode 100644 src/Determinants/utils.irp.f create mode 100644 src/Properties/EZFIO.cfg diff --git a/ocaml/Input_determinants.ml b/ocaml/Input_determinants.ml deleted file mode 100644 index df046231..00000000 --- a/ocaml/Input_determinants.ml +++ /dev/null @@ -1,251 +0,0 @@ -(* =~=~ *) -(* Init *) -(* =~=~ *) - -open Qptypes;; -open Qputils;; -open Core.Std;; - -module Determinants : sig -(* Generate type *) - type t = - { - n_det_max_jacobi : Strictly_positive_int.t; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - n_states : Strictly_positive_int.t; - s2_eig : bool; - read_wf : bool; - only_single_double_dm : bool; - } with sexp - ;; - val read : unit -> t option - val write : t-> unit - val to_string : t -> string - val to_rst : t -> Rst_string.t - val of_rst : Rst_string.t -> t option -end = struct -(* Generate type *) - type t = - { - n_det_max_jacobi : Strictly_positive_int.t; - threshold_generators : Threshold.t; - threshold_selectors : Threshold.t; - n_states : Strictly_positive_int.t; - s2_eig : bool; - read_wf : bool; - only_single_double_dm : bool; - } with sexp - ;; - - let get_default = Qpackage.get_ezfio_default "determinants";; - -(* =~=~=~=~=~=~==~=~=~=~=~=~ *) -(* Generate Special Function *) -(* =~=~=~==~=~~=~=~=~=~=~=~=~ *) - -(* Read snippet for n_det_max_jacobi *) - let read_n_det_max_jacobi () = - if not (Ezfio.has_determinants_n_det_max_jacobi ()) then - get_default "n_det_max_jacobi" - |> Int.of_string - |> Ezfio.set_determinants_n_det_max_jacobi - ; - Ezfio.get_determinants_n_det_max_jacobi () - |> Strictly_positive_int.of_int - ;; -(* Write snippet for n_det_max_jacobi *) - let write_n_det_max_jacobi var = - Strictly_positive_int.to_int var - |> Ezfio.set_determinants_n_det_max_jacobi - ;; - -(* Read snippet for n_states *) - let read_n_states () = - if not (Ezfio.has_determinants_n_states ()) then - get_default "n_states" - |> Int.of_string - |> Ezfio.set_determinants_n_states - ; - Ezfio.get_determinants_n_states () - |> Strictly_positive_int.of_int - ;; -(* Write snippet for n_states *) - let write_n_states var = - Strictly_positive_int.to_int var - |> Ezfio.set_determinants_n_states - ;; - -(* Read snippet for only_single_double_dm *) - let read_only_single_double_dm () = - if not (Ezfio.has_determinants_only_single_double_dm ()) then - get_default "only_single_double_dm" - |> Bool.of_string - |> Ezfio.set_determinants_only_single_double_dm - ; - Ezfio.get_determinants_only_single_double_dm () - ;; -(* Write snippet for only_single_double_dm *) - let write_only_single_double_dm = - Ezfio.set_determinants_only_single_double_dm - ;; - -(* Read snippet for read_wf *) - let read_read_wf () = - if not (Ezfio.has_determinants_read_wf ()) then - get_default "read_wf" - |> Bool.of_string - |> Ezfio.set_determinants_read_wf - ; - Ezfio.get_determinants_read_wf () - ;; -(* Write snippet for read_wf *) - let write_read_wf = - Ezfio.set_determinants_read_wf - ;; - -(* Read snippet for s2_eig *) - let read_s2_eig () = - if not (Ezfio.has_determinants_s2_eig ()) then - get_default "s2_eig" - |> Bool.of_string - |> Ezfio.set_determinants_s2_eig - ; - Ezfio.get_determinants_s2_eig () - ;; -(* Write snippet for s2_eig *) - let write_s2_eig = - Ezfio.set_determinants_s2_eig - ;; - -(* Read snippet for threshold_generators *) - let read_threshold_generators () = - if not (Ezfio.has_determinants_threshold_generators ()) then - get_default "threshold_generators" - |> Float.of_string - |> Ezfio.set_determinants_threshold_generators - ; - Ezfio.get_determinants_threshold_generators () - |> Threshold.of_float - ;; -(* Write snippet for threshold_generators *) - let write_threshold_generators var = - Threshold.to_float var - |> Ezfio.set_determinants_threshold_generators - ;; - -(* Read snippet for threshold_selectors *) - let read_threshold_selectors () = - if not (Ezfio.has_determinants_threshold_selectors ()) then - get_default "threshold_selectors" - |> Float.of_string - |> Ezfio.set_determinants_threshold_selectors - ; - Ezfio.get_determinants_threshold_selectors () - |> Threshold.of_float - ;; -(* Write snippet for threshold_selectors *) - let write_threshold_selectors var = - Threshold.to_float var - |> Ezfio.set_determinants_threshold_selectors - ;; - -(* =~=~=~=~=~=~=~=~=~=~=~=~ *) -(* Generate Global Function *) -(* =~=~=~=~=~=~=~=~=~=~=~=~ *) - -(* Read all *) - let read() = - Some - { - n_det_max_jacobi = read_n_det_max_jacobi (); - threshold_generators = read_threshold_generators (); - threshold_selectors = read_threshold_selectors (); - n_states = read_n_states (); - s2_eig = read_s2_eig (); - read_wf = read_read_wf (); - only_single_double_dm = read_only_single_double_dm (); - } - ;; -(* Write all *) - let write{ - n_det_max_jacobi; - threshold_generators; - threshold_selectors; - n_states; - s2_eig; - read_wf; - only_single_double_dm; - } = - write_n_det_max_jacobi n_det_max_jacobi; - write_threshold_generators threshold_generators; - write_threshold_selectors threshold_selectors; - write_n_states n_states; - write_s2_eig s2_eig; - write_read_wf read_wf; - write_only_single_double_dm only_single_double_dm; - ;; -(* to_string*) - let to_string b = - Printf.sprintf " - n_det_max_jacobi = %s - threshold_generators = %s - threshold_selectors = %s - n_states = %s - s2_eig = %s - read_wf = %s - only_single_double_dm = %s - " - (Strictly_positive_int.to_string b.n_det_max_jacobi) - (Threshold.to_string b.threshold_generators) - (Threshold.to_string b.threshold_selectors) - (Strictly_positive_int.to_string b.n_states) - (Bool.to_string b.s2_eig) - (Bool.to_string b.read_wf) - (Bool.to_string b.only_single_double_dm) - ;; -(* to_rst*) - let to_rst b = - Printf.sprintf " - Maximum number of determinants diagonalized by Jacobi :: - - n_det_max_jacobi = %s - - Percentage of the norm of the state-averaged wave function to consider for the generators :: - - threshold_generators = %s - - Percentage of the norm of the state-averaged wave function to consider for the selectors :: - - threshold_selectors = %s - - Number of states to consider :: - - n_states = %s - - Force the wave function to be an eigenfunction of S^2 :: - - s2_eig = %s - - If true, read the wave function from the EZFIO file :: - - read_wf = %s - - If true, The One body DM is calculated with ignoing the Double <-> Doubles extra diag elements :: - - only_single_double_dm = %s - - " - (Strictly_positive_int.to_string b.n_det_max_jacobi) - (Threshold.to_string b.threshold_generators) - (Threshold.to_string b.threshold_selectors) - (Strictly_positive_int.to_string b.n_states) - (Bool.to_string b.s2_eig) - (Bool.to_string b.read_wf) - (Bool.to_string b.only_single_double_dm) - |> Rst_string.of_string - ;; - include Generic_input_of_rst;; - let of_rst = of_rst t_of_sexp;; - -end \ No newline at end of file diff --git a/scripts/ezfio_interface/ei_handler.py b/scripts/ezfio_interface/ei_handler.py index e5c08895..6d18d071 100755 --- a/scripts/ezfio_interface/ei_handler.py +++ b/scripts/ezfio_interface/ei_handler.py @@ -278,7 +278,6 @@ def get_dict_config_file(config_file_path, module_lower): try: d[pvd]["default"] = is_bool(default_raw) - print is_bool(default_raw) except TypeError: d[pvd]["default"] = Type(None, default_raw, default_raw) diff --git a/src/Determinants/ASSUMPTIONS.rst b/src/Determinants/ASSUMPTIONS.rst new file mode 100644 index 00000000..e9e24d09 --- /dev/null +++ b/src/Determinants/ASSUMPTIONS.rst @@ -0,0 +1,7 @@ +* The MOs are orthonormal +* All the determinants have the same number of electrons +* The determinants are orthonormal +* The number of generator determinants <= the number of determinants +* All the determinants in the H_apply buffer are supposed to be different from the + wave function determinants +* All the determinants in the H_apply buffer are supposed to be unique diff --git a/src/Determinants/EZFIO.cfg b/src/Determinants/EZFIO.cfg new file mode 100644 index 00000000..5f63404b --- /dev/null +++ b/src/Determinants/EZFIO.cfg @@ -0,0 +1,103 @@ +[N_states] +type: States_number +doc: Number of states to consider +interface: input +default: 1 + +[N_det_max_jacobi] +type: Strictly_positive_int +doc: Maximum number of determinants diagonalized by Jacobi +interface: input +default: 1000 + +[read_wf] +type: logical +doc: If true, read the wave function from the EZFIO file +interface: input +default: False + +[only_single_double_dm] +type: logical +doc: If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements +interface: input +default: False + +[s2_eig] +type: logical +doc: Force the wave function to be an eigenfunction of S^2 +interface: input +default: False + +[threshold_generators] +type: Threshold +doc: Thresholds on generators (fraction of the norm) +interface: input +default: 0.99 + +[threshold_selectors] +type: Threshold +doc: Thresholds on selectors (fraction of the norm) +interface: input +default: 0.999 + + +# Only create the ezfio_config, (no Input_* and no PROVIDER) + +[n_states_diag] +type: integer +doc: n_states_diag +interface: Ocaml + +[n_int] +interface: OCaml +doc: n_int +type: N_int_number + +[bit_kind] +interface: OCaml +doc: bit_kind +type: Bit_kind + +[mo_label] +interface: OCaml +doc: o_label +type: character*(64) + +[n_det] +interface: OCaml +doc: n_det +type: integer + +[psi_coef] +interface: OCaml +doc: psi_coef +type: double precision +size: (determinants_n_det,determinants_n_states) + +[psi_det] +interface: OCaml +doc: psi_det +type: integer*8 +size: (determinants_n_int*determinants_bit_kind/8,2,determinants_n_det) + +[det_num] +interface: OCaml +doc: det_num +type: integer + +[det_occ] +interface: OCaml +doc: det_occ +type: integer +size: (electrons_elec_alpha_num,determinants_det_num,2) + +[det_coef] +interface: OCaml +doc: det_coef +type: double precision +size: (determinants_det_num) + +[expected_s2] +interface: OCaml +doc: expcted_s2 +type: double precision \ No newline at end of file diff --git a/src/Determinants/H_apply.irp.f b/src/Determinants/H_apply.irp.f new file mode 100644 index 00000000..801d00a5 --- /dev/null +++ b/src/Determinants/H_apply.irp.f @@ -0,0 +1,229 @@ +use bitmasks +use omp_lib + +type H_apply_buffer_type +integer :: N_det +integer :: sze +integer(bit_kind), pointer :: det(:,:,:) +double precision , pointer :: coef(:,:) +double precision , pointer :: e2(:,:) +end type H_apply_buffer_type + +type(H_apply_buffer_type), pointer :: H_apply_buffer(:) + + + BEGIN_PROVIDER [ logical, H_apply_buffer_allocated ] +&BEGIN_PROVIDER [ integer(omp_lock_kind), H_apply_buffer_lock, (64,0:nproc-1) ] + use omp_lib + implicit none + BEGIN_DOC + ! Buffer of determinants/coefficients/perturbative energy for H_apply. + ! Uninitialized. Filled by H_apply subroutines. + END_DOC + integer :: iproc, sze + sze = 10000 + if (.not.associated(H_apply_buffer)) then + allocate(H_apply_buffer(0:nproc-1)) + iproc = 0 + !$OMP PARALLEL PRIVATE(iproc) DEFAULT(NONE) & + !$OMP SHARED(H_apply_buffer,N_int,sze,N_states,H_apply_buffer_lock) + !$ iproc = omp_get_thread_num() + H_apply_buffer(iproc)%N_det = 0 + H_apply_buffer(iproc)%sze = sze + allocate ( & + H_apply_buffer(iproc)%det(N_int,2,sze), & + H_apply_buffer(iproc)%coef(sze,N_states), & + H_apply_buffer(iproc)%e2(sze,N_states) & + ) + H_apply_buffer(iproc)%det = 0_bit_kind + H_apply_buffer(iproc)%coef = 0.d0 + H_apply_buffer(iproc)%e2 = 0.d0 + call omp_init_lock(H_apply_buffer_lock(1,iproc)) + !$OMP END PARALLEL + endif + +END_PROVIDER + + +subroutine resize_H_apply_buffer(new_size,iproc) + implicit none + integer, intent(in) :: new_size, iproc + integer(bit_kind), pointer :: buffer_det(:,:,:) + double precision, pointer :: buffer_coef(:,:) + double precision, pointer :: buffer_e2(:,:) + integer :: i,j,k + integer :: Ndet + PROVIDE H_apply_buffer_allocated + + ASSERT (new_size > 0) + ASSERT (iproc >= 0) + ASSERT (iproc < nproc) + + call omp_set_lock(H_apply_buffer_lock(1,iproc)) + allocate ( buffer_det(N_int,2,new_size), & + buffer_coef(new_size,N_states), & + buffer_e2(new_size,N_states) ) + + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + do k=1,N_int + buffer_det(k,1,i) = H_apply_buffer(iproc)%det(k,1,i) + buffer_det(k,2,i) = H_apply_buffer(iproc)%det(k,2,i) + enddo + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num ) + enddo + deallocate(H_apply_buffer(iproc)%det) + H_apply_buffer(iproc)%det => buffer_det + + do k=1,N_states + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + buffer_coef(i,k) = H_apply_buffer(iproc)%coef(i,k) + enddo + enddo + deallocate(H_apply_buffer(iproc)%coef) + H_apply_buffer(iproc)%coef => buffer_coef + + do k=1,N_states + do i=1,min(new_size,H_apply_buffer(iproc)%N_det) + buffer_e2(i,k) = H_apply_buffer(iproc)%e2(i,k) + enddo + enddo + deallocate(H_apply_buffer(iproc)%e2) + H_apply_buffer(iproc)%e2 => buffer_e2 + + H_apply_buffer(iproc)%sze = new_size + H_apply_buffer(iproc)%N_det = min(new_size,H_apply_buffer(iproc)%N_det) + call omp_unset_lock(H_apply_buffer_lock(1,iproc)) + +end + +subroutine copy_H_apply_buffer_to_wf + use omp_lib + implicit none + BEGIN_DOC +! Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det +! after calling this function. +! After calling this subroutine, N_det, psi_det and psi_coef need to be touched + END_DOC + integer(bit_kind), allocatable :: buffer_det(:,:,:) + double precision, allocatable :: buffer_coef(:,:) + integer :: i,j,k + integer :: N_det_old + integer :: iproc + + PROVIDE H_apply_buffer_allocated + + ASSERT (N_int > 0) + ASSERT (N_det > 0) + + allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) ) + + do i=1,N_det + do k=1,N_int + ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num) + buffer_det(k,1,i) = psi_det(k,1,i) + buffer_det(k,2,i) = psi_det(k,2,i) + enddo + enddo + do k=1,N_states + do i=1,N_det + buffer_coef(i,k) = psi_coef(i,k) + enddo + enddo + + N_det_old = N_det + do j=0,nproc-1 + N_det = N_det + H_apply_buffer(j)%N_det + enddo + + if (psi_det_size < N_det) then + psi_det_size = N_det + TOUCH psi_det_size + endif + do i=1,N_det_old + do k=1,N_int + psi_det(k,1,i) = buffer_det(k,1,i) + psi_det(k,2,i) = buffer_det(k,2,i) + enddo + ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num ) + enddo + do k=1,N_states + do i=1,N_det_old + psi_coef(i,k) = buffer_coef(i,k) + enddo + enddo + !$OMP PARALLEL DEFAULT(SHARED) & + !$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) & + !$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states) + j=0 + !$ j=omp_get_thread_num() + do k=0,j-1 + N_det_old += H_apply_buffer(k)%N_det + enddo + do i=1,H_apply_buffer(j)%N_det + do k=1,N_int + psi_det(k,1,i+N_det_old) = H_apply_buffer(j)%det(k,1,i) + psi_det(k,2,i+N_det_old) = H_apply_buffer(j)%det(k,2,i) + enddo + ASSERT (sum(popcnt(psi_det(:,1,i+N_det_old))) == elec_alpha_num) + ASSERT (sum(popcnt(psi_det(:,2,i+N_det_old))) == elec_beta_num ) + enddo + do k=1,N_states + do i=1,H_apply_buffer(j)%N_det + psi_coef(i+N_det_old,k) = H_apply_buffer(j)%coef(i,k) + enddo + enddo + !$OMP BARRIER + H_apply_buffer(j)%N_det = 0 + !$OMP END PARALLEL + call normalize(psi_coef,N_det) + SOFT_TOUCH N_det psi_det psi_coef + +end + + +subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc) + use bitmasks + implicit none + BEGIN_DOC + ! Fill the H_apply buffer with determiants for CISD + END_DOC + + integer, intent(in) :: n_selected, Nint, iproc + integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) + integer :: i,j,k + integer :: new_size + PROVIDE H_apply_buffer_allocated + new_size = H_apply_buffer(iproc)%N_det + n_selected + if (new_size > H_apply_buffer(iproc)%sze) then + call resize_h_apply_buffer(max(2*H_apply_buffer(iproc)%sze,new_size),iproc) + endif + call omp_set_lock(H_apply_buffer_lock(1,iproc)) + do i=1,H_apply_buffer(iproc)%N_det + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) + enddo + do i=1,n_selected + do j=1,N_int + H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i) + H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i) + enddo + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num) + enddo + do j=1,N_states + do i=1,N_selected + H_apply_buffer(iproc)%coef(i,j) = 0.d0 + enddo + enddo + H_apply_buffer(iproc)%N_det = new_size + do i=1,H_apply_buffer(iproc)%N_det + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i)) )== elec_alpha_num) + ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num) + enddo + call omp_unset_lock(H_apply_buffer_lock(1,iproc)) +end + + diff --git a/src/Determinants/H_apply_template.f b/src/Determinants/H_apply_template.f new file mode 100644 index 00000000..a9a282ae --- /dev/null +++ b/src/Determinants/H_apply_template.f @@ -0,0 +1,542 @@ +subroutine $subroutine_diexc(key_in, hole_1,particl_1, hole_2, particl_2, i_generator, iproc_in $parameters ) + use omp_lib + use bitmasks + implicit none + BEGIN_DOC + ! Generate all double excitations of key_in using the bit masks of holes and + ! particles. + ! Assume N_int is already provided. + END_DOC + integer,parameter :: size_max = $size_max + $declarations + integer ,intent(in) :: i_generator + integer(bit_kind),intent(in) :: key_in(N_int,2) + integer(bit_kind),allocatable :: keys_out(:,:,:) + integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) + integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2) + integer, intent(in) :: iproc_in + integer(bit_kind), allocatable :: hole_save(:,:) + integer(bit_kind), allocatable :: key(:,:),hole(:,:), particle(:,:) + integer(bit_kind), allocatable :: hole_tmp(:,:), particle_tmp(:,:) + integer :: ii,i,jj,j,k,ispin,l + integer, allocatable :: occ_particle(:,:), occ_hole(:,:) + integer, allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) + integer :: kk,pp,other_spin,key_idx + integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) + integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) + + double precision :: mo_bielec_integral + logical :: is_a_two_holes_two_particles + integer, allocatable :: ia_ja_pairs(:,:,:) + integer, allocatable :: ib_jb_pairs(:,:) + double precision :: diag_H_mat_elem + integer :: iproc + integer(omp_lock_kind), save :: lck, ifirst=0 + if (ifirst == 0) then +!$ call omp_init_lock(lck) + ifirst=1 + endif + + logical :: check_double_excitation + check_double_excitation = .True. + iproc = iproc_in + + + $initialization + + $omp_parallel +!$ iproc = omp_get_thread_num() + allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & + key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& + particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & + occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& + occ_hole_tmp(N_int*bit_kind_size,2)) + $init_thread + + + + !!!! First couple hole particle + do j = 1, N_int + hole(j,1) = iand(hole_1(j,1),key_in(j,1)) + hole(j,2) = iand(hole_1(j,2),key_in(j,2)) + particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) + particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) + enddo + call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) + call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) + call bitstring_to_list(hole(1,1),occ_hole(1,1),N_elec_in_key_hole_1(1),N_int) + call bitstring_to_list(hole(1,2),occ_hole(1,2),N_elec_in_key_hole_1(2),N_int) + allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2), & + ib_jb_pairs(2,0:(elec_alpha_num)*mo_tot_num)) + + do ispin=1,2 + i=0 + do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole + i_a = occ_hole(ii,ispin) + ASSERT (i_a > 0) + ASSERT (i_a <= mo_tot_num) + + do jj=1,N_elec_in_key_part_1(ispin) !particle + j_a = occ_particle(jj,ispin) + ASSERT (j_a > 0) + ASSERT (j_a <= mo_tot_num) + i += 1 + ia_ja_pairs(1,i,ispin) = i_a + ia_ja_pairs(2,i,ispin) = j_a + enddo + enddo + ia_ja_pairs(1,0,ispin) = i + enddo + + key_idx = 0 + + integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b + integer(bit_kind) :: test(N_int,2) + double precision :: accu + logical, allocatable :: array_pairs(:,:) + allocate(array_pairs(mo_tot_num,mo_tot_num)) + accu = 0.d0 + do ispin=1,2 + other_spin = iand(ispin,1)+1 + if (abort_here) then + exit + endif + $omp_do + do ii=1,ia_ja_pairs(1,0,ispin) + if (abort_here) then + cycle + endif + i_a = ia_ja_pairs(1,ii,ispin) + ASSERT (i_a > 0) + ASSERT (i_a <= mo_tot_num) + j_a = ia_ja_pairs(2,ii,ispin) + ASSERT (j_a > 0) + ASSERT (j_a <= mo_tot_num) + hole = key_in + k = ishft(i_a-1,-bit_kind_shift)+1 + j = i_a-ishft(k-1,bit_kind_shift)-1 + hole(k,ispin) = ibclr(hole(k,ispin),j) + k_a = ishft(j_a-1,-bit_kind_shift)+1 + l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 + hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) + + !!!! Second couple hole particle + do j = 1, N_int + hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1)) + hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2)) + particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1)) + particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2)) + enddo + + call bitstring_to_list(particle_tmp(1,1),occ_particle_tmp(1,1),N_elec_in_key_part_2(1),N_int) + call bitstring_to_list(particle_tmp(1,2),occ_particle_tmp(1,2),N_elec_in_key_part_2(2),N_int) + call bitstring_to_list(hole_tmp (1,1),occ_hole_tmp (1,1),N_elec_in_key_hole_2(1),N_int) + call bitstring_to_list(hole_tmp (1,2),occ_hole_tmp (1,2),N_elec_in_key_hole_2(2),N_int) + + ! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : mono exc :: orb(i_a,ispin) --> orb(j_a,ispin) + hole_save = hole + + ! Build array of the non-zero integrals of second excitation + $filter_integrals + if (ispin == 1) then + integer :: jjj + + i=0 + do kk = 1,N_elec_in_key_hole_2(other_spin) + i_b = occ_hole_tmp(kk,other_spin) + ASSERT (i_b > 0) + ASSERT (i_b <= mo_tot_num) + do jjj=1,N_elec_in_key_part_2(other_spin) ! particule + j_b = occ_particle_tmp(jjj,other_spin) + ASSERT (j_b > 0) + ASSERT (j_b <= mo_tot_num) + if (array_pairs(i_b,j_b)) then + i+= 1 + ib_jb_pairs(1,i) = i_b + ib_jb_pairs(2,i) = j_b + endif + enddo + enddo + ib_jb_pairs(1,0) = i + + do kk = 1,ib_jb_pairs(1,0) + hole = hole_save + i_b = ib_jb_pairs(1,kk) + j_b = ib_jb_pairs(2,kk) + k = ishft(i_b-1,-bit_kind_shift)+1 + j = i_b-ishft(k-1,bit_kind_shift)-1 + hole(k,other_spin) = ibclr(hole(k,other_spin),j) + key = hole + k = ishft(j_b-1,-bit_kind_shift)+1 + l = j_b-ishft(k-1,bit_kind_shift)-1 + key(k,other_spin) = ibset(key(k,other_spin),l) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = key(k,1) + keys_out(k,2,key_idx) = key(k,2) + enddo + ASSERT (key_idx <= size_max) + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + if (abort_here) then + exit + endif + enddo + endif + + ! does all the mono excitations of the same spin + i=0 + do kk = 1,N_elec_in_key_hole_2(ispin) + i_b = occ_hole_tmp(kk,ispin) + if (i_b <= i_a.or.i_b == j_a) cycle + ASSERT (i_b > 0) + ASSERT (i_b <= mo_tot_num) + do jjj=1,N_elec_in_key_part_2(ispin) ! particule + j_b = occ_particle_tmp(jjj,ispin) + ASSERT (j_b > 0) + ASSERT (j_b <= mo_tot_num) + if (j_b <= j_a) cycle + if (array_pairs(i_b,j_b)) then + i+= 1 + ib_jb_pairs(1,i) = i_b + ib_jb_pairs(2,i) = j_b + endif + enddo + enddo + ib_jb_pairs(1,0) = i + + do kk = 1,ib_jb_pairs(1,0) + hole = hole_save + i_b = ib_jb_pairs(1,kk) + j_b = ib_jb_pairs(2,kk) + k = ishft(i_b-1,-bit_kind_shift)+1 + j = i_b-ishft(k-1,bit_kind_shift)-1 + hole(k,ispin) = ibclr(hole(k,ispin),j) + key = hole + k = ishft(j_b-1,-bit_kind_shift)+1 + l = j_b-ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibset(key(k,ispin),l) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = key(k,1) + keys_out(k,2,key_idx) = key(k,2) + enddo + ASSERT (key_idx <= size_max) + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + if (abort_here) then + exit + endif + enddo ! kk + + enddo ! ii + $omp_enddo + enddo ! ispin + $keys_work + $deinit_thread + deallocate (ia_ja_pairs, ib_jb_pairs, & + keys_out, hole_save, & + key,hole, particle, hole_tmp,& + particle_tmp, occ_particle, & + occ_hole, occ_particle_tmp,& + occ_hole_tmp,array_pairs) + $omp_end_parallel + $finalization +end + +subroutine $subroutine_monoexc(key_in, hole_1,particl_1,i_generator,iproc_in $parameters ) + use omp_lib + use bitmasks + implicit none + BEGIN_DOC + ! Generate all single excitations of key_in using the bit masks of holes and + ! particles. + ! Assume N_int is already provided. + END_DOC + integer,parameter :: size_max = $size_max + $declarations + integer ,intent(in) :: i_generator + integer(bit_kind),intent(in) :: key_in(N_int,2) + integer(bit_kind),intent(in) :: hole_1(N_int,2), particl_1(N_int,2) + integer, intent(in) :: iproc_in + integer(bit_kind),allocatable :: keys_out(:,:,:) + integer(bit_kind),allocatable :: hole_save(:,:) + integer(bit_kind),allocatable :: key(:,:),hole(:,:), particle(:,:) + integer(bit_kind),allocatable :: hole_tmp(:,:), particle_tmp(:,:) + integer(bit_kind),allocatable :: hole_2(:,:), particl_2(:,:) + integer :: ii,i,jj,j,k,ispin,l + integer,allocatable :: occ_particle(:,:), occ_hole(:,:) + integer,allocatable :: occ_particle_tmp(:,:), occ_hole_tmp(:,:) + integer,allocatable :: ib_jb_pairs(:,:) + integer :: kk,pp,other_spin,key_idx + integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) + integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) + logical :: is_a_two_holes_two_particles + + integer, allocatable :: ia_ja_pairs(:,:,:) + logical, allocatable :: array_pairs(:,:) + double precision :: diag_H_mat_elem + integer(omp_lock_kind), save :: lck, ifirst=0 + integer :: iproc + + logical :: check_double_excitation + iproc = iproc_in + + check_double_excitation = .True. + $check_double_excitation + + + if (ifirst == 0) then + ifirst=1 +!$ call omp_init_lock(lck) + endif + + $initialization + + $omp_parallel +!$ iproc = omp_get_thread_num() + allocate (keys_out(N_int,2,size_max), hole_save(N_int,2), & + key(N_int,2),hole(N_int,2), particle(N_int,2), hole_tmp(N_int,2),& + particle_tmp(N_int,2), occ_particle(N_int*bit_kind_size,2), & + occ_hole(N_int*bit_kind_size,2), occ_particle_tmp(N_int*bit_kind_size,2),& + occ_hole_tmp(N_int*bit_kind_size,2)) + $init_thread + !!!! First couple hole particle + do j = 1, N_int + hole(j,1) = iand(hole_1(j,1),key_in(j,1)) + hole(j,2) = iand(hole_1(j,2),key_in(j,2)) + particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) + particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) + enddo + + call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) + call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) + call bitstring_to_list(hole (1,1),occ_hole (1,1),N_elec_in_key_hole_1(1),N_int) + call bitstring_to_list(hole (1,2),occ_hole (1,2),N_elec_in_key_hole_1(2),N_int) + allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2)) + + do ispin=1,2 + i=0 + do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole + i_a = occ_hole(ii,ispin) + do jj=1,N_elec_in_key_part_1(ispin) !particule + j_a = occ_particle(jj,ispin) + i += 1 + ia_ja_pairs(1,i,ispin) = i_a + ia_ja_pairs(2,i,ispin) = j_a + enddo + enddo + ia_ja_pairs(1,0,ispin) = i + enddo + + key_idx = 0 + + integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b + integer(bit_kind) :: test(N_int,2) + double precision :: accu + accu = 0.d0 + do ispin=1,2 + other_spin = iand(ispin,1)+1 + $omp_do + do ii=1,ia_ja_pairs(1,0,ispin) + i_a = ia_ja_pairs(1,ii,ispin) + j_a = ia_ja_pairs(2,ii,ispin) + hole = key_in + k = ishft(i_a-1,-bit_kind_shift)+1 + j = i_a-ishft(k-1,bit_kind_shift)-1 + $filterhole + hole(k,ispin) = ibclr(hole(k,ispin),j) + k_a = ishft(j_a-1,-bit_kind_shift)+1 + l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 + $filterparticle + hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) + $filter2h2p + key_idx += 1 + do k=1,N_int + keys_out(k,1,key_idx) = hole(k,1) + keys_out(k,2,key_idx) = hole(k,2) + enddo + if (key_idx == size_max) then + $keys_work + key_idx = 0 + endif + enddo ! ii + $omp_enddo + enddo ! ispin + $keys_work + $deinit_thread + deallocate (ia_ja_pairs, & + keys_out, hole_save, & + key,hole, particle, hole_tmp,& + particle_tmp, occ_particle, & + occ_hole, occ_particle_tmp,& + occ_hole_tmp) + $omp_end_parallel + $finalization + +end + + +subroutine $subroutine($params_main) + implicit none + use omp_lib + use bitmasks + BEGIN_DOC + ! Calls H_apply on the HF determinant and selects all connected single and double + ! excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + END_DOC + + $decls_main + + integer :: i_generator, nmax + double precision :: wall_0, wall_1 + integer(omp_lock_kind) :: lck + integer(bit_kind), allocatable :: mask(:,:,:) + integer :: ispin, k + integer :: iproc + + $initialization + PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators + + + nmax = mod( N_det_generators,nproc ) + + + !$ call omp_init_lock(lck) + call start_progress(N_det_generators,'Selection (norm)',0.d0) + + call wall_time(wall_0) + + iproc = 0 + allocate( mask(N_int,2,6) ) + do i_generator=1,nmax + + progress_bar(1) = i_generator + + if (abort_here) then + exit + endif + $skip + + ! Create bit masks for holes and particles + do ispin=1,2 + do k=1,N_int + mask(k,ispin,s_hole) = & + iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,s_part) = & + iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole1) = & + iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part1) = & + iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole2) = & + iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part2) = & + iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + enddo + enddo + if($do_double_excitations)then + call $subroutine_diexc(psi_det_generators(1,1,i_generator), & + mask(1,1,d_hole1), mask(1,1,d_part1), & + mask(1,1,d_hole2), mask(1,1,d_part2), & + i_generator, iproc $params_post) + endif + if($do_mono_excitations)then + call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & + mask(1,1,s_hole ), mask(1,1,s_part ), & + i_generator, iproc $params_post) + endif + call wall_time(wall_1) + $printout_always + if (wall_1 - wall_0 > 2.d0) then + $printout_now + wall_0 = wall_1 + endif + enddo + + deallocate( mask ) + + !$OMP PARALLEL DEFAULT(SHARED) & + !$OMP PRIVATE(i_generator,wall_1,wall_0,ispin,k,mask,iproc) + call wall_time(wall_0) + !$ iproc = omp_get_thread_num() + allocate( mask(N_int,2,6) ) + !$OMP DO SCHEDULE(dynamic,1) + do i_generator=nmax+1,N_det_generators + if (iproc == 0) then + progress_bar(1) = i_generator + endif + if (abort_here) then + cycle + endif + $skip + + ! Create bit masks for holes and particles + do ispin=1,2 + do k=1,N_int + mask(k,ispin,s_hole) = & + iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,s_part) = & + iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole1) = & + iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part1) = & + iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), & + not(psi_det_generators(k,ispin,i_generator)) ) + mask(k,ispin,d_hole2) = & + iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), & + psi_det_generators(k,ispin,i_generator) ) + mask(k,ispin,d_part2) = & + iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), & + not (psi_det_generators(k,ispin,i_generator)) ) + enddo + enddo + + if($do_double_excitations)then + call $subroutine_diexc(psi_det_generators(1,1,i_generator), & + mask(1,1,d_hole1), mask(1,1,d_part1), & + mask(1,1,d_hole2), mask(1,1,d_part2), & + i_generator, iproc $params_post) + endif + if($do_mono_excitations)then + call $subroutine_monoexc(psi_det_generators(1,1,i_generator), & + mask(1,1,s_hole ), mask(1,1,s_part ), & + i_generator, iproc $params_post) + endif + !$ call omp_set_lock(lck) + call wall_time(wall_1) + $printout_always + if (wall_1 - wall_0 > 2.d0) then + $printout_now + wall_0 = wall_1 + endif + !$ call omp_unset_lock(lck) + enddo + !$OMP END DO + deallocate( mask ) + !$OMP END PARALLEL + !$ call omp_destroy_lock(lck) + + abort_here = abort_all + call stop_progress + + $copy_buffer + $generate_psi_guess + +end + diff --git a/src/Determinants/Makefile b/src/Determinants/Makefile new file mode 100644 index 00000000..092d879d --- /dev/null +++ b/src/Determinants/Makefile @@ -0,0 +1,6 @@ +# Define here all new external source files and objects.Don't forget to prefix the +# object files with IRPF90_temp/ +SRC=H_apply_template.f +OBJ= + +include $(QPACKAGE_ROOT)/src/Makefile.common diff --git a/src/Determinants/NEEDED_MODULES b/src/Determinants/NEEDED_MODULES new file mode 100644 index 00000000..824c75ed --- /dev/null +++ b/src/Determinants/NEEDED_MODULES @@ -0,0 +1 @@ +AOs Bielec_integrals Bitmask Electrons Ezfio_files MonoInts MOs Nuclei Output Utils diff --git a/src/Determinants/README.rst b/src/Determinants/README.rst new file mode 100644 index 00000000..445c8b5e --- /dev/null +++ b/src/Determinants/README.rst @@ -0,0 +1,696 @@ +=========== +Dets Module +=========== + +This module contains the determinants of the CI wave function. + +H is applied on the list of generator determinants. Selected determinants +are added into the *H_apply buffer*. Then the new wave function is +constructred as the concatenation of the odl wave function and +some determinants of the H_apply buffer. Generator determinants are built +as a subset of the determinants of the wave function. + + +Assumptions +=========== + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +* The MOs are orthonormal +* All the determinants have the same number of electrons +* The determinants are orthonormal +* The number of generator determinants <= the number of determinants +* All the determinants in the H_apply buffer are supposed to be different from the + wave function determinants +* All the determinants in the H_apply buffer are supposed to be unique + + +Needed Modules +============== + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +* `AOs `_ +* `Bielec_integrals `_ +* `Bitmask `_ +* `Electrons `_ +* `Ezfio_files `_ +* `MonoInts `_ +* `MOs `_ +* `Nuclei `_ +* `Output `_ +* `Utils `_ + +Documentation +============= + +.. Do not edit this section. It was auto-generated from the +.. NEEDED_MODULES file. + +`copy_h_apply_buffer_to_wf `_ + Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det + after calling this function. + After calling this subroutine, N_det, psi_det and psi_coef need to be touched + +`fill_h_apply_buffer_no_selection `_ + Fill the H_apply buffer with determiants for CISD + +`h_apply_buffer_allocated `_ + Buffer of determinants/coefficients/perturbative energy for H_apply. + Uninitialized. Filled by H_apply subroutines. + +`h_apply_buffer_lock `_ + Buffer of determinants/coefficients/perturbative energy for H_apply. + Uninitialized. Filled by H_apply subroutines. + +`resize_h_apply_buffer `_ + Undocumented + +`cisd_sc2 `_ + CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + Initial guess vectors are not necessarily orthonormal + +`connected_to_ref `_ + Undocumented + +`connected_to_ref_by_mono `_ + Undocumented + +`det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`get_index_in_psi_det_sorted_bit `_ + Returns the index of the determinant in the ``psi_det_sorted_bit`` array + +`is_in_wavefunction `_ + True if the determinant ``det`` is in the wave function + +`occ_pattern_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`do_mono_excitation `_ + Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin + on key_in + ispin = 1 == alpha + ispin = 2 == beta + i_ok = 1 == the excitation is possible + i_ok = -1 == the excitation is not possible + +`davidson_converged `_ + True if the Davidson algorithm is converged + +`davidson_criterion `_ + Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + +`davidson_diag `_ + Davidson diagonalization. + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit number for the I/O + .br + Initial guess vectors are not necessarily orthonormal + +`davidson_diag_hjj `_ + Davidson diagonalization with specific diagonal elements of the H matrix + .br + H_jj : specific diagonal H matrix elements to diagonalize de Davidson + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit for the I/O + .br + Initial guess vectors are not necessarily orthonormal + +`davidson_iter_max `_ + Max number of Davidson iterations + +`davidson_sze_max `_ + Max number of Davidson sizes + +`davidson_threshold `_ + Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + +`one_body_dm_mo `_ + One-body density matrix + +`one_body_dm_mo_alpha `_ + Alpha and beta one-body density matrix for each state + +`one_body_dm_mo_beta `_ + Alpha and beta one-body density matrix for each state + +`one_body_single_double_dm_mo_alpha `_ + Alpha and beta one-body density matrix for each state + +`one_body_single_double_dm_mo_beta `_ + Alpha and beta one-body density matrix for each state + +`one_body_spin_density_mo `_ + rho(alpha) - rho(beta) + +`save_natural_mos `_ + Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + +`set_natural_mos `_ + Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + +`state_average_weight `_ + Weights in the state-average calculation of the density matrix + +`det_svd `_ + Computes the SVD of the Alpha x Beta determinant coefficient matrix + +`filter_3_highest_electrons `_ + Returns a determinant with only the 3 highest electrons + +`int_of_3_highest_electrons `_ + Returns an integer*8 as : + .br + |_<--- 21 bits ---><--- 21 bits ---><--- 21 bits --->| + .br + |0<--- i1 ---><--- i2 ---><--- i3 --->| + .br + It encodes the value of the indices of the 3 highest MOs + in descending order + .br + +`max_degree_exc `_ + Maximum degree of excitation in the wf + +`n_det `_ + Number of determinants in the wave function + +`psi_average_norm_contrib `_ + Contribution of determinants to the state-averaged density + +`psi_average_norm_contrib_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_coef `_ + The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file + is empty + +`psi_coef_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_coef_sorted_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`psi_coef_sorted_bit `_ + Determinants on which we apply for perturbation. + They are sorted by determinants interpreted as integers. Useful + to accelerate the search of a random determinant in the wave + function. + +`psi_det `_ + The wave function determinants. Initialized with Hartree-Fock if the EZFIO file + is empty + +`psi_det_size `_ + Size of the psi_det/psi_coef arrays + +`psi_det_sorted `_ + Wave function sorted by determinants contribution to the norm (state-averaged) + +`psi_det_sorted_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`psi_det_sorted_bit `_ + Determinants on which we apply for perturbation. + They are sorted by determinants interpreted as integers. Useful + to accelerate the search of a random determinant in the wave + function. + +`psi_det_sorted_next_ab `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`read_dets `_ + Reads the determinants from the EZFIO file + +`save_wavefunction `_ + Save the wave function into the EZFIO file + +`save_wavefunction_general `_ + Save the wave function into the EZFIO file + +`save_wavefunction_unsorted `_ + Save the wave function into the EZFIO file + +`sort_dets_by_3_highest_electrons `_ + Determinants on which we apply . + They are sorted by the 3 highest electrons in the alpha part, + then by the 3 highest electrons in the beta part to accelerate + the research of connected determinants. + +`sort_dets_by_det_search_key `_ + Determinants are sorted are sorted according to their det_search_key. + Useful to accelerate the search of a random determinant in the wave + function. + +`double_exc_bitmask `_ + double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 + double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 + double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 + double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 + for a given couple of hole/particle excitations i. + +`n_double_exc_bitmasks `_ + Number of double excitation bitmasks + +`n_single_exc_bitmasks `_ + Number of single excitation bitmasks + +`single_exc_bitmask `_ + single_exc_bitmask(:,1,i) is the bitmask for holes + single_exc_bitmask(:,2,i) is the bitmask for particles + for a given couple of hole/particle excitations i. + +`ci_eigenvectors `_ + Eigenvectors/values of the CI matrix + +`ci_eigenvectors_s2 `_ + Eigenvectors/values of the CI matrix + +`ci_electronic_energy `_ + Eigenvectors/values of the CI matrix + +`ci_energy `_ + N_states lowest eigenvalues of the CI matrix + +`diag_algorithm `_ + Diagonalization algorithm (Davidson or Lapack) + +`diagonalize_ci `_ + Replace the coefficients of the CI states by the coefficients of the + eigenstates of the CI matrix + +`ci_sc2_eigenvectors `_ + Eigenvectors/values of the CI matrix + +`ci_sc2_electronic_energy `_ + Eigenvectors/values of the CI matrix + +`ci_sc2_energy `_ + N_states_diag lowest eigenvalues of the CI matrix + +`diagonalize_ci_sc2 `_ + Replace the coefficients of the CI states_diag by the coefficients of the + eigenstates of the CI matrix + +`threshold_convergence_sc2 `_ + convergence of the correlation energy of SC2 iterations + +`ci_eigenvectors_mono `_ + Eigenvectors/values of the CI matrix + +`ci_eigenvectors_s2_mono `_ + Eigenvectors/values of the CI matrix + +`ci_electronic_energy_mono `_ + Eigenvectors/values of the CI matrix + +`diagonalize_ci_mono `_ + Replace the coefficients of the CI states by the coefficients of the + eigenstates of the CI matrix + +`apply_mono `_ + Undocumented + +`filter_connected `_ + Filters out the determinants that are not connected by H + .br + returns the array idx which contains the index of the + .br + determinants in the array key1 that interact + .br + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + +`filter_connected_davidson `_ + Filters out the determinants that are not connected by H + returns the array idx which contains the index of the + determinants in the array key1 that interact + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + key1 should come from psi_det_sorted_ab. + +`filter_connected_i_h_psi0 `_ + returns the array idx which contains the index of the + .br + determinants in the array key1 that interact + .br + via the H operator with key2. + .br + idx(0) is the number of determinants that interact with key1 + +`filter_connected_i_h_psi0_sc2 `_ + standard filter_connected_i_H_psi but returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`filter_connected_sorted_ab `_ + Filters out the determinants that are not connected by H + returns the array idx which contains the index of the + determinants in the array key1 that interact + via the H operator with key2. + idx(0) is the number of determinants that interact with key1 + .br + Determinants are taken from the psi_det_sorted_ab array + +`put_gess `_ + Undocumented + +`det_to_occ_pattern `_ + Transform a determinant to an occupation pattern + +`make_s2_eigenfunction `_ + Undocumented + +`n_occ_pattern `_ + array of the occ_pattern present in the wf + psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + +`occ_pattern_to_dets `_ + Generate all possible determinants for a give occ_pattern + +`occ_pattern_to_dets_size `_ + Number of possible determinants for a given occ_pattern + +`psi_occ_pattern `_ + array of the occ_pattern present in the wf + psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + +`rec_occ_pattern_to_dets `_ + Undocumented + +`n_states_diag `_ + Number of states to consider for the diagonalization + +`pouet `_ + Undocumented + +`routine `_ + Undocumented + +`idx_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`idx_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`n_det_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`n_det_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_cas `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`psi_cas_coef `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + +`psi_cas_coef_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_cas_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_non_cas `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_non_cas_coef `_ + Set of determinants which are not part of the CAS, defined from the application + of the CAS bitmask on the determinants. + idx_non_cas gives the indice of the determinant in psi_det. + +`psi_non_cas_coef_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`psi_non_cas_sorted_bit `_ + CAS determinants sorted to accelerate the search of a random determinant in the wave + function. + +`bi_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`kinetic_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`mono_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`nucl_elec_ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`ref_bitmask_energy `_ + Energy of the reference bitmask used in Slater rules + +`expected_s2 `_ + Expected value of S2 : S*(S+1) + +`get_s2 `_ + Returns + +`get_s2_u0 `_ + Undocumented + +`s2_values `_ + array of the averaged values of the S^2 operator on the various states + +`s_z `_ + z component of the Spin + +`s_z2_sz `_ + z component of the Spin + +`prog_save_casino `_ + Undocumented + +`save_casino `_ + Undocumented + +`save_dets_qmcchem `_ + Undocumented + +`save_for_qmc `_ + Undocumented + +`save_natorb `_ + Undocumented + +`a_operator `_ + Needed for diag_H_mat_elem + +`ac_operator `_ + Needed for diag_H_mat_elem + +`decode_exc `_ + Decodes the exc arrays returned by get_excitation. + h1,h2 : Holes + p1,p2 : Particles + s1,s2 : Spins (1:alpha, 2:beta) + degree : Degree of excitation + +`det_connections `_ + Build connection proxy between determinants + +`diag_h_mat_elem `_ + Computes + +`get_double_excitation `_ + Returns the two excitation operators between two doubly excited determinants and the phase + +`get_excitation `_ + Returns the excitation operators between two determinants and the phase + +`get_excitation_degree `_ + Returns the excitation degree between two determinants + +`get_excitation_degree_vector `_ + Applies get_excitation_degree to an array of determinants + +`get_mono_excitation `_ + Returns the excitation operator between two singly excited determinants and the phase + +`get_occ_from_key `_ + Returns a list of occupation numbers from a bitstring + +`h_u_0 `_ + Computes v_0 = H|u_0> + .br + n : number of determinants + .br + H_jj : array of + +`i_h_j `_ + Returns where i and j are determinants + +`i_h_j_verbose `_ + Returns where i and j are determinants + +`i_h_psi `_ + for the various Nstates + +`i_h_psi_sc2 `_ + for the various Nstate + .br + returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`i_h_psi_sc2_verbose `_ + for the various Nstate + .br + returns in addition + .br + the array of the index of the non connected determinants to key1 + .br + in order to know what double excitation can be repeated on key1 + .br + idx_repeat(0) is the number of determinants that can be used + .br + to repeat the excitations + +`i_h_psi_sec_ord `_ + for the various Nstates + +`n_con_int `_ + Number of integers to represent the connections between determinants + +`create_wf_of_psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`generate_all_alpha_beta_det_products `_ + Create a wave function from all possible alpha x beta determinants + +`get_index_in_psi_det_alpha_unique `_ + Returns the index of the determinant in the ``psi_det_alpha_unique`` array + +`get_index_in_psi_det_beta_unique `_ + Returns the index of the determinant in the ``psi_det_beta_unique`` array + +`n_det_alpha_unique `_ + Unique alpha determinants + +`n_det_beta_unique `_ + Unique beta determinants + +`psi_det_alpha `_ + List of alpha determinants of psi_det + +`psi_det_alpha_unique `_ + Unique alpha determinants + +`psi_det_beta `_ + List of beta determinants of psi_det + +`psi_det_beta_unique `_ + Unique beta determinants + +`psi_svd_alpha `_ + SVD wave function + +`psi_svd_beta `_ + SVD wave function + +`psi_svd_coefs `_ + SVD wave function + +`psi_svd_matrix `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_columns `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_rows `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`psi_svd_matrix_values `_ + Matrix of wf coefficients. Outer product of alpha and beta determinants + +`spin_det_search_key `_ + Return an integer*8 corresponding to a determinant index for searching + +`write_spindeterminants `_ + Undocumented + +`cisd `_ + Undocumented + +`h_matrix_all_dets `_ + H matrix on the basis of the slater determinants defined by psi_det + + + diff --git a/src/Determinants/SC2.irp.f b/src/Determinants/SC2.irp.f new file mode 100644 index 00000000..440b2870 --- /dev/null +++ b/src/Determinants/SC2.irp.f @@ -0,0 +1,215 @@ +subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence) + use bitmasks + implicit none + BEGIN_DOC + ! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not) + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + double precision, intent(in) :: convergence + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + integer :: iter + integer :: i,j,k,l,m + logical :: converged + double precision :: overlap(N_st,N_st) + double precision :: u_dot_v, u_dot_u + + integer :: degree,N_double,index_hf + double precision :: hij_elec, e_corr_double,e_corr,diag_h_mat_elem,inv_c0 + double precision :: e_corr_double_before,accu,cpu_2,cpu_1 + integer,allocatable :: degree_exc(:), index_double(:) + integer :: i_ok + double precision,allocatable :: e_corr_array(:),H_jj_ref(:),H_jj_dressed(:),hij_double(:) + integer(bit_kind), allocatable :: doubles(:,:,:) + + + allocate (doubles(Nint,2,sze),e_corr_array(sze),H_jj_ref(sze),H_jj_dressed(sze),& + index_double(sze), degree_exc(sze), hij_double(sze)) + call write_time(output_determinants) + write(output_determinants,'(A)') '' + write(output_determinants,'(A)') 'CISD SC2' + write(output_determinants,'(A)') '========' + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(sze,N_st, & + !$OMP H_jj_ref,Nint,dets_in,u_in) & + !$OMP PRIVATE(i) + + !$OMP DO SCHEDULE(guided) + do i=1,sze + H_jj_ref(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) + enddo + !$OMP END DO NOWAIT + !$OMP END PARALLEL + + N_double = 0 + e_corr = 0.d0 + e_corr_double = 0.d0 + do i = 1, sze + call get_excitation_degree(ref_bitmask,dets_in(1,1,i),degree,Nint) + degree_exc(i) = degree+1 + if(degree==0)then + index_hf=i + else if (degree == 2)then + N_double += 1 + index_double(N_double) = i + doubles(:,:,N_double) = dets_in(:,:,i) + call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) + hij_double(N_double) = hij_elec + e_corr_array(N_double) = u_in(i,1)* hij_elec + e_corr_double += e_corr_array(N_double) + e_corr += e_corr_array(N_double) + else if (degree == 1)then + call i_H_j(ref_bitmask,dets_in(1,1,i),Nint,hij_elec) + e_corr += u_in(i,1)* hij_elec + endif + enddo + inv_c0 = 1.d0/u_in(index_hf,1) + do i = 1, N_double + e_corr_array(i) = e_corr_array(i) * inv_c0 + enddo + e_corr = e_corr * inv_c0 + e_corr_double = e_corr_double * inv_c0 + converged = .False. + e_corr_double_before = e_corr_double + iter = 0 + do while (.not.converged) + if (abort_here) then + exit + endif + iter +=1 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(i,j,degree,accu) & + !$OMP SHARED(H_jj_dressed,sze,H_jj_ref,index_hf,N_int,N_double,& + !$OMP dets_in,doubles,degree_exc,e_corr_array,e_corr_double) + !$OMP DO SCHEDULE(STATIC) + do i=1,sze + H_jj_dressed(i) = H_jj_ref(i) + if (i==index_hf)cycle + accu = -e_corr_double + select case (N_int) + case (1) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case (2) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & + popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & + popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case (3) + do j=1,N_double + degree = & + popcnt(xor( dets_in(1,1,i),doubles(1,1,j))) + & + popcnt(xor( dets_in(1,2,i),doubles(1,2,j))) + & + popcnt(xor( dets_in(2,1,i),doubles(2,1,j))) + & + popcnt(xor( dets_in(2,2,i),doubles(2,2,j))) + & + popcnt(xor( dets_in(3,1,i),doubles(3,1,j))) + & + popcnt(xor( dets_in(3,2,i),doubles(3,2,j))) + + if (degree<=ishft(degree_exc(i),1)) then + accu += e_corr_array(j) + endif + enddo + case default + do j=1,N_double + call get_excitation_degree(dets_in(1,1,i),doubles(1,1,j),degree,N_int) + if (degree<=degree_exc(i)) then + accu += e_corr_array(j) + endif + enddo + end select + H_jj_dressed(i) -= accu + enddo + !$OMP END DO + !$OMP END PARALLEL + + if(sze<=N_det_max_jacobi)then + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:) + allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze)) + do j=1,sze + do i=1,sze + H_matrix_tmp(i,j) = H_matrix_all_dets(i,j) + enddo + enddo + do i = 1,sze + H_matrix_tmp(i,i) = H_jj_dressed(i) + enddo + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_tmp,size(H_matrix_all_dets,1),sze) + do j=1,min(N_states_diag,sze) + do i=1,sze + u_in(i,j) = eigenvectors(i,j) + enddo + energies(j) = eigenvalues(j) + enddo + deallocate (H_matrix_tmp, eigenvalues, eigenvectors) + else + call davidson_diag_hjj(dets_in,u_in,H_jj_dressed,energies,dim_in,sze,N_st,Nint,output_determinants) + endif + + e_corr_double = 0.d0 + inv_c0 = 1.d0/u_in(index_hf,1) + do i = 1, N_double + e_corr_array(i) = u_in(index_double(i),1)*inv_c0 * hij_double(i) + e_corr_double += e_corr_array(i) + enddo + write(output_determinants,'(A,I3)') 'SC2 Iteration ', iter + write(output_determinants,'(A)') '------------------' + write(output_determinants,'(A)') '' + write(output_determinants,'(A)') '===== ================' + write(output_determinants,'(A)') 'State Energy ' + write(output_determinants,'(A)') '===== ================' + do i=1,N_st + write(output_determinants,'(I5,X,F16.10)') i, energies(i)+nuclear_repulsion + enddo + write(output_determinants,'(A)') '===== ================' + write(output_determinants,'(A)') '' + call write_double(output_determinants,(e_corr_double - e_corr_double_before),& + 'Delta(E_corr)') + converged = dabs(e_corr_double - e_corr_double_before) < convergence + converged = converged .or. abort_here + if (converged) then + exit + endif + e_corr_double_before = e_corr_double + + enddo + + call write_time(output_determinants) + deallocate (doubles,e_corr_array,H_jj_ref,H_jj_dressed, & + index_double, degree_exc, hij_double) + +end + + diff --git a/src/Determinants/connected_to_ref.irp.f b/src/Determinants/connected_to_ref.irp.f new file mode 100644 index 00000000..2d40b621 --- /dev/null +++ b/src/Determinants/connected_to_ref.irp.f @@ -0,0 +1,357 @@ +integer*8 function det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint,2) + integer :: i + det_search_key = iand(det(1,1),det(1,2)) + do i=2,Nint + det_search_key = ieor(det_search_key,iand(det(i,1),det(i,2))) + enddo +end + + +integer*8 function occ_pattern_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint,2) + integer :: i + occ_pattern_search_key = ieor(det(1,1),det(1,2)) + do i=2,Nint + occ_pattern_search_key = ieor(occ_pattern_search_key,iand(det(i,1),det(i,2))) + enddo +end + + + +logical function is_in_wavefunction(key,Nint,Ndet) + use bitmasks + implicit none + BEGIN_DOC +! True if the determinant ``det`` is in the wave function + END_DOC + integer, intent(in) :: Nint, Ndet + integer(bit_kind), intent(in) :: key(Nint,2) + integer, external :: get_index_in_psi_det_sorted_bit + + !DIR$ FORCEINLINE + is_in_wavefunction = get_index_in_psi_det_sorted_bit(key,Nint) > 0 +end + +integer function get_index_in_psi_det_sorted_bit(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_sorted_bit`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_sorted_bit = 0 + ibegin = 1 + iend = N_det+1 + + !DIR$ FORCEINLINE + det_ref = det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = det_search_key(psi_det_sorted_bit(1,1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = det_search_key(psi_det_sorted_bit(1,1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det) then + return + endif + + !DIR$ FORCEINLINE + do while (det_search_key(psi_det_sorted_bit(1,1,i),Nint) == det_ref) + if ( (key(1,1) /= psi_det_sorted_bit(1,1,i)).or. & + (key(1,2) /= psi_det_sorted_bit(1,2,i)) ) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if ( (key(l,1) /= psi_det_sorted_bit(l,1,i)).or. & + (key(l,2) /= psi_det_sorted_bit(l,2,i)) ) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_sorted_bit = i +! exit + return + endif + endif + i += 1 + if (i > N_det) then +! exit + return + endif + + enddo + +! DEBUG is_in_wf +! if (is_in_wavefunction) then +! degree = 1 +! do i=1,N_det +! integer :: degree +! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) +! if (degree == 0) then +! exit +! endif +! enddo +! if (degree /=0) then +! stop 'pouet 1' +! endif +! else +! do i=1,N_det +! call get_excitation_degree(key,psi_det(1,1,i),degree,N_int) +! if (degree == 0) then +! stop 'pouet 2' +! endif +! enddo +! endif +! END DEBUG is_in_wf +end + +integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet) + use bitmasks + implicit none + integer, intent(in) :: Nint, N_past_in, Ndet + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: N_past + integer :: i, l + integer :: degree_x2 + logical :: t + double precision :: hij_elec + + ! output : 0 : not connected + ! i : connected to determinant i of the past + ! -i : is the ith determinant of the refernce wf keys + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + connected_to_ref = 0 + N_past = max(1,N_past_in) + if (Nint == 1) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + + else if (Nint==2) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + else if (Nint==3) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + & + popcnt(xor( key(3,1), keys(3,1,i))) + & + popcnt(xor( key(3,2), keys(3,2,i))) + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + return + + else + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + !DEC$ LOOP COUNT MIN(3) + do l=2,Nint + degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& + popcnt(xor( key(l,2), keys(l,2,i))) + enddo + if (degree_x2 > 4) then + cycle + else + connected_to_ref = i + return + endif + enddo + + endif + +end + + + +integer function connected_to_ref_by_mono(key,keys,Nint,N_past_in,Ndet) + use bitmasks + implicit none + integer, intent(in) :: Nint, N_past_in, Ndet + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + + integer :: N_past + integer :: i, l + integer :: degree_x2 + logical :: t + double precision :: hij_elec + + ! output : 0 : not connected + ! i : connected to determinant i of the past + ! -i : is the ith determinant of the refernce wf keys + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + connected_to_ref_by_mono = 0 + N_past = max(1,N_past_in) + if (Nint == 1) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + + else if (Nint==2) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + else if (Nint==3) then + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + & + popcnt(xor( key(2,1), keys(2,1,i))) + & + popcnt(xor( key(2,2), keys(2,2,i))) + & + popcnt(xor( key(3,1), keys(3,1,i))) + & + popcnt(xor( key(3,2), keys(3,2,i))) + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + return + + else + + do i=N_past-1,1,-1 + degree_x2 = popcnt(xor( key(1,1), keys(1,1,i))) + & + popcnt(xor( key(1,2), keys(1,2,i))) + !DEC$ LOOP COUNT MIN(3) + do l=2,Nint + degree_x2 = degree_x2 + popcnt(xor( key(l,1), keys(l,1,i))) +& + popcnt(xor( key(l,2), keys(l,2,i))) + enddo + if (degree_x2 > 3.and. degree_x2 <5) then + cycle + else if (degree_x2 == 4)then + cycle + else if(degree_x2 == 2)then + connected_to_ref_by_mono = i + return + endif + enddo + + endif + +end + + diff --git a/src/Determinants/create_excitations.irp.f b/src/Determinants/create_excitations.irp.f new file mode 100644 index 00000000..a33525c7 --- /dev/null +++ b/src/Determinants/create_excitations.irp.f @@ -0,0 +1,36 @@ +subroutine do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) + implicit none + BEGIN_DOC + ! Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin + ! on key_in + ! ispin = 1 == alpha + ! ispin = 2 == beta + ! i_ok = 1 == the excitation is possible + ! i_ok = -1 == the excitation is not possible + END_DOC + integer, intent(in) :: i_hole,i_particle,ispin + integer(bit_kind), intent(inout) :: key_in(N_int,2) + integer, intent(out) :: i_ok + integer :: k,j,i + use bitmasks + ASSERT (i_hole > 0 ) + ASSERT (i_particle <= mo_tot_num) + i_ok = 1 + ! hole + k = ishft(i_hole-1,-bit_kind_shift)+1 + j = i_hole-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin) = ibclr(key_in(k,ispin),j) + + ! particle + k = ishft(i_particle-1,-bit_kind_shift)+1 + j = i_particle-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin) = ibset(key_in(k,ispin),j) + integer :: n_elec_tmp + n_elec_tmp = 0 + do i = 1, N_int + n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2)) + enddo + if(n_elec_tmp .ne. elec_num)then + i_ok = -1 + endif +end diff --git a/src/Determinants/davidson.irp.f b/src/Determinants/davidson.irp.f new file mode 100644 index 00000000..bdc979c4 --- /dev/null +++ b/src/Determinants/davidson.irp.f @@ -0,0 +1,418 @@ +BEGIN_PROVIDER [ integer, davidson_iter_max ] + implicit none + BEGIN_DOC + ! Max number of Davidson iterations + END_DOC + davidson_iter_max = 100 +END_PROVIDER + +BEGIN_PROVIDER [ integer, davidson_sze_max ] + implicit none + BEGIN_DOC + ! Max number of Davidson sizes + END_DOC + ASSERT (davidson_sze_max <= davidson_iter_max) + davidson_sze_max = 8*N_states_diag +END_PROVIDER + +subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit) + use bitmasks + implicit none + BEGIN_DOC + ! Davidson diagonalization. + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! iunit : Unit number for the I/O + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint, iunit + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + double precision, allocatable :: H_jj(:) + + double precision :: diag_h_mat_elem + integer :: i + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + PROVIDE mo_bielec_integrals_in_map + allocate(H_jj(sze)) + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(sze,H_jj,dets_in,Nint) & + !$OMP PRIVATE(i) + !$OMP DO SCHEDULE(guided) + do i=1,sze + H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint) + enddo + !$OMP END DO + !$OMP END PARALLEL + + call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) + deallocate (H_jj) +end + +subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit) + use bitmasks + implicit none + BEGIN_DOC + ! Davidson diagonalization with specific diagonal elements of the H matrix + ! + ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson + ! + ! dets_in : bitmasks corresponding to determinants + ! + ! u_in : guess coefficients on the various states. Overwritten + ! on exit + ! + ! dim_in : leftmost dimension of u_in + ! + ! sze : Number of determinants + ! + ! N_st : Number of eigenstates + ! + ! iunit : Unit for the I/O + ! + ! Initial guess vectors are not necessarily orthonormal + END_DOC + integer, intent(in) :: dim_in, sze, N_st, Nint + integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) + double precision, intent(in) :: H_jj(sze) + integer, intent(in) :: iunit + double precision, intent(inout) :: u_in(dim_in,N_st) + double precision, intent(out) :: energies(N_st) + + integer :: iter + integer :: i,j,k,l,m + logical :: converged + + double precision :: overlap(N_st,N_st) + double precision :: u_dot_v, u_dot_u + + integer, allocatable :: kl_pairs(:,:) + integer :: k_pairs, kl + + integer :: iter2 + double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:) + double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:) + double precision :: diag_h_mat_elem + double precision :: residual_norm(N_st) + character*(16384) :: write_buffer + double precision :: to_print(2,N_st) + double precision :: cpu, wall + + PROVIDE det_connections + + call write_time(iunit) + call wall_time(wall) + call cpu_time(cpu) + write(iunit,'(A)') '' + write(iunit,'(A)') 'Davidson Diagonalization' + write(iunit,'(A)') '------------------------' + write(iunit,'(A)') '' + call write_int(iunit,N_st,'Number of states') + call write_int(iunit,sze,'Number of determinants') + write(iunit,'(A)') '' + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + write_buffer = ' Iter' + do i=1,N_st + write_buffer = trim(write_buffer)//' Energy Residual' + enddo + write(iunit,'(A)') trim(write_buffer) + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + + allocate( & + kl_pairs(2,N_st*(N_st+1)/2), & + W(sze,N_st,davidson_sze_max), & + U(sze,N_st,davidson_sze_max), & + R(sze,N_st), & + h(N_st,davidson_sze_max,N_st,davidson_sze_max), & + y(N_st,davidson_sze_max,N_st,davidson_sze_max), & + lambda(N_st*davidson_sze_max)) + + ASSERT (N_st > 0) + ASSERT (sze > 0) + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + + ! Initialization + ! ============== + + k_pairs=0 + do l=1,N_st + do k=1,l + k_pairs+=1 + kl_pairs(1,k_pairs) = k + kl_pairs(2,k_pairs) = l + enddo + enddo + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, & + !$OMP Nint,dets_in,u_in) & + !$OMP PRIVATE(k,l,kl,i) + + + ! Orthonormalize initial guess + ! ============================ + + !$OMP DO + do kl=1,k_pairs + k = kl_pairs(1,kl) + l = kl_pairs(2,kl) + if (k/=l) then + overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze) + overlap(l,k) = overlap(k,l) + else + overlap(k,k) = u_dot_u(U_in(1,k),sze) + endif + enddo + !$OMP END DO + !$OMP END PARALLEL + + call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze) + + ! Davidson iterations + ! =================== + + converged = .False. + + do while (.not.converged) + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st) + do k=1,N_st + !$OMP DO + do i=1,sze + U(i,k,1) = u_in(i,k) + enddo + !$OMP END DO + enddo + !$OMP END PARALLEL + + do iter=1,davidson_sze_max-1 + + ! Compute W_k = H |u_k> + ! ---------------------- + + do k=1,N_st + call H_u_0(W(1,k,iter),U(1,k,iter),H_jj,sze,dets_in,Nint) + enddo + + ! Compute h_kl = = + ! ------------------------------------------- + + do l=1,N_st + do k=1,N_st + do iter2=1,iter-1 + h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze) + h(k,iter,l,iter2) = h(k,iter2,l,iter) + enddo + enddo + do k=1,l + h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze) + h(l,iter,k,iter) = h(k,iter,l,iter) + enddo + enddo + + !DEBUG H MATRIX + !do i=1,iter + ! print '(10(x,F16.10))', h(1,i,1,1:i) + !enddo + !print *, '' + !END + + ! Diagonalize h + ! ------------- + call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter) + + ! Express eigenvectors of h in the determinant basis + ! -------------------------------------------------- + + do k=1,N_st + do i=1,sze + U(i,k,iter+1) = 0.d0 + W(i,k,iter+1) = 0.d0 + do l=1,N_st + do iter2=1,iter + U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1) + W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1) + enddo + enddo + enddo + enddo + + ! Compute residual vector + ! ----------------------- + + do k=1,N_st + do i=1,sze + R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1) + enddo + residual_norm(k) = u_dot_u(R(1,k),sze) + to_print(1,k) = lambda(k) + nuclear_repulsion + to_print(2,k) = residual_norm(k) + enddo + + write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))'), iter, to_print(:,1:N_st) + call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged) + if (converged) then + exit + endif + + + ! Davidson step + ! ------------- + + do k=1,N_st + do i=1,sze + U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k) + enddo + enddo + + ! Gram-Schmidt + ! ------------ + + double precision :: c + do k=1,N_st + do iter2=1,iter + do l=1,N_st + c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze) + do i=1,sze + U(i,k,iter+1) -= c * U(i,l,iter2) + enddo + enddo + enddo + do l=1,k-1 + c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze) + do i=1,sze + U(i,k,iter+1) -= c * U(i,l,iter+1) + enddo + enddo + call normalize( U(1,k,iter+1), sze ) + enddo + + !DEBUG : CHECK OVERLAP + !print *, '===' + !do k=1,iter+1 + ! do l=1,k + ! c = u_dot_v(U(1,1,k),U(1,1,l),sze) + ! print *, k,l, c + ! enddo + !enddo + !print *, '===' + !pause + !END DEBUG + + + enddo + + if (.not.converged) then + iter = davidson_sze_max-1 + endif + + ! Re-contract to u_in + ! ----------- + + do k=1,N_st + energies(k) = lambda(k) + do i=1,sze + u_in(i,k) = 0.d0 + do iter2=1,iter + do l=1,N_st + u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1) + enddo + enddo + enddo + enddo + + enddo + + write_buffer = '===== ' + do i=1,N_st + write_buffer = trim(write_buffer)//' ================ ================' + enddo + write(iunit,'(A)') trim(write_buffer) + write(iunit,'(A)') '' + call write_time(iunit) + + deallocate ( & + kl_pairs, & + W, & + U, & + R, & + h, & + y, & + lambda & + ) + abort_here = abort_all +end + + BEGIN_PROVIDER [ character(64), davidson_criterion ] +&BEGIN_PROVIDER [ double precision, davidson_threshold ] + implicit none + BEGIN_DOC + ! Can be : [ energy | residual | both | wall_time | cpu_time | iterations ] + END_DOC + davidson_criterion = 'residual' + davidson_threshold = 1.d-6 +END_PROVIDER + +subroutine davidson_converged(energy,residual,wall,iterations,cpu,N_st,converged) + implicit none + BEGIN_DOC +! True if the Davidson algorithm is converged + END_DOC + integer, intent(in) :: N_st, iterations + logical, intent(out) :: converged + double precision, intent(in) :: energy(N_st), residual(N_st) + double precision, intent(in) :: wall, cpu + double precision :: E(N_st), time + double precision, allocatable, save :: energy_old(:) + + if (.not.allocated(energy_old)) then + allocate(energy_old(N_st)) + energy_old = 0.d0 + endif + + E = energy - energy_old + energy_old = energy + if (davidson_criterion == 'energy') then + converged = dabs(maxval(E(1:N_st))) < davidson_threshold + else if (davidson_criterion == 'residual') then + converged = dabs(maxval(residual(1:N_st))) < davidson_threshold + else if (davidson_criterion == 'both') then + converged = dabs(maxval(residual(1:N_st))) + dabs(maxval(E(1:N_st)) ) & + < davidson_threshold + else if (davidson_criterion == 'wall_time') then + call wall_time(time) + converged = time - wall > davidson_threshold + else if (davidson_criterion == 'cpu_time') then + call cpu_time(time) + converged = time - cpu > davidson_threshold + else if (davidson_criterion == 'iterations') then + converged = iterations >= int(davidson_threshold) + endif + converged = converged.or.abort_here +end diff --git a/src/Determinants/density_matrix.irp.f b/src/Determinants/density_matrix.irp.f new file mode 100644 index 00000000..f72b337c --- /dev/null +++ b/src/Determinants/density_matrix.irp.f @@ -0,0 +1,214 @@ + BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] +&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! Alpha and beta one-body density matrix for each state + END_DOC + + integer :: j,k,l,m + integer :: occ(N_int*bit_kind_size,2) + double precision :: ck, cl, ckl + double precision :: phase + integer :: h1,h2,p1,p2,s1,s2, degree + integer :: exc(0:2,2,2),n_occ_alpha + double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) + + if(only_single_double_dm)then + print*,'ONLY DOUBLE DM' + one_body_dm_mo_alpha = one_body_single_double_dm_mo_alpha + one_body_dm_mo_beta = one_body_single_double_dm_mo_beta + else + one_body_dm_mo_alpha = 0.d0 + one_body_dm_mo_beta = 0.d0 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & + !$OMP tmp_a, tmp_b, n_occ_alpha)& + !$OMP SHARED(psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& + !$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,& + !$OMP mo_tot_num) + allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) + tmp_a = 0.d0 + tmp_b = 0.d0 + !$OMP DO SCHEDULE(dynamic) + do k=1,N_det + call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) + call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) + do m=1,N_states + ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) + do l=1,elec_alpha_num + j = occ(l,1) + tmp_a(j,j) += ck + enddo + do l=1,elec_beta_num + j = occ(l,2) + tmp_b(j,j) += ck + enddo + enddo + do l=1,k-1 + call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) + if (degree /= 1) then + cycle + endif + call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + do m=1,N_states + ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) + if (s1==1) then + tmp_a(h1,p1) += ckl + tmp_a(p1,h1) += ckl + else + tmp_b(h1,p1) += ckl + tmp_b(p1,h1) += ckl + endif + enddo + enddo + enddo + !$OMP END DO NOWAIT + !$OMP CRITICAL + one_body_dm_mo_alpha = one_body_dm_mo_alpha + tmp_a + !$OMP END CRITICAL + !$OMP CRITICAL + one_body_dm_mo_beta = one_body_dm_mo_beta + tmp_b + !$OMP END CRITICAL + deallocate(tmp_a,tmp_b) + !$OMP BARRIER + !$OMP END PARALLEL + + endif +END_PROVIDER + + BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] +&BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! Alpha and beta one-body density matrix for each state + END_DOC + + integer :: j,k,l,m + integer :: occ(N_int*bit_kind_size,2) + double precision :: ck, cl, ckl + double precision :: phase + integer :: h1,h2,p1,p2,s1,s2, degree + integer :: exc(0:2,2,2),n_occ_alpha + double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) + integer :: degree_respect_to_HF_k + integer :: degree_respect_to_HF_l + + PROVIDE elec_alpha_num elec_beta_num + + one_body_single_double_dm_mo_alpha = 0.d0 + one_body_single_double_dm_mo_beta = 0.d0 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & + !$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)& + !$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& + !$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,mo_tot_num_align,& + !$OMP mo_tot_num) + allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) + tmp_a = 0.d0 + tmp_b = 0.d0 + !$OMP DO SCHEDULE(dynamic) + do k=1,N_det + call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) + call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) + call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int) + + do m=1,N_states + ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) + call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int) + if(degree_respect_to_HF_l.le.0)then + do l=1,elec_alpha_num + j = occ(l,1) + tmp_a(j,j) += ck + enddo + do l=1,elec_beta_num + j = occ(l,2) + tmp_b(j,j) += ck + enddo + endif + enddo + do l=1,k-1 + call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int) + if(degree_respect_to_HF_k.ne.0)cycle + if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle + call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) + if (degree /= 1) then + cycle + endif + call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + do m=1,N_states + ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) + if (s1==1) then + tmp_a(h1,p1) += ckl + tmp_a(p1,h1) += ckl + else + tmp_b(h1,p1) += ckl + tmp_b(p1,h1) += ckl + endif + enddo + enddo + enddo + !$OMP END DO NOWAIT + !$OMP CRITICAL + one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a + !$OMP END CRITICAL + !$OMP CRITICAL + one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b + !$OMP END CRITICAL + deallocate(tmp_a,tmp_b) + !$OMP BARRIER + !$OMP END PARALLEL +END_PROVIDER + +BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! One-body density matrix + END_DOC + one_body_dm_mo = one_body_dm_mo_alpha + one_body_dm_mo_beta +END_PROVIDER + +BEGIN_PROVIDER [ double precision, one_body_spin_density_mo, (mo_tot_num_align,mo_tot_num) ] + implicit none + BEGIN_DOC + ! rho(alpha) - rho(beta) + END_DOC + one_body_spin_density_mo = one_body_dm_mo_alpha - one_body_dm_mo_beta +END_PROVIDER + +subroutine set_natural_mos + implicit none + BEGIN_DOC + ! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + END_DOC + character*(64) :: label + double precision, allocatable :: tmp(:,:) + allocate(tmp(size(one_body_dm_mo,1),size(one_body_dm_mo,2))) + + ! Negation to have the occupied MOs first after the diagonalization + tmp = -one_body_dm_mo + label = "Natural" + call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label) + deallocate(tmp) + +end +subroutine save_natural_mos + implicit none + BEGIN_DOC + ! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis + END_DOC + call set_natural_mos + call save_mos + +end + + +BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ] + implicit none + BEGIN_DOC + ! Weights in the state-average calculation of the density matrix + END_DOC + state_average_weight = 1.d0/dble(N_states) +END_PROVIDER + diff --git a/src/Determinants/det_svd.irp.f b/src/Determinants/det_svd.irp.f new file mode 100644 index 00000000..0a57acf3 --- /dev/null +++ b/src/Determinants/det_svd.irp.f @@ -0,0 +1,61 @@ +program det_svd + implicit none + BEGIN_DOC +! Computes the SVD of the Alpha x Beta determinant coefficient matrix + END_DOC + integer :: i,j,k + + read_wf = .True. + TOUCH read_wf + + print *, 'SVD matrix before filling' + print *, '=========================' + print *, '' + print *, 'N_det = ', N_det + print *, 'N_det_alpha = ', N_det_alpha_unique + print *, 'N_det_beta = ', N_det_beta_unique + print *, '' + +! do i=1,N_det_alpha_unique +! do j=1,N_det_beta_unique +! print *, i,j,psi_svd_matrix(i,j,:) +! enddo +! enddo + + print *, '' + print *, 'Energy = ', ci_energy + print *, '' + + print *, psi_svd_coefs(1:20,1) + + call generate_all_alpha_beta_det_products + print *, '' + print *, 'Energy = ', ci_energy + print *, '' + + print *, 'SVD matrix after filling' + print *, '========================' + print *, '' + print *, 'N_det = ', N_det + print *, 'N_det_alpha = ', N_det_alpha_unique + print *, 'N_det_beta = ', N_det_beta_unique + print *, '' + print *, '' + call diagonalize_ci + print *, 'Energy = ', ci_energy + + do i=1,N_det_alpha_unique + do j=1,N_det_beta_unique + do k=1,N_states + if (dabs(psi_svd_matrix(i,j,k)) < 1.d-15) then + psi_svd_matrix(i,j,k) = 0.d0 + endif + enddo + enddo + enddo + + print *, '' + print *, psi_svd_coefs(1:20,1) + call save_wavefunction + +end diff --git a/src/Determinants/determinants.irp.f b/src/Determinants/determinants.irp.f index 03315836..a70d0fe8 100644 --- a/src/Determinants/determinants.irp.f +++ b/src/Determinants/determinants.irp.f @@ -68,9 +68,6 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_det, (N_int,2,psi_det_size) ] ! The wave function determinants. Initialized with Hartree-Fock if the EZFIO file ! is empty END_DOC - - PROVIDE ezfio_filename - integer :: i logical :: exists character*64 :: label @@ -237,8 +234,6 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states_diag) ] ! is empty END_DOC - PROVIDE ezfio_filename - integer :: i,k, N_int2 logical :: exists double precision, allocatable :: psi_coef_read(:,:) @@ -602,8 +597,6 @@ subroutine read_dets(det,Nint,Ndet) integer :: i,k equivalence (det_8, det_bk) - PROVIDE ezfio_filename - call ezfio_get_determinants_N_int(N_int2) ASSERT (N_int2 == Nint) call ezfio_get_determinants_bit_kind(k) @@ -672,8 +665,6 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef) integer :: i,k PROVIDE progress_bar - PROVIDE ezfio_filename - call start_progress(7,'Saving wfunction',0.d0) progress_bar(1) = 1 diff --git a/src/Determinants/determinants_bitmasks.irp.f b/src/Determinants/determinants_bitmasks.irp.f new file mode 100644 index 00000000..8343fa84 --- /dev/null +++ b/src/Determinants/determinants_bitmasks.irp.f @@ -0,0 +1,57 @@ +use bitmasks + +integer, parameter :: hole_ = 1 +integer, parameter :: particle_ = 2 +integer, parameter :: hole2_ = 3 +integer, parameter :: particle2_= 4 + +BEGIN_PROVIDER [ integer, N_single_exc_bitmasks ] + implicit none + BEGIN_DOC + ! Number of single excitation bitmasks + END_DOC + N_single_exc_bitmasks = 1 + !TODO : Read from input! +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), single_exc_bitmask, (N_int, 2, N_single_exc_bitmasks) ] + implicit none + BEGIN_DOC + ! single_exc_bitmask(:,1,i) is the bitmask for holes + ! single_exc_bitmask(:,2,i) is the bitmask for particles + ! for a given couple of hole/particle excitations i. + END_DOC + + single_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) + single_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) + !TODO : Read from input! +END_PROVIDER + + +BEGIN_PROVIDER [ integer, N_double_exc_bitmasks ] + implicit none + BEGIN_DOC + ! Number of double excitation bitmasks + END_DOC + N_double_exc_bitmasks = 1 + !TODO : Read from input! +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), double_exc_bitmask, (N_int, 4, N_double_exc_bitmasks) ] + implicit none + BEGIN_DOC + ! double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1 + ! double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1 + ! double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2 + ! double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2 + ! for a given couple of hole/particle excitations i. + END_DOC + + double_exc_bitmask(:,hole_,1) = HF_bitmask(:,1) + double_exc_bitmask(:,particle_,1) = not(HF_bitmask(:,2)) + double_exc_bitmask(:,hole2_,1) = HF_bitmask(:,1) + double_exc_bitmask(:,particle2_,1) = not(HF_bitmask(:,2)) + + !TODO : Read from input! +END_PROVIDER + diff --git a/src/Determinants/diagonalize_CI.irp.f b/src/Determinants/diagonalize_CI.irp.f new file mode 100644 index 00000000..0e697ab3 --- /dev/null +++ b/src/Determinants/diagonalize_CI.irp.f @@ -0,0 +1,109 @@ +BEGIN_PROVIDER [ character*(64), diag_algorithm ] + implicit none + BEGIN_DOC + ! Diagonalization algorithm (Davidson or Lapack) + END_DOC + if (N_det > N_det_max_jacobi) then + diag_algorithm = "Davidson" + else + diag_algorithm = "Lapack" + endif + + if (N_det < N_states_diag) then + diag_algorithm = "Lapack" + endif + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] + implicit none + BEGIN_DOC + ! N_states lowest eigenvalues of the CI matrix + END_DOC + + integer :: j + character*(8) :: st + call write_time(output_determinants) + do j=1,N_states_diag + CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion + write(st,'(I4)') j + call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st)) + call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_eigenvectors(i,j) = psi_coef(i,j) + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & + size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) + + else if (diag_algorithm == "Lapack") then + + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) + allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) + allocate (eigenvalues(N_det)) + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) + CI_electronic_energy(:) = 0.d0 + do i=1,N_det + CI_eigenvectors(i,1) = eigenvectors(i,1) + enddo + integer :: i_state + double precision :: s2 + i_state = 0 + do j=1,N_det + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) + if(dabs(s2-expected_s2).le.0.3d0)then + i_state += 1 + do i=1,N_det + CI_eigenvectors(i,i_state) = eigenvectors(i,j) + enddo + CI_electronic_energy(i_state) = eigenvalues(j) + CI_eigenvectors_s2(i_state) = s2 + endif + if (i_state.ge.N_states_diag) then + exit + endif + enddo +! if(i_state < min(N_states_diag,N_det))then +! print *, 'pb with the number of states' +! print *, 'i_state = ',i_state +! print *, 'N_states_diag ',N_states_diag +! print *,'stopping ...' +! stop +! endif + deallocate(eigenvectors,eigenvalues) + endif + +END_PROVIDER + +subroutine diagonalize_CI + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_eigenvectors(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2 +end diff --git a/src/Determinants/diagonalize_CI_SC2.irp.f b/src/Determinants/diagonalize_CI_SC2.irp.f new file mode 100644 index 00000000..3b0d7904 --- /dev/null +++ b/src/Determinants/diagonalize_CI_SC2.irp.f @@ -0,0 +1,59 @@ +BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states_diag) ] + implicit none + BEGIN_DOC + ! N_states_diag lowest eigenvalues of the CI matrix + END_DOC + + integer :: j + character*(8) :: st + call write_time(output_determinants) + do j=1,N_states_diag + CI_SC2_energy(j) = CI_SC2_electronic_energy(j) + nuclear_repulsion + write(st,'(I4)') j + call write_double(output_determinants,CI_SC2_energy(j),'Energy of state '//trim(st)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [ double precision, threshold_convergence_SC2] + implicit none + BEGIN_DOC + ! convergence of the correlation energy of SC2 iterations + END_DOC + threshold_convergence_SC2 = 1.d-10 + + END_PROVIDER + BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_SC2_eigenvectors(i,j) = psi_coef(i,j) + enddo +! TODO : check comment +! CI_SC2_electronic_energy(j) = CI_electronic_energy(j) + enddo + + call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, & + size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2) +END_PROVIDER + +subroutine diagonalize_CI_SC2 + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states_diag by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_SC2_eigenvectors(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors +end diff --git a/src/Determinants/diagonalize_CI_mono.irp.f b/src/Determinants/diagonalize_CI_mono.irp.f new file mode 100644 index 00000000..1c9a4de3 --- /dev/null +++ b/src/Determinants/diagonalize_CI_mono.irp.f @@ -0,0 +1,72 @@ + BEGIN_PROVIDER [ double precision, CI_electronic_energy_mono, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_mono, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_mono, (N_states_diag) ] + implicit none + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + integer :: i,j + + do j=1,N_states_diag + do i=1,N_det + CI_eigenvectors_mono(i,j) = psi_coef(i,j) + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag(psi_det,CI_eigenvectors_mono,CI_electronic_energy, & + size(CI_eigenvectors_mono,1),N_det,N_states_diag,N_int,output_determinants) + + else if (diag_algorithm == "Lapack") then + + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) + allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) + allocate (eigenvalues(N_det)) + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) + CI_electronic_energy_mono(:) = 0.d0 + do i=1,N_det + CI_eigenvectors_mono(i,1) = eigenvectors(i,1) + enddo + integer :: i_state + double precision :: s2 + i_state = 0 + do j=1,N_det + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) + if(dabs(s2-expected_s2).le.0.3d0)then + print*,'j = ',j + print*,'e = ',eigenvalues(j) + print*,'c = ',dabs(eigenvectors(1,j)) + if(dabs(eigenvectors(1,j)).gt.0.9d0)then + i_state += 1 + do i=1,N_det + CI_eigenvectors_mono(i,i_state) = eigenvectors(i,j) + enddo + CI_electronic_energy_mono(i_state) = eigenvalues(j) + CI_eigenvectors_s2_mono(i_state) = s2 + endif + endif + if (i_state.ge.N_states_diag) then + exit + endif + enddo + deallocate(eigenvectors,eigenvalues) + endif + +END_PROVIDER + +subroutine diagonalize_CI_mono + implicit none + BEGIN_DOC +! Replace the coefficients of the CI states by the coefficients of the +! eigenstates of the CI matrix + END_DOC + integer :: i,j + do j=1,N_states_diag + do i=1,N_det + psi_coef(i,j) = CI_eigenvectors_mono(i,j) + enddo + enddo + SOFT_TOUCH psi_coef CI_electronic_energy_mono CI_eigenvectors_mono CI_eigenvectors_s2_mono +end diff --git a/src/Determinants/excitations_utils.irp.f b/src/Determinants/excitations_utils.irp.f new file mode 100644 index 00000000..46e38b08 --- /dev/null +++ b/src/Determinants/excitations_utils.irp.f @@ -0,0 +1,16 @@ +subroutine apply_mono(i_hole,i_particle,ispin_excit,key_in,Nint) + implicit none + integer, intent(in) :: i_hole,i_particle,ispin_excit,Nint + integer(bit_kind), intent(inout) :: key_in(Nint,2) + integer :: k,j + use bitmasks + ! hole + k = ishft(i_hole-1,-bit_kind_shift)+1 + j = i_hole-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin_excit) = ibclr(key_in(k,ispin_excit),j) + + k = ishft(i_particle-1,-bit_kind_shift)+1 + j = i_particle-ishft(k-1,bit_kind_shift)-1 + key_in(k,ispin_excit) = ibset(key_in(k,ispin_excit),j) + +end diff --git a/src/Determinants/filter_connected.irp.f b/src/Determinants/filter_connected.irp.f new file mode 100644 index 00000000..93a6ee7b --- /dev/null +++ b/src/Determinants/filter_connected.irp.f @@ -0,0 +1,611 @@ + +subroutine filter_connected(key1,key2,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! + ! returns the array idx which contains the index of the + ! + ! determinants in the array key1 that interact + ! + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,l + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) & + + popcnt( xor( key1(1,2,i), key2(1,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do j=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +& + popcnt(xor( key1(j,2,i), key2(j,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + + +subroutine filter_connected_sorted_ab(key1,key2,next,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! returns the array idx which contains the index of the + ! determinants in the array key1 that interact + ! via the H operator with key2. + ! idx(0) is the number of determinants that interact with key1 + ! + ! Determinants are taken from the psi_det_sorted_ab array + END_DOC + integer, intent(in) :: Nint, sze + integer, intent(in) :: next(2,N_det) + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,l + integer :: degree_x2 + integer(bit_kind) :: det3_1(Nint,2), det3_2(Nint,2) + + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + call filter_3_highest_electrons( key2(1,1), det3_2(1,1), Nint) + if (Nint==1) then + + i = 1 + do while ( i<= sze ) + call filter_3_highest_electrons( key1(1,1,i), det3_1(1,1), Nint) + degree_x2 = popcnt( xor( det3_1(1,1), det3_2(1,1))) + if (degree_x2 > 4) then + i = next(1,i) + cycle + else + degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1)) ) + if (degree_x2 <= 4) then + degree_x2 += popcnt( xor( key1(1,2,i), key2(1,2)) ) + if (degree_x2 <= 4) then + idx(l) = i + l += 1 + endif + endif + i += 1 + endif + enddo + + else + + print *, 'Not implemented', irp_here + stop 1 + + endif + idx(0) = l-1 +end + + + + +subroutine filter_connected_davidson(key1,key2,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Filters out the determinants that are not connected by H + ! returns the array idx which contains the index of the + ! determinants in the array key1 that interact + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + ! key1 should come from psi_det_sorted_ab. + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,j,k,l + integer :: degree_x2 + integer :: j_int, j_start + integer*8 :: itmp + + PROVIDE N_con_int det_connections + ASSERT (Nint > 0) + ASSERT (sze >= 0) + + l=1 + + if (Nint==1) then + + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else if (Nint==2) then + + + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(2,1,j), key2(2,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + & + popcnt(xor( key1(2,2,j), key2(2,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = popcnt(xor( key1(1,1,j), key2(1,1))) + & + popcnt(xor( key1(1,2,j), key2(1,2))) + & + popcnt(xor( key1(2,1,j), key2(2,1))) + & + popcnt(xor( key1(2,2,j), key2(2,2))) + & + popcnt(xor( key1(3,1,j), key2(3,1))) + & + popcnt(xor( key1(3,2,j), key2(3,2))) + if (degree_x2 > 4) then + cycle + else + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + else + + !DIR$ LOOP COUNT (1000) + i = idx(0) + do j_int=1,N_con_int + itmp = det_connections(j_int,i) + do while (itmp /= 0_8) + j_start = ishft(j_int-1,11) + ishft(trailz(itmp),5) + do j = j_start+1, min(j_start+32,i-1) + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do k=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(k,1,j), key2(k,1))) +& + popcnt(xor( key1(k,2,j), key2(k,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + idx(l) = j + l = l+1 + endif + enddo + itmp = iand(itmp-1_8,itmp) + enddo + enddo + + endif + idx(0) = l-1 +end + +subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx) + use bitmasks + BEGIN_DOC + ! returns the array idx which contains the index of the + ! + ! determinants in the array key1 that interact + ! + ! via the H operator with key2. + ! + ! idx(0) is the number of determinants that interact with key1 + END_DOC + implicit none + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + + integer :: i,l,m + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sze > 0) + + l=1 + + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 > 4) then + cycle + else if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + +subroutine filter_connected_i_H_psi0_SC2(key1,key2,Nint,sze,idx,idx_repeat) + use bitmasks + BEGIN_DOC + ! standard filter_connected_i_H_psi but returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: idx(0:sze) + integer, intent(out) :: idx_repeat(0:sze) + + integer :: i,l,l_repeat,m + integer :: degree_x2 + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sze > 0) + + integer :: degree + degree = popcnt(xor( ref_bitmask(1,1), key2(1,1))) + & + popcnt(xor( ref_bitmask(1,2), key2(1,2))) + !DEC$ NOUNROLL + do m=2,Nint + degree = degree+ popcnt(xor( ref_bitmask(m,1), key2(m,1))) + & + popcnt(xor( ref_bitmask(m,2), key2(m,2))) + enddo + degree = ishft(degree,-1) + + l_repeat=1 + l=1 + if(degree == 2)then + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + else if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + elseif(degree_x2>6)then + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + endif + elseif(degree==1)then + if (Nint==1) then + + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))) + if (degree_x2 < 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree_x2 = 0 + !DEC$ LOOP COUNT MIN(4) + do m=1,Nint + degree_x2 = degree_x2+ popcnt(xor( key1(m,1,i), key2(m,1))) +& + popcnt(xor( key1(m,2,i), key2(m,2))) + if (degree_x2 > 4) then + exit + endif + enddo + if (degree_x2 <= 5) then + if(degree_x2 .ne. 0)then + idx(l) = i + l = l+1 + endif + else + idx_repeat(l_repeat) = i + l_repeat = l_repeat + 1 + endif + enddo + + endif + + else +! print*,'more than a double excitation, can not apply the ' +! print*,'SC2 dressing of the diagonal element .....' +! print*,'stop !!' +! print*,'degree = ',degree +! stop + idx(0) = 0 + idx_repeat(0) = 0 + endif + idx(0) = l-1 + idx_repeat(0) = l_repeat-1 +end + diff --git a/src/Determinants/guess_doublet.irp.f b/src/Determinants/guess_doublet.irp.f new file mode 100644 index 00000000..a44697c1 --- /dev/null +++ b/src/Determinants/guess_doublet.irp.f @@ -0,0 +1,79 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,3) + double precision :: psi_coef_tmp(3,1) + + integer :: iorb,jorb,korb + print*,'which open shells ?' + read(5,*)iorb,jorb,korb + print*,iorb,jorb,korb + N_states= 1 + N_det= 3 + + + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = iorb + list(4,1) = jorb + list(3,2) = korb + print*,'passed' + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + print*,'passed' + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + print*,'passed' + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(3.d0) + + print*,'passed 1' + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = iorb + list(4,1) = korb + list(3,2) = jorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = 1.d0/dsqrt(3.d0) + + print*,'passed 2' + list = 0 + list(1,1) = 1 + list(1,2) = 1 + list(2,1) = 2 + list(2,2) = 2 + list(3,1) = korb + list(4,1) = jorb + list(3,2) = iorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,3) = string(i,j) + enddo + enddo + psi_coef(3,1) = 1.d0/dsqrt(3.d0) + print*,'passed 3' + + call save_wavefunction +end diff --git a/src/Determinants/guess_singlet.irp.f b/src/Determinants/guess_singlet.irp.f new file mode 100644 index 00000000..50f8dc4e --- /dev/null +++ b/src/Determinants/guess_singlet.irp.f @@ -0,0 +1,44 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,2) + double precision :: psi_coef_tmp(2,1) + + integer :: iorb,jorb + print*,'which open shells ?' + read(5,*)iorb,jorb + N_states= 1 + N_det= 2 + + + list = 0 + list(1,1) = iorb + list(1,2) = jorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(2.d0) + + list = 0 + list(1,1) = jorb + list(1,2) = iorb + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = 1.d0/dsqrt(2.d0) + + call save_wavefunction +end diff --git a/src/Determinants/guess_triplet.irp.f b/src/Determinants/guess_triplet.irp.f new file mode 100644 index 00000000..77f88c3e --- /dev/null +++ b/src/Determinants/guess_triplet.irp.f @@ -0,0 +1,48 @@ +program put_gess + use bitmasks + implicit none + integer :: i,j,N_det_tmp,N_states_tmp + integer :: list(N_int*bit_kind_size,2) + integer(bit_kind) :: string(N_int,2) + integer(bit_kind) :: psi_det_tmp(N_int,2,2) + double precision :: psi_coef_tmp(2,1) + + integer :: iorb,jorb + print*,'which open shells ?' + read(5,*)iorb,jorb + N_states= 1 + N_det= 2 + print*,'iorb = ',iorb + print*,'jorb = ',jorb + + + list = 0 + list(1,1) = iorb + list(1,2) = jorb + string = 0 + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,1) = string(i,j) + enddo + enddo + psi_coef(1,1) = 1.d0/dsqrt(2.d0) + + list = 0 + list(1,1) = jorb + list(1,2) = iorb + string = 0 + call list_to_bitstring( string(1,1), list(1,1), elec_alpha_num, N_int) + call list_to_bitstring( string(1,2), list(1,2), elec_beta_num, N_int) + call print_det(string,N_int) + do j = 1,2 + do i = 1, N_int + psi_det(i,j,2) = string(i,j) + enddo + enddo + psi_coef(2,1) = -1.d0/dsqrt(2.d0) + + call save_wavefunction +end diff --git a/src/Determinants/occ_pattern.irp.f b/src/Determinants/occ_pattern.irp.f new file mode 100644 index 00000000..a0fd4a3c --- /dev/null +++ b/src/Determinants/occ_pattern.irp.f @@ -0,0 +1,339 @@ +use bitmasks +subroutine det_to_occ_pattern(d,o,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Transform a determinant to an occupation pattern + END_DOC + integer ,intent(in) :: Nint + integer(bit_kind),intent(in) :: d(Nint,2) + integer(bit_kind),intent(out) :: o(Nint,2) + + integer :: k + + do k=1,Nint + o(k,1) = ieor(d(k,1),d(k,2)) + o(k,2) = iand(d(k,1),d(k,2)) + enddo +end + +subroutine occ_pattern_to_dets_size(o,sze,n_alpha,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Number of possible determinants for a given occ_pattern + END_DOC + integer ,intent(in) :: Nint, n_alpha + integer(bit_kind),intent(in) :: o(Nint,2) + integer, intent(out) :: sze + integer :: amax,bmax,k + double precision, external :: binom_func + + amax = n_alpha + bmax = 0 + do k=1,Nint + bmax += popcnt( o(k,1) ) + amax -= popcnt( o(k,2) ) + enddo + sze = int( min(binom_func(bmax, amax), 1.d8) ) + +end + +subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Generate all possible determinants for a give occ_pattern + END_DOC + integer ,intent(in) :: Nint, n_alpha + integer ,intent(inout) :: sze + integer(bit_kind),intent(in) :: o(Nint,2) + integer(bit_kind),intent(out) :: d(Nint,2,sze) + + integer :: i, k, nt, na, nd, amax + integer :: list_todo(n_alpha) + integer :: list_a(n_alpha) + + amax = n_alpha + do k=1,Nint + amax -= popcnt( o(k,2) ) + enddo + + call bitstring_to_list(o(1,1), list_todo, nt, Nint) + + na = 0 + nd = 0 + d = 0 + call rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) + + sze = nd + + do i=1,nd + ! Doubly occupied orbitals + do k=1,Nint + d(k,1,i) = ior(d(k,1,i),o(k,2)) + d(k,2,i) = ior(d(k,2,i),o(k,2)) + enddo + enddo + +! !TODO DEBUG +! integer :: j,s +! do i=1,nd +! do j=1,i-1 +! na=0 +! do k=1,Nint +! if((d(k,1,j) /= d(k,1,i)).or. & +! (d(k,2,j) /= d(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( j== 0 ) then +! print *, 'det ',i,' and ',j,' equal:' +! call debug_det(d(1,1,j),Nint) +! call debug_det(d(1,1,i),Nint) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG +end + +recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) + use bitmasks + implicit none + + integer, intent(in) :: nt, sze, amax, Nint,na + integer,intent(inout) :: list_todo(nt) + integer, intent(inout) :: list_a(na+1),nd + integer(bit_kind),intent(inout) :: d(Nint,2,sze) + + if (na == amax) then + nd += 1 + if (na > 0) then + call list_to_bitstring( d(1,1,nd), list_a, na, Nint) + endif + if (nt > 0) then + call list_to_bitstring( d(1,2,nd), list_todo, nt, Nint) + endif + else + integer :: i, j, k + integer :: list_todo_tmp(nt) + do i=1,nt + if (na > 0) then + if (list_todo(i) < list_a(na)) then + cycle + endif + endif + list_a(na+1) = list_todo(i) + k=1 + do j=1,nt + if (i/=j) then + list_todo_tmp(k) = list_todo(j) + k += 1 + endif + enddo + call rec_occ_pattern_to_dets(list_todo_tmp,nt-1,list_a,na+1,d,nd,sze,amax,Nint) + enddo + endif + +end + + BEGIN_PROVIDER [ integer(bit_kind), psi_occ_pattern, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_occ_pattern ] + implicit none + BEGIN_DOC + ! array of the occ_pattern present in the wf + ! psi_occ_pattern(:,1,j) = jth occ_pattern of the wave function : represent all the single occupation + ! psi_occ_pattern(:,2,j) = jth occ_pattern of the wave function : represent all the double occupation + END_DOC + integer :: i,j,k + + ! create + do i = 1, N_det + do k = 1, N_int + psi_occ_pattern(k,1,i) = ieor(psi_det(k,1,i),psi_det(k,2,i)) + psi_occ_pattern(k,2,i) = iand(psi_det(k,1,i),psi_det(k,2,i)) + enddo + enddo + + ! Sort + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8, external :: occ_pattern_search_key + integer(bit_kind), allocatable :: tmp_array(:,:,:) + logical,allocatable :: duplicate(:) + + + allocate ( iorder(N_det), duplicate(N_det), bit_tmp(N_det), tmp_array(N_int,2,psi_det_size) ) + + do i=1,N_det + iorder(i) = i + !$DIR FORCEINLINE + bit_tmp(i) = occ_pattern_search_key(psi_occ_pattern(1,1,i),N_int) + enddo + call i8sort(bit_tmp,iorder,N_det) + !DIR$ IVDEP + do i=1,N_det + do k=1,N_int + tmp_array(k,1,i) = psi_occ_pattern(k,1,iorder(i)) + tmp_array(k,2,i) = psi_occ_pattern(k,2,iorder(i)) + enddo + duplicate(i) = .False. + enddo + + i=1 + integer (bit_kind) :: occ_pattern_tmp + do i=1,N_det + duplicate(i) = .False. + enddo + + do i=1,N_det-1 + if (duplicate(i)) then + cycle + endif + j = i+1 + do while (bit_tmp(j)==bit_tmp(i)) + if (duplicate(j)) then + j+=1 + cycle + endif + duplicate(j) = .True. + do k=1,N_int + if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) & + .or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then + duplicate(j) = .False. + exit + endif + enddo + j+=1 + if (j>N_det) then + exit + endif + enddo + enddo + + N_occ_pattern=0 + do i=1,N_det + if (duplicate(i)) then + cycle + endif + N_occ_pattern += 1 + do k=1,N_int + psi_occ_pattern(k,1,N_occ_pattern) = tmp_array(k,1,i) + psi_occ_pattern(k,2,N_occ_pattern) = tmp_array(k,2,i) + enddo + enddo + + deallocate(iorder,duplicate,bit_tmp,tmp_array) +! !TODO DEBUG +! integer :: s +! do i=1,N_occ_pattern +! do j=i+1,N_occ_pattern +! s = 0 +! do k=1,N_int +! if((psi_occ_pattern(k,1,j) /= psi_occ_pattern(k,1,i)).or. & +! (psi_occ_pattern(k,2,j) /= psi_occ_pattern(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error : occ ', j, 'already in wf' +! call debug_det(psi_occ_pattern(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG +END_PROVIDER + +subroutine make_s2_eigenfunction + implicit none + integer :: i,j,k + integer :: smax, s + integer(bit_kind), allocatable :: d(:,:,:), det_buffer(:,:,:) + integer :: N_det_new + integer, parameter :: bufsze = 1000 + logical, external :: is_in_wavefunction + +! !TODO DEBUG +! do i=1,N_det +! do j=i+1,N_det +! s = 0 +! do k=1,N_int +! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & +! (psi_det(k,2,j) /= psi_det(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error0: det ', j, 'already in wf' +! call debug_det(psi_det(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG + + allocate (d(N_int,2,1), det_buffer(N_int,2,bufsze) ) + smax = 1 + N_det_new = 0 + + do i=1,N_occ_pattern + call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int) + s += 1 + if (s > smax) then + deallocate(d) + allocate ( d(N_int,2,s) ) + smax = s + endif + call occ_pattern_to_dets(psi_occ_pattern(1,1,i),d,s,elec_alpha_num,N_int) + do j=1,s + if (.not. is_in_wavefunction( d(1,1,j), N_int, N_det)) then + N_det_new += 1 + do k=1,N_int + det_buffer(k,1,N_det_new) = d(k,1,j) + det_buffer(k,2,N_det_new) = d(k,2,j) + enddo + if (N_det_new == bufsze) then + call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,0) + N_det_new = 0 + endif + endif + enddo + enddo + + if (N_det_new > 0) then + call fill_H_apply_buffer_no_selection(N_det_new,det_buffer,N_int,0) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH N_det psi_coef psi_det + endif + + deallocate(d,det_buffer) + + +! !TODO DEBUG +! do i=1,N_det +! do j=i+1,N_det +! s = 0 +! do k=1,N_int +! if((psi_det(k,1,j) /= psi_det(k,1,i)).or. & +! (psi_det(k,2,j) /= psi_det(k,2,i))) then +! s=1 +! exit +! endif +! enddo +! if ( s == 0 ) then +! print *, 'Error : det ', j, 'already in wf at ', i +! call debug_det(psi_det(1,1,j),N_int) +! stop +! endif +! enddo +! enddo +! !TODO DEBUG + call write_int(output_determinants,N_det_new, 'Added deteminants for S^2') + +end + diff --git a/src/Determinants/options.irp.f b/src/Determinants/options.irp.f new file mode 100644 index 00000000..d4283128 --- /dev/null +++ b/src/Determinants/options.irp.f @@ -0,0 +1,22 @@ +BEGIN_PROVIDER [ integer, N_states_diag ] + implicit none + BEGIN_DOC +! Number of states to consider for the diagonalization + END_DOC + + logical :: has + PROVIDE ezfio_filename + call ezfio_has_determinants_n_states_diag(has) + if (has) then + call ezfio_get_determinants_n_states_diag(N_states_diag) + else + N_states_diag = N_states + endif + + call write_time(output_determinants) + call write_int(output_determinants, N_states_diag, & + 'N_states_diag') + + +END_PROVIDER + diff --git a/src/Determinants/program_beginer_determinants.irp.f b/src/Determinants/program_beginer_determinants.irp.f new file mode 100644 index 00000000..6375af22 --- /dev/null +++ b/src/Determinants/program_beginer_determinants.irp.f @@ -0,0 +1,138 @@ +program pouet + implicit none + print*,'HF energy = ',ref_bitmask_energy + nuclear_repulsion + call routine + +end +subroutine routine + use bitmasks + implicit none + integer :: i,j,k,l + double precision :: hij,get_mo_bielec_integral + double precision :: hmono,h_bi_ispin,h_bi_other_spin + integer(bit_kind),allocatable :: key_tmp(:,:) + integer, allocatable :: occ(:,:) + integer :: n_occ_alpha, n_occ_beta + ! First checks + print*,'N_int = ',N_int + print*,'mo_tot_num = ',mo_tot_num + print*,'mo_tot_num / 64+1= ',mo_tot_num/64+1 + ! We print the HF determinant + do i = 1, N_int + print*,'ref_bitmask(i,1) = ',ref_bitmask(i,1) + print*,'ref_bitmask(i,2) = ',ref_bitmask(i,2) + enddo + print*,'' + print*,'Hartree Fock determinant ...' + call debug_det(ref_bitmask,N_int) + allocate(key_tmp(N_int,2)) + ! We initialize key_tmp to the Hartree Fock one + key_tmp = ref_bitmask + integer :: i_hole,i_particle,ispin,i_ok,other_spin + ! We do a mono excitation on the top of the HF determinant + write(*,*)'Enter the (hole, particle) couple for the mono excitation ...' + read(5,*)i_hole,i_particle +!!i_hole = 4 +!!i_particle = 20 + write(*,*)'Enter the ispin variable ...' + write(*,*)'ispin = 1 ==> alpha ' + write(*,*)'ispin = 2 ==> beta ' + read(5,*)ispin + if(ispin == 1)then + other_spin = 2 + else if(ispin == 2)then + other_spin = 1 + else + print*,'PB !! ' + print*,'ispin must be 1 or 2 !' + stop + endif +!!ispin = 1 + call do_mono_excitation(key_tmp,i_hole,i_particle,ispin,i_ok) + ! We check if it the excitation was possible with "i_ok" + if(i_ok == -1)then + print*,'i_ok = ',i_ok + print*,'You can not do this excitation because of Pauli principle ...' + print*,'check your hole particle couple, there must be something wrong ...' + stop + + endif + print*,'New det = ' + call debug_det(key_tmp,N_int) + call i_H_j(key_tmp,ref_bitmask,N_int,hij) + ! We calculate the H matrix element between the new determinant and HF + print*,' = ',hij + print*,'' + print*,'' + print*,'Recalculating it old school style ....' + print*,'' + print*,'' + ! We recalculate this old school style !!! + ! Mono electronic part + hmono = mo_mono_elec_integral(i_hole,i_particle) + print*,'' + print*,'Mono electronic part ' + print*,'' + print*,' = ',hmono + h_bi_ispin = 0.d0 + h_bi_other_spin = 0.d0 + print*,'' + print*,'Getting all the info for the calculation of the bi electronic part ...' + print*,'' + allocate (occ(N_int*bit_kind_size,2)) + ! We get the occupation of the alpha electrons in occ(:,1) + call bitstring_to_list(key_tmp(1,1), occ(1,1), n_occ_alpha, N_int) + print*,'n_occ_alpha = ',n_occ_alpha + print*,'elec_alpha_num = ',elec_alpha_num + ! We get the occupation of the beta electrons in occ(:,2) + call bitstring_to_list(key_tmp(1,2), occ(1,2), n_occ_beta, N_int) + print*,'n_occ_beta = ',n_occ_beta + print*,'elec_beta_num = ',elec_beta_num + ! We print the occupation of the alpha electrons + print*,'Alpha electrons !' + do i = 1, n_occ_alpha + print*,'i = ',i + print*,'occ(i,1) = ',occ(i,1) + enddo + ! We print the occupation of the beta electrons + print*,'Alpha electrons !' + do i = 1, n_occ_beta + print*,'i = ',i + print*,'occ(i,2) = ',occ(i,2) + enddo + integer :: exc(0:2,2,2),degree,h1,p1,h2,p2,s1,s2 + double precision :: phase + + call get_excitation_degree(key_tmp,ref_bitmask,degree,N_int) + print*,'degree = ',degree + call get_mono_excitation(ref_bitmask,key_tmp,exc,phase,N_int) + call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + print*,'h1 = ',h1 + print*,'p1 = ',p1 + print*,'s1 = ',s1 + print*,'phase = ',phase + do i = 1, elec_num_tab(ispin) + integer :: orb_occupied + orb_occupied = occ(i,ispin) + h_bi_ispin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) & + -get_mo_bielec_integral(i_hole,i_particle,orb_occupied,orb_occupied,mo_integrals_map) + enddo + print*,'h_bi_ispin = ',h_bi_ispin + + do i = 1, elec_num_tab(other_spin) + orb_occupied = occ(i,other_spin) + h_bi_other_spin += get_mo_bielec_integral(i_hole,orb_occupied,i_particle,orb_occupied,mo_integrals_map) + enddo + print*,'h_bi_other_spin = ',h_bi_other_spin + print*,'h_bi_ispin + h_bi_other_spin = ',h_bi_ispin + h_bi_other_spin + + print*,'Total matrix element = ',phase*(h_bi_ispin + h_bi_other_spin + hmono) +!i = 1 +!j = 1 +!k = 1 +!l = 1 +!hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) +!print*,' = ',hij + + +end diff --git a/src/Determinants/psi_cas.irp.f b/src/Determinants/psi_cas.irp.f new file mode 100644 index 00000000..8ca081d6 --- /dev/null +++ b/src/Determinants/psi_cas.irp.f @@ -0,0 +1,114 @@ +use bitmasks + + BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_cas_coef, (psi_det_size,n_states) ] +&BEGIN_PROVIDER [ integer, idx_cas, (psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_cas ] + implicit none + BEGIN_DOC + ! CAS wave function, defined from the application of the CAS bitmask on the + ! determinants. idx_cas gives the indice of the CAS determinant in psi_det. + END_DOC + integer :: i, k, l + logical :: good + N_det_cas = 0 + do i=1,N_det + do l=1,n_cas_bitmask + good = .True. + do k=1,N_int + good = good .and. ( & + iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == & + iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( & + iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == & + iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) ) + enddo + if (good) then + exit + endif + enddo + if (good) then + N_det_cas = N_det_cas+1 + do k=1,N_int + psi_cas(k,1,N_det_cas) = psi_det(k,1,i) + psi_cas(k,2,N_det_cas) = psi_det(k,2,i) + enddo + idx_cas(N_det_cas) = i + do k=1,N_states + psi_cas_coef(N_det_cas,k) = psi_coef(i,k) + enddo + endif + enddo + call write_int(output_determinants,N_det_cas, 'Number of determinants in the CAS') + +END_PROVIDER + + + BEGIN_PROVIDER [ integer(bit_kind), psi_cas_sorted_bit, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_cas_coef_sorted_bit, (psi_det_size,N_states) ] + implicit none + BEGIN_DOC + ! CAS determinants sorted to accelerate the search of a random determinant in the wave + ! function. + END_DOC + call sort_dets_by_det_search_key(N_det_cas, psi_cas, psi_cas_coef, & + psi_cas_sorted_bit, psi_cas_coef_sorted_bit) + +END_PROVIDER + + + + BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_non_cas_coef, (psi_det_size,n_states) ] +&BEGIN_PROVIDER [ integer, idx_non_cas, (psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_non_cas ] + implicit none + BEGIN_DOC + ! Set of determinants which are not part of the CAS, defined from the application + ! of the CAS bitmask on the determinants. + ! idx_non_cas gives the indice of the determinant in psi_det. + END_DOC + integer :: i_non_cas,j,k + integer :: degree + logical :: in_cas + i_non_cas =0 + do k=1,N_det + in_cas = .False. + do j=1,N_det_cas + call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int) + if (degree == 0) then + in_cas = .True. + exit + endif + enddo + if (.not.in_cas) then + double precision :: hij + i_non_cas += 1 + do j=1,N_int + psi_non_cas(j,1,i_non_cas) = psi_det(j,1,k) + psi_non_cas(j,2,i_non_cas) = psi_det(j,2,k) + enddo + do j=1,N_states + psi_non_cas_coef(i_non_cas,j) = psi_coef(k,j) + enddo + idx_non_cas(i_non_cas) = k + endif + enddo + N_det_non_cas = i_non_cas +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas_sorted_bit, (N_int,2,psi_det_size) ] +&BEGIN_PROVIDER [ double precision, psi_non_cas_coef_sorted_bit, (psi_det_size,N_states) ] + implicit none + BEGIN_DOC + ! CAS determinants sorted to accelerate the search of a random determinant in the wave + ! function. + END_DOC + call sort_dets_by_det_search_key(N_det_cas, psi_non_cas, psi_non_cas_coef, & + psi_non_cas_sorted_bit, psi_non_cas_coef_sorted_bit) + +END_PROVIDER + + + + + diff --git a/src/Determinants/ref_bitmask.irp.f b/src/Determinants/ref_bitmask.irp.f new file mode 100644 index 00000000..7f760562 --- /dev/null +++ b/src/Determinants/ref_bitmask.irp.f @@ -0,0 +1,57 @@ + BEGIN_PROVIDER [ double precision, ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, mono_elec_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, kinetic_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, nucl_elec_ref_bitmask_energy ] +&BEGIN_PROVIDER [ double precision, bi_elec_ref_bitmask_energy ] + use bitmasks + implicit none + BEGIN_DOC + ! Energy of the reference bitmask used in Slater rules + END_DOC + + integer :: occ(N_int*bit_kind_size,2) + integer :: i,j + + call bitstring_to_list(ref_bitmask(1,1), occ(1,1), i, N_int) + call bitstring_to_list(ref_bitmask(1,2), occ(1,2), i, N_int) + + + ref_bitmask_energy = 0.d0 + mono_elec_ref_bitmask_energy = 0.d0 + kinetic_ref_bitmask_energy = 0.d0 + nucl_elec_ref_bitmask_energy = 0.d0 + bi_elec_ref_bitmask_energy = 0.d0 + + do i = 1, elec_beta_num + ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) + mo_mono_elec_integral(occ(i,2),occ(i,2)) + kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) + mo_kinetic_integral(occ(i,2),occ(i,2)) + nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) + mo_nucl_elec_integral(occ(i,2),occ(i,2)) + enddo + + do i = elec_beta_num+1,elec_alpha_num + ref_bitmask_energy += mo_mono_elec_integral(occ(i,1),occ(i,1)) + kinetic_ref_bitmask_energy += mo_kinetic_integral(occ(i,1),occ(i,1)) + nucl_elec_ref_bitmask_energy += mo_nucl_elec_integral(occ(i,1),occ(i,1)) + enddo + + do j= 1, elec_alpha_num + do i = j+1, elec_alpha_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) + ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,1),occ(j,1)) + enddo + enddo + + do j= 1, elec_beta_num + do i = j+1, elec_beta_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) + ref_bitmask_energy += mo_bielec_integral_jj_anti(occ(i,2),occ(j,2)) + enddo + do i= 1, elec_alpha_num + bi_elec_ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) + ref_bitmask_energy += mo_bielec_integral_jj(occ(i,1),occ(j,2)) + enddo + enddo + mono_elec_ref_bitmask_energy = kinetic_ref_bitmask_energy + nucl_elec_ref_bitmask_energy + +END_PROVIDER + diff --git a/src/Determinants/s2.irp.f b/src/Determinants/s2.irp.f new file mode 100644 index 00000000..cd1d9fda --- /dev/null +++ b/src/Determinants/s2.irp.f @@ -0,0 +1,106 @@ +subroutine get_s2(key_i,key_j,phase,Nint) + implicit none + use bitmasks + BEGIN_DOC +! Returns + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2) + integer(bit_kind), intent(in) :: key_j(Nint,2) + double precision, intent(out) :: phase + integer :: exc(0:2,2,2) + integer :: degree + double precision :: phase_spsm + integer :: nup, i + + phase = 0.d0 + !$FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case(2) + call get_double_excitation(key_i,key_j,exc,phase_spsm,Nint) + if (exc(0,1,1) == 1) then ! Mono alpha + mono-beta + if ( (exc(1,1,1) == exc(1,2,2)).and.(exc(1,1,2) == exc(1,2,1)) ) then + phase = -phase_spsm + endif + endif + case(0) + nup = 0 + do i=1,Nint + nup += popcnt(iand(xor(key_i(i,1),key_i(i,2)),key_i(i,1))) + enddo + phase = dble(nup) + end select +end + +BEGIN_PROVIDER [ double precision, S_z ] +&BEGIN_PROVIDER [ double precision, S_z2_Sz ] + implicit none + BEGIN_DOC +! z component of the Spin + END_DOC + + S_z = 0.5d0*dble(elec_alpha_num-elec_beta_num) + S_z2_Sz = S_z*(S_z-1.d0) + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, expected_s2] + implicit none + BEGIN_DOC +! Expected value of S2 : S*(S+1) + END_DOC + logical :: has_expected_s2 + + call ezfio_has_determinants_expected_s2(has_expected_s2) + if (has_expected_s2) then + call ezfio_get_determinants_expected_s2(expected_s2) + else + double precision :: S + S = (elec_alpha_num-elec_beta_num)*0.5d0 + expected_s2 = S * (S+1.d0) +! expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num)) + endif + +END_PROVIDER + +BEGIN_PROVIDER [ double precision, s2_values, (N_states) ] + implicit none + BEGIN_DOC +! array of the averaged values of the S^2 operator on the various states + END_DOC + integer :: i + double precision :: s2 + do i = 1, N_states + call get_s2_u0(psi_det,psi_coef(1,i),n_det,psi_det_size,s2) + s2_values(i) = s2 + enddo + +END_PROVIDER + + +subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2) + implicit none + use bitmasks + integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax) + integer, intent(in) :: n,nmax + double precision, intent(in) :: psi_coefs_tmp(nmax) + double precision, intent(out) :: s2 + integer :: i,j,l + double precision :: s2_tmp + s2 = S_z2_Sz + !$OMP PARALLEL DO DEFAULT(NONE) & + !$OMP PRIVATE(i,j,s2_tmp) SHARED(n,psi_coefs_tmp,psi_keys_tmp,N_int) & + !$OMP REDUCTION(+:s2) SCHEDULE(dynamic) + do i = 1, n + call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),s2_tmp,N_int) +! print*,'s2_tmp = ',s2_tmp + do j = 1, n + call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),s2_tmp,N_int) + if (s2_tmp == 0.d0) cycle + s2 += psi_coefs_tmp(i)*psi_coefs_tmp(j)*s2_tmp + enddo + enddo + !$OMP END PARALLEL DO +end + diff --git a/src/Determinants/save_for_casino.irp.f b/src/Determinants/save_for_casino.irp.f new file mode 100644 index 00000000..631f79bd --- /dev/null +++ b/src/Determinants/save_for_casino.irp.f @@ -0,0 +1,268 @@ +subroutine save_casino + use bitmasks + implicit none + character*(128) :: message + integer :: getUnitAndOpen, iunit + integer, allocatable :: itmp(:) + integer :: n_ao_new + real, allocatable :: rtmp(:) + PROVIDE ezfio_filename + + iunit = getUnitAndOpen('gwfn.data','w') + print *, 'Title?' + read(*,*) message + write(iunit,'(A)') trim(message) + write(iunit,'(A)') '' + write(iunit,'(A)') 'BASIC_INFO' + write(iunit,'(A)') '----------' + write(iunit,'(A)') 'Generated by:' + write(iunit,'(A)') 'Quantum package' + write(iunit,'(A)') 'Method:' + print *, 'Method?' + read(*,*) message + write(iunit,'(A)') trim(message) + write(iunit,'(A)') 'DFT Functional:' + write(iunit,'(A)') 'none' + write(iunit,'(A)') 'Periodicity:' + write(iunit,'(A)') '0' + write(iunit,'(A)') 'Spin unrestricted:' + write(iunit,'(A)') '.false.' + write(iunit,'(A)') 'nuclear-nuclear repulsion energy (au/atom):' + write(iunit,*) nuclear_repulsion + write(iunit,'(A)') 'Number of electrons per primitive cell:' + write(iunit,*) elec_num + write(iunit,*) '' + + + write(iunit,*) 'GEOMETRY' + write(iunit,'(A)') '--------' + write(iunit,'(A)') 'Number of atoms:' + write(iunit,*) nucl_num + write(iunit,'(A)') 'Atomic positions (au):' + integer :: i + do i=1,nucl_num + write(iunit,'(3(1PE20.13))') nucl_coord(i,1:3) + enddo + write(iunit,'(A)') 'Atomic numbers for each atom:' + ! Add 200 if pseudopotential + allocate(itmp(nucl_num)) + do i=1,nucl_num + itmp(i) = int(nucl_charge(i)) + enddo + write(iunit,'(8(I10))') itmp(1:nucl_num) + deallocate(itmp) + write(iunit,'(A)') 'Valence charges for each atom:' + write(iunit,'(4(1PE20.13))') nucl_charge(1:nucl_num) + write(iunit,'(A)') '' + + + write(iunit,'(A)') 'BASIS SET' + write(iunit,'(A)') '---------' + write(iunit,'(A)') 'Number of Gaussian centres' + write(iunit,*) nucl_num + write(iunit,'(A)') 'Number of shells per primitive cell' + integer :: icount + icount = 0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + icount += 1 + endif + enddo + write(iunit,*) icount + write(iunit,'(A)') 'Number of basis functions (''AO'') per primitive cell' + icount = 0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + icount += 2*ao_l(i)+1 + endif + enddo + n_ao_new = icount + write(iunit,*) n_ao_new + write(iunit,'(A)') 'Number of Gaussian primitives per primitive cell' + allocate(itmp(ao_num)) + integer :: l + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + itmp(l) = ao_prim_num(i) + endif + enddo + write(iunit,'(8(I10))') sum(itmp(1:l)) + write(iunit,'(A)') 'Highest shell angular momentum (s/p/d/f... 1/2/3/4...)' + write(iunit,*) maxval(ao_l(1:ao_num))+1 + write(iunit,'(A)') 'Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + if (ao_l(i) > 0) then + itmp(l) = ao_l(i)+2 + else + itmp(l) = ao_l(i)+1 + endif + endif + enddo + write(iunit,'(8(I10))') itmp(1:l) + write(iunit,'(A)') 'Number of primitive Gaussians in each shell' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l += 1 + itmp(l) = ao_prim_num(i) + endif + enddo + write(iunit,'(8(I10))') itmp(1:l) + deallocate(itmp) + write(iunit,'(A)') 'Sequence number of first shell on each centre' + allocate(itmp(nucl_num)) + l=0 + icount = 1 + itmp(icount) = 1 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + l = l+1 + if (ao_nucl(i) == icount) then + continue + else if (ao_nucl(i) == icount+1) then + icount += 1 + itmp(icount) = l + else + print *, 'Problem in order of centers of basis functions' + stop 1 + endif + endif + enddo + ! Check + if (icount /= nucl_num) then + print *, 'Error :' + print *, ' icount :', icount + print *, ' nucl_num:', nucl_num + stop 2 + endif + write(iunit,'(8(I10))') itmp(1:nucl_num) + deallocate(itmp) + write(iunit,'(A)') 'Exponents of Gaussian primitives' + allocate(rtmp(ao_num)) + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + do j=1,ao_prim_num(i) + l+=1 + rtmp(l) = ao_expo(i,ao_prim_num(i)-j+1) + enddo + endif + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + write(iunit,'(A)') 'Normalized contraction coefficients' + l=0 + integer :: j + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + do j=1,ao_prim_num(i) + l+=1 + rtmp(l) = ao_coef(i,ao_prim_num(i)-j+1) + enddo + endif + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + deallocate(rtmp) + write(iunit,'(A)') 'Position of each shell (au)' + l=0 + do i=1,ao_num + if (ao_l(i) == ao_power(i,1)) then + write(iunit,'(3(1PE20.13))') nucl_coord( ao_nucl(i), 1:3 ) + endif + enddo + write(iunit,'(A)') + + + write(iunit,'(A)') 'MULTIDETERMINANT INFORMATION' + write(iunit,'(A)') '----------------------------' + write(iunit,'(A)') 'GS' + write(iunit,'(A)') 'ORBITAL COEFFICIENTS' + write(iunit,'(A)') '------------------------' + + ! Transformation cartesian -> spherical + double precision :: tf2(6,5), tf3(10,7), tf4(15,9) + integer :: check2(3,6), check3(3,10), check4(3,15) + check2(:,1) = (/ 2, 0, 0 /) + check2(:,2) = (/ 1, 1, 0 /) + check2(:,3) = (/ 1, 0, 1 /) + check2(:,4) = (/ 0, 2, 0 /) + check2(:,5) = (/ 0, 1, 1 /) + check2(:,6) = (/ 0, 0, 2 /) + + check3(:,1) = (/ 3, 0, 0 /) + check3(:,2) = (/ 2, 1, 0 /) + check3(:,3) = (/ 2, 0, 1 /) + check3(:,4) = (/ 1, 2, 0 /) + check3(:,5) = (/ 1, 1, 1 /) + check3(:,6) = (/ 1, 0, 2 /) + check3(:,7) = (/ 0, 3, 0 /) + check3(:,8) = (/ 0, 2, 1 /) + check3(:,9) = (/ 0, 1, 2 /) + check3(:,10) = (/ 0, 0, 3 /) + + check4(:,1) = (/ 4, 0, 0 /) + check4(:,2) = (/ 3, 1, 0 /) + check4(:,3) = (/ 3, 0, 1 /) + check4(:,4) = (/ 2, 2, 0 /) + check4(:,5) = (/ 2, 1, 1 /) + check4(:,6) = (/ 2, 0, 2 /) + check4(:,7) = (/ 1, 3, 0 /) + check4(:,8) = (/ 1, 2, 1 /) + check4(:,9) = (/ 1, 1, 2 /) + check4(:,10) = (/ 1, 0, 3 /) + check4(:,11) = (/ 0, 4, 0 /) + check4(:,12) = (/ 0, 3, 1 /) + check4(:,13) = (/ 0, 2, 2 /) + check4(:,14) = (/ 0, 1, 3 /) + check4(:,15) = (/ 0, 0, 4 /) + +! tf2 = (/ +! -0.5, 0, 0, -0.5, 0, 1.0, & +! 0, 0, 1.0, 0, 0, 0, & +! 0, 0, 0, 0, 1.0, 0, & +! 0.86602540378443864676, 0, 0, -0.86602540378443864676, 0, 0, & +! 0, 1.0, 0, 0, 0, 0, & +! /) +! tf3 = (/ +! 0, 0, -0.67082039324993690892, 0, 0, 0, 0, -0.67082039324993690892, 0, 1.0, & +! -0.61237243569579452455, 0, 0, -0.27386127875258305673, 0, 1.0954451150103322269, 0, 0, 0, 0, & +! 0, -0.27386127875258305673, 0, 0, 0, 0, -0.61237243569579452455, 0, 1.0954451150103322269, 0, & +! 0, 0, 0.86602540378443864676, 0, 0, 0, 0, -0.86602540378443864676, 0, 0, & +! 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, & +! 0.790569415042094833, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, & +! 0, 1.0606601717798212866, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & +! /) +! tf4 = (/ +! 0.375, 0, 0, 0.21957751641341996535, 0, -0.87831006565367986142, 0, 0, 0, 0, 0.375, 0, -0.87831006565367986142, 0, 1.0, & +! 0, 0, -0.89642145700079522998, 0, 0, 0, 0, -0.40089186286863657703, 0, 1.19522860933439364, 0, 0, 0, 0, 0, & +! 0, 0, 0, 0, -0.40089186286863657703, 0, 0, 0, 0, 0, 0, -0.89642145700079522998, 0, 1.19522860933439364, 0, & +! -0.5590169943749474241, 0, 0, 0, 0, 0.9819805060619657157, 0, 0, 0, 0, 0.5590169943749474241, 0, -0.9819805060619657157, 0, 0, & +! 0, -0.42257712736425828875, 0, 0, 0, 0, -0.42257712736425828875, 0, 1.1338934190276816816, 0, 0, 0, 0, 0, 0, & +! 0, 0, 0.790569415042094833, 0, 0, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, 0, & +! 0, 0, 0, 0, 1.0606601717798212866, 0, 0, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, & +! 0.73950997288745200532, 0, 0, -1.2990381056766579701, 0, 0, 0, 0, 0, 0, 0.73950997288745200532, 0, 0, 0, 0, & +! 0, 1.1180339887498948482, 0, 0, 0, 0, -1.1180339887498948482, 0, 0, 0, 0, 0, 0, 0, 0, & +! /) +! + + + allocate(rtmp(ao_num*mo_tot_num)) + l=0 + do i=1,mo_tot_num + do j=1,ao_num + l += 1 + rtmp(l) = mo_coef(j,i) + enddo + enddo + write(iunit,'(4(1PE20.13))') rtmp(1:l) + deallocate(rtmp) + close(iunit) +end + +program prog_save_casino + call save_casino +end diff --git a/src/Determinants/save_for_qmcchem.irp.f b/src/Determinants/save_for_qmcchem.irp.f new file mode 100644 index 00000000..b707ff7c --- /dev/null +++ b/src/Determinants/save_for_qmcchem.irp.f @@ -0,0 +1,51 @@ +subroutine save_dets_qmcchem + use bitmasks + implicit none + character :: c(mo_tot_num) + integer :: i,k + + integer, allocatable :: occ(:,:,:), occ_tmp(:,:) + !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: occ, occ_tmp + + read_wf = .True. + TOUCH read_wf + call ezfio_set_determinants_det_num(N_det) + call ezfio_set_determinants_det_coef(psi_coef_sorted(1,1)) + + allocate (occ(elec_alpha_num,N_det,2)) + ! OMP PARALLEL DEFAULT(NONE) & + ! OMP PRIVATE(occ_tmp,i,k)& + ! OMP SHARED(N_det,psi_det_sorted,elec_alpha_num, & + ! OMP occ,elec_beta_num,N_int) + allocate (occ_tmp(N_int*bit_kind_size,2)) + occ_tmp = 0 + ! OMP DO + do i=1,N_det + call bitstring_to_list(psi_det_sorted(1,1,i), occ_tmp(1,1), elec_alpha_num, N_int ) + call bitstring_to_list(psi_det_sorted(1,2,i), occ_tmp(1,2), elec_beta_num, N_int ) + do k=1,elec_alpha_num + occ(k,i,1) = occ_tmp(k,1) + occ(k,i,2) = occ_tmp(k,2) + enddo + enddo + ! OMP END DO + deallocate(occ_tmp) + ! OMP END PARALLEL + call ezfio_set_determinants_det_occ(occ) + call write_int(output_determinants,N_det,'Determinants saved for QMC') + deallocate(occ) + open(unit=31,file=trim(ezfio_filename)//'/mo_basis/mo_classif') + write(31,'(I1)') 1 + write(31,*) mo_tot_num + do i=1,mo_tot_num + write(31,'(A)') 'a' + enddo + close(31) + call system('gzip -f '//trim(ezfio_filename)//'/mo_basis/mo_classif') + +end + +program save_for_qmc + call save_dets_qmcchem + call write_spindeterminants +end diff --git a/src/Determinants/save_natorb.irp.f b/src/Determinants/save_natorb.irp.f new file mode 100644 index 00000000..e56f9821 --- /dev/null +++ b/src/Determinants/save_natorb.irp.f @@ -0,0 +1,6 @@ +program save_natorb + read_wf = .True. + touch read_wf + call save_natural_mos +end + diff --git a/src/Determinants/slater_rules.irp.f b/src/Determinants/slater_rules.irp.f new file mode 100644 index 00000000..7d431879 --- /dev/null +++ b/src/Determinants/slater_rules.irp.f @@ -0,0 +1,1301 @@ +subroutine get_excitation_degree(key1,key2,degree,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation degree between two determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key1(Nint,2) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: degree + + integer :: l + + ASSERT (Nint > 0) + + degree = popcnt(xor( key1(1,1), key2(1,1))) + & + popcnt(xor( key1(1,2), key2(1,2))) + !DEC$ NOUNROLL + do l=2,Nint + degree = degree+ popcnt(xor( key1(l,1), key2(l,1))) + & + popcnt(xor( key1(l,2), key2(l,2))) + enddo + ASSERT (degree >= 0) + degree = ishft(degree,-1) + +end + + + +subroutine get_excitation(det1,det2,exc,degree,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation operators between two determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + integer, intent(out) :: degree + double precision, intent(out) :: phase + ! exc(number,hole/particle,spin) + ! ex : + ! exc(0,1,1) = number of holes alpha + ! exc(0,2,1) = number of particle alpha + ! exc(0,2,2) = number of particle beta + ! exc(1,2,1) = first particle alpha + ! exc(1,1,1) = first hole alpha + ! exc(1,2,2) = first particle beta + ! exc(1,1,2) = first hole beta + + ASSERT (Nint > 0) + + !DIR$ FORCEINLINE + call get_excitation_degree(det1,det2,degree,Nint) + select case (degree) + + case (3:) + degree = -1 + return + + case (2) + call get_double_excitation(det1,det2,exc,phase,Nint) + return + + case (1) + call get_mono_excitation(det1,det2,exc,phase,Nint) + return + + case(0) + return + + end select +end + +subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) + use bitmasks + implicit none + BEGIN_DOC + ! Decodes the exc arrays returned by get_excitation. + ! h1,h2 : Holes + ! p1,p2 : Particles + ! s1,s2 : Spins (1:alpha, 2:beta) + ! degree : Degree of excitation + END_DOC + integer, intent(in) :: exc(0:2,2,2),degree + integer, intent(out) :: h1,h2,p1,p2,s1,s2 + ASSERT (degree > 0) + ASSERT (degree < 3) + + select case(degree) + case(2) + if (exc(0,1,1) == 2) then + h1 = exc(1,1,1) + h2 = exc(2,1,1) + p1 = exc(1,2,1) + p2 = exc(2,2,1) + s1 = 1 + s2 = 1 + else if (exc(0,1,2) == 2) then + h1 = exc(1,1,2) + h2 = exc(2,1,2) + p1 = exc(1,2,2) + p2 = exc(2,2,2) + s1 = 2 + s2 = 2 + else + h1 = exc(1,1,1) + h2 = exc(1,1,2) + p1 = exc(1,2,1) + p2 = exc(1,2,2) + s1 = 1 + s2 = 2 + endif + case(1) + if (exc(0,1,1) == 1) then + h1 = exc(1,1,1) + h2 = 0 + p1 = exc(1,2,1) + p2 = 0 + s1 = 1 + s2 = 0 + else + h1 = exc(1,1,2) + h2 = 0 + p1 = exc(1,2,2) + p2 = 0 + s1 = 2 + s2 = 0 + endif + case(0) + h1 = 0 + p1 = 0 + h2 = 0 + p2 = 0 + s1 = 0 + s2 = 0 + end select +end + +subroutine get_double_excitation(det1,det2,exc,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the two excitation operators between two doubly excited determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + double precision, intent(out) :: phase + integer :: tz + integer :: l, ispin, idx_hole, idx_particle, ishift + integer :: nperm + integer :: i,j,k,m,n + integer :: high, low + integer :: a,b,c,d + integer(bit_kind) :: hole, particle, tmp + double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) + + ASSERT (Nint > 0) + nperm = 0 + exc(0,1,1) = 0 + exc(0,2,1) = 0 + exc(0,1,2) = 0 + exc(0,2,2) = 0 + do ispin = 1,2 + idx_particle = 0 + idx_hole = 0 + ishift = 1-bit_kind_size + do l=1,Nint + ishift = ishift + bit_kind_size + if (det1(l,ispin) == det2(l,ispin)) then + cycle + endif + tmp = xor( det1(l,ispin), det2(l,ispin) ) + particle = iand(tmp, det2(l,ispin)) + hole = iand(tmp, det1(l,ispin)) + do while (particle /= 0_bit_kind) + tz = trailz(particle) + idx_particle = idx_particle + 1 + exc(0,2,ispin) = exc(0,2,ispin) + 1 + exc(idx_particle,2,ispin) = tz+ishift + particle = iand(particle,particle-1_bit_kind) + enddo + if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2 + exit + endif + do while (hole /= 0_bit_kind) + tz = trailz(hole) + idx_hole = idx_hole + 1 + exc(0,1,ispin) = exc(0,1,ispin) + 1 + exc(idx_hole,1,ispin) = tz+ishift + hole = iand(hole,hole-1_bit_kind) + enddo + if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin) + exit + endif + enddo + + ! TODO : Voir si il faut sortir i,n,k,m du case. + + select case (exc(0,1,ispin)) + case(0) + cycle + + case(1) + low = min(exc(1,1,ispin), exc(1,2,ispin)) + high = max(exc(1,1,ispin), exc(1,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + + if (j==k) then + nperm = nperm + popcnt(iand(det1(j,ispin), & + iand( ibset(0_bit_kind,m-1)-1_bit_kind, & + ibclr(-1_bit_kind,n)+1_bit_kind ) )) + else + nperm = nperm + popcnt(iand(det1(k,ispin), & + ibset(0_bit_kind,m-1)-1_bit_kind)) + & + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) + do i=j+1,k-1 + nperm = nperm + popcnt(det1(i,ispin)) + end do + endif + + case (2) + + do i=1,2 + low = min(exc(i,1,ispin), exc(i,2,ispin)) + high = max(exc(i,1,ispin), exc(i,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + + if (j==k) then + nperm = nperm + popcnt(iand(det1(j,ispin), & + iand( ibset(0_bit_kind,m-1)-1_bit_kind, & + ibclr(-1_bit_kind,n)+1_bit_kind ) )) + else + nperm = nperm + popcnt(iand(det1(k,ispin), & + ibset(0_bit_kind,m-1)-1_bit_kind)) + & + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) + do l=j+1,k-1 + nperm = nperm + popcnt(det1(l,ispin)) + end do + endif + + enddo + + a = min(exc(1,1,ispin), exc(1,2,ispin)) + b = max(exc(1,1,ispin), exc(1,2,ispin)) + c = min(exc(2,1,ispin), exc(2,2,ispin)) + d = max(exc(2,1,ispin), exc(2,2,ispin)) + if (c>a .and. cb) then + nperm = nperm + 1 + endif + exit + end select + + enddo + phase = phase_dble(iand(nperm,1)) + +end + +subroutine get_mono_excitation(det1,det2,exc,phase,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns the excitation operator between two singly excited determinants and the phase + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det1(Nint,2) + integer(bit_kind), intent(in) :: det2(Nint,2) + integer, intent(out) :: exc(0:2,2,2) + double precision, intent(out) :: phase + integer :: tz + integer :: l, ispin, idx_hole, idx_particle, ishift + integer :: nperm + integer :: i,j,k,m,n + integer :: high, low + integer :: a,b,c,d + integer(bit_kind) :: hole, particle, tmp + double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) + + ASSERT (Nint > 0) + nperm = 0 + exc(0,1,1) = 0 + exc(0,2,1) = 0 + exc(0,1,2) = 0 + exc(0,2,2) = 0 + do ispin = 1,2 + ishift = 1-bit_kind_size + do l=1,Nint + ishift = ishift + bit_kind_size + if (det1(l,ispin) == det2(l,ispin)) then + cycle + endif + tmp = xor( det1(l,ispin), det2(l,ispin) ) + particle = iand(tmp, det2(l,ispin)) + hole = iand(tmp, det1(l,ispin)) + if (particle /= 0_bit_kind) then + tz = trailz(particle) + exc(0,2,ispin) = 1 + exc(1,2,ispin) = tz+ishift + endif + if (hole /= 0_bit_kind) then + tz = trailz(hole) + exc(0,1,ispin) = 1 + exc(1,1,ispin) = tz+ishift + endif + + if ( iand(exc(0,1,ispin),exc(0,2,ispin)) /= 1) then ! exc(0,1,ispin)/=1 and exc(0,2,ispin) /= 1 + cycle + endif + + low = min(exc(1,1,ispin),exc(1,2,ispin)) + high = max(exc(1,1,ispin),exc(1,2,ispin)) + + ASSERT (low > 0) + j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) + n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size) + ASSERT (high > 0) + k = ishft(high-1,-bit_kind_shift)+1 + m = iand(high,bit_kind_size-1) + if (j==k) then + nperm = popcnt(iand(det1(j,ispin), & + iand(ibset(0_bit_kind,m-1)-1_bit_kind,ibclr(-1_bit_kind,n)+1_bit_kind))) + else + nperm = nperm + popcnt(iand(det1(k,ispin),ibset(0_bit_kind,m-1)-1_bit_kind)) +& + popcnt(iand(det1(j,ispin),ibclr(-1_bit_kind,n)+1_bit_kind)) + do i=j+1,k-1 + nperm = nperm + popcnt(det1(i,ispin)) + end do + endif + phase = phase_dble(iand(nperm,1)) + return + + enddo + enddo +end + + + + + +subroutine i_H_j(key_i,key_j,Nint,hij) + use bitmasks + implicit none + BEGIN_DOC + ! Returns where i and j are determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) + double precision, intent(out) :: hij + + integer :: exc(0:2,2,2) + integer :: degree + double precision :: get_mo_bielec_integral + integer :: m,n,p,q + integer :: i,j,k + integer :: occ(Nint*bit_kind_size,2) + double precision :: diag_H_mat_elem, phase,phase_2 + integer :: n_occ_alpha, n_occ_beta + logical :: has_mipi(Nint*bit_kind_size) + double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) + PROVIDE mo_bielec_integrals_in_map mo_integrals_map + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) + ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) + + hij = 0.d0 + !DEC$ FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case (2) + call get_double_excitation(key_i,key_j,exc,phase,Nint) + if (exc(0,1,1) == 1) then + ! Mono alpha, mono beta + hij = phase*get_mo_bielec_integral( & + exc(1,1,1), & + exc(1,1,2), & + exc(1,2,1), & + exc(1,2,2) ,mo_integrals_map) + else if (exc(0,1,1) == 2) then + ! Double alpha + hij = phase*(get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(1,2,1), & + exc(2,2,1) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(2,2,1), & + exc(1,2,1) ,mo_integrals_map) ) + else if (exc(0,1,2) == 2) then + ! Double beta + hij = phase*(get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(1,2,2), & + exc(2,2,2) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(2,2,2), & + exc(1,2,2) ,mo_integrals_map) ) + endif + case (1) + call get_mono_excitation(key_i,key_j,exc,phase,Nint) + call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) + call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) + has_mipi = .False. + if (exc(0,1,1) == 1) then + ! Mono alpha + m = exc(1,1,1) + p = exc(1,2,1) + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) + enddo + do k = 1, elec_beta_num + hij = hij + mipi(occ(k,2)) + enddo + + else + ! Mono beta + m = exc(1,1,2) + p = exc(1,2,2) + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hij = hij + mipi(occ(k,1)) + enddo + do k = 1, elec_beta_num + hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) + enddo + + endif + hij = phase*(hij + mo_mono_elec_integral(m,p)) + + case (0) + hij = diag_H_mat_elem(key_i,Nint) + end select +end + + + + +subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble) + use bitmasks + implicit none + BEGIN_DOC + ! Returns where i and j are determinants + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) + double precision, intent(out) :: hij,hmono,hdouble + + integer :: exc(0:2,2,2) + integer :: degree + double precision :: get_mo_bielec_integral + integer :: m,n,p,q + integer :: i,j,k + integer :: occ(Nint*bit_kind_size,2) + double precision :: diag_H_mat_elem, phase,phase_2 + integer :: n_occ_alpha, n_occ_beta + logical :: has_mipi(Nint*bit_kind_size) + double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) + PROVIDE mo_bielec_integrals_in_map mo_integrals_map + + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) + ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) + + hij = 0.d0 + hmono = 0.d0 + hdouble = 0.d0 + !DEC$ FORCEINLINE + call get_excitation_degree(key_i,key_j,degree,Nint) + select case (degree) + case (2) + call get_double_excitation(key_i,key_j,exc,phase,Nint) + if (exc(0,1,1) == 1) then + ! Mono alpha, mono beta + hij = phase*get_mo_bielec_integral( & + exc(1,1,1), & + exc(1,1,2), & + exc(1,2,1), & + exc(1,2,2) ,mo_integrals_map) + else if (exc(0,1,1) == 2) then + ! Double alpha + hij = phase*(get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(1,2,1), & + exc(2,2,1) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,1), & + exc(2,1,1), & + exc(2,2,1), & + exc(1,2,1) ,mo_integrals_map) ) + else if (exc(0,1,2) == 2) then + ! Double beta + hij = phase*(get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(1,2,2), & + exc(2,2,2) ,mo_integrals_map) - & + get_mo_bielec_integral( & + exc(1,1,2), & + exc(2,1,2), & + exc(2,2,2), & + exc(1,2,2) ,mo_integrals_map) ) + endif + case (1) + call get_mono_excitation(key_i,key_j,exc,phase,Nint) + call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint) + call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint) + has_mipi = .False. + if (exc(0,1,1) == 1) then + ! Mono alpha + m = exc(1,1,1) + p = exc(1,2,1) + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hdouble = hdouble + mipi(occ(k,1)) - miip(occ(k,1)) + enddo + do k = 1, elec_beta_num + hdouble = hdouble + mipi(occ(k,2)) + enddo + + else + ! Mono beta + m = exc(1,1,2) + p = exc(1,2,2) + do k = 1, elec_beta_num + i = occ(k,2) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + do k = 1, elec_alpha_num + i = occ(k,1) + if (.not.has_mipi(i)) then + mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) + has_mipi(i) = .True. + endif + enddo + + do k = 1, elec_alpha_num + hdouble = hdouble + mipi(occ(k,1)) + enddo + do k = 1, elec_beta_num + hdouble = hdouble + mipi(occ(k,2)) - miip(occ(k,2)) + enddo + + endif + hmono = mo_mono_elec_integral(m,p) + hij = phase*(hdouble + hmono) + + case (0) + hij = diag_H_mat_elem(key_i,Nint) + end select +end + + + +subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array) + use bitmasks + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + BEGIN_DOC + ! for the various Nstates + END_DOC + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo +end + +subroutine i_H_psi_sec_ord(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_interaction,interactions) + use bitmasks + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + double precision, intent(out) :: interactions(Ndet) + integer,intent(out) :: idx_interaction(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet),n_interact + BEGIN_DOC + ! for the various Nstates + END_DOC + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) + n_interact = 0 + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + if(dabs(hij).ge.1.d-8)then + if(i.ne.1)then + n_interact += 1 + interactions(n_interact) = hij + idx_interaction(n_interact) = i + endif + endif + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo + idx_interaction(0) = n_interact +end + + +subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) + use bitmasks + BEGIN_DOC + ! for the various Nstate + ! + ! returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + integer , intent(out) :: idx_repeat(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) + do ii=1,idx(0) + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + enddo +end + + +subroutine i_H_psi_SC2_verbose(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) + use bitmasks + BEGIN_DOC + ! for the various Nstate + ! + ! returns in addition + ! + ! the array of the index of the non connected determinants to key1 + ! + ! in order to know what double excitation can be repeated on key1 + ! + ! idx_repeat(0) is the number of determinants that can be used + ! + ! to repeat the excitations + END_DOC + implicit none + integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate + integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) + integer(bit_kind), intent(in) :: key(Nint,2) + double precision, intent(in) :: coef(Ndet_max,Nstate) + double precision, intent(out) :: i_H_psi_array(Nstate) + integer , intent(out) :: idx_repeat(0:Ndet) + + integer :: i, ii,j + double precision :: phase + integer :: exc(0:2,2,2) + double precision :: hij + integer :: idx(0:Ndet) + + ASSERT (Nint > 0) + ASSERT (N_int == Nint) + ASSERT (Nstate > 0) + ASSERT (Ndet > 0) + ASSERT (Ndet_max >= Ndet) + i_H_psi_array = 0.d0 + call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) + print*,'--------' + do ii=1,idx(0) + print*,'--' + i = idx(ii) + !DEC$ FORCEINLINE + call i_H_j(keys(1,1,i),key,Nint,hij) + if (i==1)then + print*,'i==1 !!' + endif + print*,coef(i,1) * hij,coef(i,1),hij + do j = 1, Nstate + i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij + enddo + print*,i_H_psi_array(1) + enddo + print*,'------' +end + + + +subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx) + use bitmasks + implicit none + BEGIN_DOC + ! Applies get_excitation_degree to an array of determinants + END_DOC + integer, intent(in) :: Nint, sze + integer(bit_kind), intent(in) :: key1(Nint,2,sze) + integer(bit_kind), intent(in) :: key2(Nint,2) + integer, intent(out) :: degree(sze) + integer, intent(out) :: idx(0:sze) + + integer :: i,l + + ASSERT (Nint > 0) + ASSERT (sze > 0) + + l=1 + if (Nint==1) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==2) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else if (Nint==3) then + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = ishft( popcnt(xor( key1(1,1,i), key2(1,1))) + & + popcnt(xor( key1(1,2,i), key2(1,2))) + & + popcnt(xor( key1(2,1,i), key2(2,1))) + & + popcnt(xor( key1(2,2,i), key2(2,2))) + & + popcnt(xor( key1(3,1,i), key2(3,1))) + & + popcnt(xor( key1(3,2,i), key2(3,2))),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + else + + !DIR$ LOOP COUNT (1000) + do i=1,sze + degree(l) = 0 + !DEC$ LOOP COUNT MIN(4) + do l=1,Nint + degree(l) = degree(l)+ popcnt(xor( key1(l,1,i), key2(l,1))) +& + popcnt(xor( key1(l,2,i), key2(l,2))) + enddo + degree(l) = ishft(degree(l),-1) + if (degree(l) < 3) then + idx(l) = i + l = l+1 + endif + enddo + + endif + idx(0) = l-1 +end + + + + +double precision function diag_H_mat_elem(det_in,Nint) + implicit none + BEGIN_DOC + ! Computes + END_DOC + integer,intent(in) :: Nint + integer(bit_kind),intent(in) :: det_in(Nint,2) + + integer(bit_kind) :: hole(Nint,2) + integer(bit_kind) :: particle(Nint,2) + integer :: i, nexc(2), ispin + integer :: occ_particle(Nint*bit_kind_size,2) + integer :: occ_hole(Nint*bit_kind_size,2) + integer(bit_kind) :: det_tmp(Nint,2) + integer :: na, nb + + ASSERT (Nint > 0) + ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) + ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) + + nexc(1) = 0 + nexc(2) = 0 + do i=1,Nint + hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) + hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) + particle(i,1) = iand(hole(i,1),det_in(i,1)) + particle(i,2) = iand(hole(i,2),det_in(i,2)) + hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) + hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) + nexc(1) += popcnt(hole(i,1)) + nexc(2) += popcnt(hole(i,2)) + enddo + + diag_H_mat_elem = ref_bitmask_energy + if (nexc(1)+nexc(2) == 0) then + return + endif + + !call debug_det(det_in,Nint) + integer :: tmp + call bitstring_to_list(particle(1,1), occ_particle(1,1), tmp, Nint) + ASSERT (tmp == nexc(1)) + call bitstring_to_list(particle(1,2), occ_particle(1,2), tmp, Nint) + ASSERT (tmp == nexc(2)) + call bitstring_to_list(hole(1,1), occ_hole(1,1), tmp, Nint) + ASSERT (tmp == nexc(1)) + call bitstring_to_list(hole(1,2), occ_hole(1,2), tmp, Nint) + ASSERT (tmp == nexc(2)) + + det_tmp = ref_bitmask + do ispin=1,2 + na = elec_num_tab(ispin) + nb = elec_num_tab(iand(ispin,1)+1) + do i=1,nexc(ispin) + !DIR$ FORCEINLINE + call ac_operator( occ_particle(i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) + !DIR$ FORCEINLINE + call a_operator ( occ_hole (i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) + enddo + enddo +end + +subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb) + use bitmasks + implicit none + BEGIN_DOC + ! Needed for diag_H_mat_elem + END_DOC + integer, intent(in) :: iorb, ispin, Nint + integer, intent(inout) :: na, nb + integer(bit_kind), intent(inout) :: key(Nint,2) + double precision, intent(inout) :: hjj + + integer :: occ(Nint*bit_kind_size,2) + integer :: other_spin + integer :: k,l,i + + ASSERT (iorb > 0) + ASSERT (ispin > 0) + ASSERT (ispin < 3) + ASSERT (Nint > 0) + + k = ishft(iorb-1,-bit_kind_shift)+1 + ASSERT (k > 0) + l = iorb - ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibclr(key(k,ispin),l) + other_spin = iand(ispin,1)+1 + + !DIR$ FORCEINLINE + call get_occ_from_key(key,occ,Nint) + na -= 1 + + hjj -= mo_mono_elec_integral(iorb,iorb) + + ! Same spin + do i=1,na + hjj -= mo_bielec_integral_jj_anti(occ(i,ispin),iorb) + enddo + + ! Opposite spin + do i=1,nb + hjj -= mo_bielec_integral_jj(occ(i,other_spin),iorb) + enddo + +end + + +subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb) + use bitmasks + implicit none + BEGIN_DOC + ! Needed for diag_H_mat_elem + END_DOC + integer, intent(in) :: iorb, ispin, Nint + integer, intent(inout) :: na, nb + integer(bit_kind), intent(inout) :: key(Nint,2) + double precision, intent(inout) :: hjj + + integer :: occ(Nint*bit_kind_size,2) + integer :: other_spin + integer :: k,l,i + + ASSERT (iorb > 0) + ASSERT (ispin > 0) + ASSERT (ispin < 3) + ASSERT (Nint > 0) + + integer :: tmp + !DIR$ FORCEINLINE + call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) + ASSERT (tmp == elec_alpha_num) + !DIR$ FORCEINLINE + call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) + ASSERT (tmp == elec_beta_num) + + k = ishft(iorb-1,-bit_kind_shift)+1 + ASSERT (k > 0) + l = iorb - ishft(k-1,bit_kind_shift)-1 + key(k,ispin) = ibset(key(k,ispin),l) + other_spin = iand(ispin,1)+1 + + hjj += mo_mono_elec_integral(iorb,iorb) + + ! Same spin + do i=1,na + hjj += mo_bielec_integral_jj_anti(occ(i,ispin),iorb) + enddo + + ! Opposite spin + do i=1,nb + hjj += mo_bielec_integral_jj(occ(i,other_spin),iorb) + enddo + na += 1 +end + +subroutine get_occ_from_key(key,occ,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Returns a list of occupation numbers from a bitstring + END_DOC + integer(bit_kind), intent(in) :: key(Nint,2) + integer , intent(in) :: Nint + integer , intent(out) :: occ(Nint*bit_kind_size,2) + integer :: tmp + + call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint) + call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint) + +end + +subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint) + use bitmasks + implicit none + BEGIN_DOC + ! Computes v_0 = H|u_0> + ! + ! n : number of determinants + ! + ! H_jj : array of + END_DOC + integer, intent(in) :: n,Nint + double precision, intent(out) :: v_0(n) + double precision, intent(in) :: u_0(n) + double precision, intent(in) :: H_jj(n) + integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) + integer, allocatable :: idx(:) + double precision :: hij + double precision, allocatable :: vt(:) + integer :: i,j,k,l, jj + integer :: i0, j0 + ASSERT (Nint > 0) + ASSERT (Nint == N_int) + ASSERT (n>0) + PROVIDE ref_bitmask_energy + integer, parameter :: block_size = 157 + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PRIVATE(i,hij,j,k,idx,jj,vt) & + !$OMP SHARED(n,H_jj,u_0,keys_tmp,Nint,v_0) + !$OMP DO SCHEDULE(static) + do i=1,n + v_0(i) = H_jj(i) * u_0(i) + enddo + !$OMP END DO + allocate(idx(0:n), vt(n)) + Vt = 0.d0 + !$OMP DO SCHEDULE(guided) + do i=1,n + idx(0) = i + call filter_connected_davidson(keys_tmp,keys_tmp(1,1,i),Nint,i-1,idx) + do jj=1,idx(0) + j = idx(jj) + if ( (dabs(u_0(j)) > 1.d-7).or.((dabs(u_0(i)) > 1.d-7)) ) then + call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij) + vt (i) = vt (i) + hij*u_0(j) + vt (j) = vt (j) + hij*u_0(i) + endif + enddo + enddo + !$OMP END DO + !$OMP CRITICAL + do i=1,n + v_0(i) = v_0(i) + vt(i) + enddo + !$OMP END CRITICAL + deallocate(idx,vt) + !$OMP END PARALLEL +end + + + +BEGIN_PROVIDER [ integer, N_con_int ] + implicit none + BEGIN_DOC + ! Number of integers to represent the connections between determinants + END_DOC + N_con_int = 1 + ishft(N_det-1,-11) +END_PROVIDER + +BEGIN_PROVIDER [ integer*8, det_connections, (N_con_int,N_det) ] + implicit none + BEGIN_DOC + ! Build connection proxy between determinants + END_DOC + integer :: i,j + integer :: degree + integer :: j_int, j_k, j_l + integer, allocatable :: idx(:) + integer :: thread_num + integer :: omp_get_thread_num + + PROVIDE progress_bar + call start_progress(N_det,'Det connections',0.d0) + + select case(N_int) + + case(1) + + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections, & + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case(2) + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & + popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & + popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case(3) + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + degree = popcnt(xor( psi_det(1,1,i),psi_det(1,1,j))) + & + popcnt(xor( psi_det(1,2,i),psi_det(1,2,j))) + & + popcnt(xor( psi_det(2,1,i),psi_det(2,1,j))) + & + popcnt(xor( psi_det(2,2,i),psi_det(2,2,j))) + & + popcnt(xor( psi_det(3,1,i),psi_det(3,1,j))) + & + popcnt(xor( psi_det(3,2,i),psi_det(3,2,j))) + if (degree < 5) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + case default + + + !$OMP PARALLEL DEFAULT (NONE) & + !$OMP SHARED(N_det, N_con_int, psi_det,N_int, det_connections,& + !$OMP progress_bar,progress_value)& + !$OMP PRIVATE(i,j_int,j_k,j_l,j,degree,idx,thread_num) + !$ thread_num = omp_get_thread_num() + allocate (idx(0:N_det)) + !$OMP DO SCHEDULE(guided) + do i=1,N_det + if (thread_num == 0) then + progress_bar(1) = i + progress_value = dble(i) + endif + do j_int=1,N_con_int + det_connections(j_int,i) = 0_8 + j_k = ishft(j_int-1,11) + do j_l = j_k,min(j_k+2047,N_det), 32 + do j = j_l+1,min(j_l+32,i) + !DIR$ FORCEINLINE + call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) + if (degree < 3) then + det_connections(j_int,i) = ibset( det_connections(j_int,i), iand(63,ishft(j_l,-5)) ) + exit + endif + enddo + enddo + enddo + enddo + !$OMP ENDDO + deallocate(idx) + !$OMP END PARALLEL + + end select + call stop_progress + +END_PROVIDER + diff --git a/src/Determinants/spindeterminants.ezfio_config b/src/Determinants/spindeterminants.ezfio_config new file mode 100644 index 00000000..39ccb82b --- /dev/null +++ b/src/Determinants/spindeterminants.ezfio_config @@ -0,0 +1,17 @@ +spindeterminants + n_det_alpha integer + n_det_beta integer + n_det integer + n_int integer + bit_kind integer + n_states integer + psi_det_alpha integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_alpha) + psi_det_beta integer*8 (spindeterminants_n_int*spindeterminants_bit_kind/8,spindeterminants_n_det_beta) + psi_coef_matrix_rows integer (spindeterminants_n_det) + psi_coef_matrix_columns integer (spindeterminants_n_det) + psi_coef_matrix_values double precision (spindeterminants_n_det,spindeterminants_n_states) + n_svd_coefs integer + psi_svd_alpha double precision (spindeterminants_n_det_alpha,spindeterminants_n_svd_coefs,spindeterminants_n_states) + psi_svd_beta double precision (spindeterminants_n_det_beta,spindeterminants_n_svd_coefs,spindeterminants_n_states) + psi_svd_coefs double precision (spindeterminants_n_svd_coefs,spindeterminants_n_states) + diff --git a/src/Determinants/spindeterminants.irp.f b/src/Determinants/spindeterminants.irp.f new file mode 100644 index 00000000..ffd28f85 --- /dev/null +++ b/src/Determinants/spindeterminants.irp.f @@ -0,0 +1,615 @@ +!==============================================================================! +! ! +! Independent alpha/beta parts ! +! ! +!==============================================================================! + +use bitmasks + +integer*8 function spin_det_search_key(det,Nint) + use bitmasks + implicit none + BEGIN_DOC +! Return an integer*8 corresponding to a determinant index for searching + END_DOC + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: det(Nint) + integer :: i + spin_det_search_key = det(1) + do i=2,Nint + spin_det_search_key = ieor(spin_det_search_key,det(i)) + enddo +end + + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of alpha determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_alpha(k,i) = psi_det(k,1,i) + enddo + enddo +END_PROVIDER + +BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ] + implicit none + BEGIN_DOC +! List of beta determinants of psi_det + END_DOC + integer :: i,k + + do i=1,N_det + do k=1,N_int + psi_det_beta(k,i) = psi_det(k,2,i) + enddo + enddo +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_alpha_unique ] + implicit none + BEGIN_DOC + ! Unique alpha determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_alpha(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_alpha_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_alpha_unique += 1 + do k=1,N_int + psi_det_alpha_unique(k,N_det_alpha_unique) = psi_det_alpha(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta_unique, (N_int,psi_det_size) ] +&BEGIN_PROVIDER [ integer, N_det_beta_unique ] + implicit none + BEGIN_DOC + ! Unique beta determinants + END_DOC + + integer :: i,k + integer, allocatable :: iorder(:) + integer*8, allocatable :: bit_tmp(:) + integer*8 :: last_key + integer*8, external :: spin_det_search_key + + allocate ( iorder(N_det), bit_tmp(N_det)) + + do i=1,N_det + iorder(i) = i + bit_tmp(i) = spin_det_search_key(psi_det_beta(1,i),N_int) + enddo + + call i8sort(bit_tmp,iorder,N_det) + + N_det_beta_unique = 0 + last_key = 0_8 + do i=1,N_det + if (bit_tmp(i) /= last_key) then + last_key = bit_tmp(i) + N_det_beta_unique += 1 + do k=1,N_int + psi_det_beta_unique(k,N_det_beta_unique) = psi_det_beta(k,iorder(i)) + enddo + endif + enddo + + deallocate (iorder, bit_tmp) +END_PROVIDER + + + + + +integer function get_index_in_psi_det_alpha_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_alpha_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_alpha_unique = 0 + ibegin = 1 + iend = N_det_alpha_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_alpha_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_alpha_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_alpha_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_alpha_unique = i + return + endif + endif + i += 1 + if (i > N_det_alpha_unique) then + return + endif + + enddo + +end + +integer function get_index_in_psi_det_beta_unique(key,Nint) + use bitmasks + BEGIN_DOC +! Returns the index of the determinant in the ``psi_det_beta_unique`` array + END_DOC + implicit none + + integer, intent(in) :: Nint + integer(bit_kind), intent(in) :: key(Nint) + + integer :: i, ibegin, iend, istep, l + integer*8 :: det_ref, det_search + integer*8, external :: spin_det_search_key + logical :: is_in_wavefunction + + is_in_wavefunction = .False. + get_index_in_psi_det_beta_unique = 0 + ibegin = 1 + iend = N_det_beta_unique + 1 + + !DIR$ FORCEINLINE + det_ref = spin_det_search_key(key,Nint) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint) + + istep = ishft(iend-ibegin,-1) + i=ibegin+istep + do while (istep > 0) + !DIR$ FORCEINLINE + det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint) + if ( det_search > det_ref ) then + iend = i + else if ( det_search == det_ref ) then + exit + else + ibegin = i + endif + istep = ishft(iend-ibegin,-1) + i = ibegin + istep + end do + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + i = i-1 + if (i == 0) then + exit + endif + enddo + i += 1 + + if (i > N_det_beta_unique) then + return + endif + + !DIR$ FORCEINLINE + do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref) + if (key(1) /= psi_det_beta_unique(1,i)) then + continue + else + is_in_wavefunction = .True. + !DIR$ IVDEP + !DIR$ LOOP COUNT MIN(3) + do l=2,Nint + if (key(l) /= psi_det_beta_unique(l,i)) then + is_in_wavefunction = .False. + endif + enddo + if (is_in_wavefunction) then + get_index_in_psi_det_beta_unique = i + return + endif + endif + i += 1 + if (i > N_det_beta_unique) then + return + endif + + enddo + +end + + +subroutine write_spindeterminants + use bitmasks + implicit none + integer*8, allocatable :: tmpdet(:,:) + integer :: N_int2 + integer :: i,j,k + integer*8 :: det_8(100) + integer(bit_kind) :: det_bk((100*8)/bit_kind) + equivalence (det_8, det_bk) + + N_int2 = (N_int*bit_kind)/8 + call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique) + call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique) + call ezfio_set_spindeterminants_n_det(N_det) + call ezfio_set_spindeterminants_n_int(N_int) + call ezfio_set_spindeterminants_bit_kind(bit_kind) + call ezfio_set_spindeterminants_n_states(N_states) + + allocate(tmpdet(N_int2,N_det_alpha_unique)) + do i=1,N_det_alpha_unique + do k=1,N_int + det_bk(k) = psi_det_alpha_unique(k,i) + enddo + do k=1,N_int2 + tmpdet(k,i) = det_8(k) + enddo + enddo + call ezfio_set_spindeterminants_psi_det_alpha(psi_det_alpha_unique) + deallocate(tmpdet) + + allocate(tmpdet(N_int2,N_det_beta_unique)) + do i=1,N_det_beta_unique + do k=1,N_int + det_bk(k) = psi_det_beta_unique(k,i) + enddo + do k=1,N_int2 + tmpdet(k,i) = det_8(k) + enddo + enddo + call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique) + deallocate(tmpdet) + + call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_svd_matrix_values) + call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_svd_matrix_rows) + call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_svd_matrix_columns) + + integer :: n_svd_coefs + double precision :: norm, f + f = 1.d0/dble(N_states) + norm = 1.d0 + do n_svd_coefs=1,N_det_alpha_unique + do k=1,N_states + norm -= psi_svd_coefs(n_svd_coefs,k)*psi_svd_coefs(n_svd_coefs,k) + enddo + if (norm < 1.d-4) then + exit + endif + enddo + n_svd_coefs -= 1 + call ezfio_set_spindeterminants_n_svd_coefs(n_svd_coefs) + + double precision, allocatable :: dtmp(:,:,:) + allocate(dtmp(N_det_alpha_unique,n_svd_coefs,N_states)) + do k=1,N_states + do j=1,n_svd_coefs + do i=1,N_det_alpha_unique + dtmp(i,j,k) = psi_svd_alpha(i,j,k) + enddo + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_alpha(dtmp) + deallocate(dtmp) + + allocate(dtmp(N_det_beta_unique,n_svd_coefs,N_states)) + do k=1,N_states + do j=1,n_svd_coefs + do i=1,N_det_beta_unique + dtmp(i,j,k) = psi_svd_beta(i,j,k) + enddo + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_beta(dtmp) + deallocate(dtmp) + + allocate(dtmp(n_svd_coefs,N_states,1)) + do k=1,N_states + do j=1,n_svd_coefs + dtmp(j,k,1) = psi_svd_coefs(j,k) + enddo + enddo + call ezfio_set_spindeterminants_psi_svd_coefs(dtmp) + deallocate(dtmp) + +end + + +!==============================================================================! +! ! +! Alpha x Beta Matrix ! +! ! +!==============================================================================! + +BEGIN_PROVIDER [ double precision, psi_svd_matrix_values, (N_det,N_states) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_rows, (N_det) ] +&BEGIN_PROVIDER [ integer, psi_svd_matrix_columns, (N_det) ] + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k, l + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + + + PROVIDE psi_coef_sorted_bit + +! l=0 +! do j=1,N_det_beta_unique +! do k=1,N_int +! tmp_det(k,2) = psi_det_beta_unique(k,j) +! enddo +! do i=1,N_det_alpha_unique +! do k=1,N_int +! tmp_det(k,1) = psi_det_alpha_unique(k,i) +! enddo +! idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) +! if (idx > 0) then +! l += 1 +! psi_svd_matrix_rows(l) = i +! psi_svd_matrix_columns(l) = j +! do k=1,N_states +! psi_svd_matrix_values(l,k) = psi_coef_sorted_bit(idx,k) +! enddo +! endif +! enddo +! enddo +! ASSERT (l == N_det) + + integer, allocatable :: iorder(:), to_sort(:) + integer, external :: get_index_in_psi_det_alpha_unique + integer, external :: get_index_in_psi_det_beta_unique + allocate(iorder(N_det), to_sort(N_det)) + do k=1,N_det + i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int) + j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int) + do l=1,N_states + psi_svd_matrix_values(k,l) = psi_coef(k,l) + enddo + psi_svd_matrix_rows(k) = i + psi_svd_matrix_columns(k) = j + to_sort(k) = N_det_alpha_unique * (j-1) + i + iorder(k) = k + enddo + call isort(to_sort, iorder, N_det) + call iset_order(psi_svd_matrix_rows,iorder,N_det) + call iset_order(psi_svd_matrix_columns,iorder,N_det) + call dset_order(psi_svd_matrix_values,iorder,N_det) + deallocate(iorder,to_sort) +END_PROVIDER + +BEGIN_PROVIDER [ double precision, psi_svd_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k,istate + psi_svd_matrix = 0.d0 + do k=1,N_det + i = psi_svd_matrix_rows(k) + j = psi_svd_matrix_columns(k) + do istate=1,N_states + psi_svd_matrix(i,j,istate) = psi_svd_matrix_values(k,istate) + enddo + enddo +END_PROVIDER + +subroutine create_wf_of_psi_svd_matrix + use bitmasks + implicit none + BEGIN_DOC +! Matrix of wf coefficients. Outer product of alpha and beta determinants + END_DOC + integer :: i,j,k + integer(bit_kind) :: tmp_det(N_int,2) + integer :: idx + integer, external :: get_index_in_psi_det_sorted_bit + logical, external :: is_in_wavefunction + double precision :: norm(N_states) + + call generate_all_alpha_beta_det_products + norm = 0.d0 + do j=1,N_det_beta_unique + do k=1,N_int + tmp_det(k,2) = psi_det_beta_unique(k,j) + enddo + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1) = psi_det_alpha_unique(k,i) + enddo + idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int) + if (idx > 0) then + do k=1,N_states + psi_coef_sorted_bit(idx,k) = psi_svd_matrix(i,j,k) + norm(k) += psi_svd_matrix(i,j,k) + enddo + endif + enddo + enddo + do k=1,N_states + norm(k) = 1.d0/dsqrt(norm(k)) + do i=1,N_det + psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k) + enddo + enddo + psi_det = psi_det_sorted_bit + psi_coef = psi_coef_sorted_bit + TOUCH psi_det psi_coef + psi_det = psi_det_sorted + psi_coef = psi_coef_sorted + norm(1) = 0.d0 + do i=1,N_det + norm(1) += psi_average_norm_contrib_sorted(i) + if (norm(1) >= 0.999999d0) then + exit + endif + enddo + N_det = min(i,N_det) + SOFT_TOUCH psi_det psi_coef N_det + +end + +subroutine generate_all_alpha_beta_det_products + implicit none + BEGIN_DOC +! Create a wave function from all possible alpha x beta determinants + END_DOC + integer :: i,j,k,l + integer :: idx, iproc + integer, external :: get_index_in_psi_det_sorted_bit + integer(bit_kind), allocatable :: tmp_det(:,:,:) + logical, external :: is_in_wavefunction + integer, external :: omp_get_thread_num + + !$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,& + !$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,& + !$OMP N_det) & + !$OMP PRIVATE(i,j,k,l,tmp_det,idx,iproc) + !$ iproc = omp_get_thread_num() + allocate (tmp_det(N_int,2,N_det_alpha_unique)) + !$OMP DO + do j=1,N_det_beta_unique + l = 1 + do i=1,N_det_alpha_unique + do k=1,N_int + tmp_det(k,1,l) = psi_det_alpha_unique(k,i) + tmp_det(k,2,l) = psi_det_beta_unique (k,j) + enddo + if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int,N_det)) then + l = l+1 + endif + enddo + call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc) + enddo + !$OMP END DO NOWAIT + deallocate(tmp_det) + !$OMP END PARALLEL + deallocate (tmp_det) + call copy_H_apply_buffer_to_wf + SOFT_TOUCH psi_det psi_coef N_det +end + + BEGIN_PROVIDER [ double precision, psi_svd_alpha, (N_det_alpha_unique,N_det_alpha_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_beta , (N_det_beta_unique,N_det_beta_unique,N_states) ] +&BEGIN_PROVIDER [ double precision, psi_svd_coefs, (N_det_beta_unique,N_states) ] + implicit none + BEGIN_DOC + ! SVD wave function + END_DOC + + integer :: lwork, info, istate + double precision, allocatable :: work(:), tmp(:,:), copy(:,:) + allocate (work(1),tmp(N_det_beta_unique,N_det_beta_unique), & + copy(size(psi_svd_matrix,1),size(psi_svd_matrix,2))) + + do istate = 1,N_states + copy(:,:) = psi_svd_matrix(:,:,istate) + lwork=-1 + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + lwork = work(1) + deallocate(work) + allocate(work(lwork)) + call dgesvd('A','A', N_det_alpha_unique, N_det_beta_unique, & + copy, size(copy,1), & + psi_svd_coefs(1,istate), psi_svd_alpha(1,1,istate), & + size(psi_svd_alpha,1), & + tmp, size(psi_svd_beta,2), & + work, lwork, info) + deallocate(work) + if (info /= 0) then + print *, irp_here//': error in det SVD' + stop 1 + endif + integer :: i,j + do j=1,N_det_beta_unique + do i=1,N_det_beta_unique + psi_svd_beta(i,j,istate) = tmp(j,i) + enddo + enddo + deallocate(tmp,copy) + enddo + +END_PROVIDER + + diff --git a/src/Determinants/truncate_wf.irp.f b/src/Determinants/truncate_wf.irp.f new file mode 100644 index 00000000..f867ad7e --- /dev/null +++ b/src/Determinants/truncate_wf.irp.f @@ -0,0 +1,18 @@ +program cisd + implicit none + integer :: i,k + + + double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:) + integer :: N_st, degree + N_det=10000 + do i=1,N_det + do k=1,N_int + psi_det(k,1,i) = psi_det_sorted(k,1,i) + psi_det(k,2,i) = psi_det_sorted(k,2,i) + enddo + psi_coef(k,:) = psi_coef_sorted(k,:) + enddo + TOUCH psi_det psi_coef psi_det_sorted psi_coef_sorted psi_average_norm_contrib_sorted N_det + call save_wavefunction +end diff --git a/src/Determinants/utils.irp.f b/src/Determinants/utils.irp.f new file mode 100644 index 00000000..22faee83 --- /dev/null +++ b/src/Determinants/utils.irp.f @@ -0,0 +1,20 @@ +BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ] + implicit none + BEGIN_DOC + ! H matrix on the basis of the slater determinants defined by psi_det + END_DOC + integer :: i,j + double precision :: hij + call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij) + !$OMP PARALLEL DO SCHEDULE(GUIDED) PRIVATE(i,j,hij) & + !$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets) + do i =1,N_det + do j =i,N_det + call i_H_j(psi_det(1,1,i),psi_det(1,1,j),N_int,hij) + H_matrix_all_dets(i,j) = hij + H_matrix_all_dets(j,i) = hij + enddo + enddo + !$OMP END PARALLEL DO +END_PROVIDER + diff --git a/src/Output/README.rst b/src/Output/README.rst index adcae302..7b510fc1 100644 --- a/src/Output/README.rst +++ b/src/Output/README.rst @@ -32,6 +32,7 @@ Needed Modules .. NEEDED_MODULES file. * `Utils `_ +* `Ezfio_files `_ Documentation ============= diff --git a/src/Properties/EZFIO.cfg b/src/Properties/EZFIO.cfg new file mode 100644 index 00000000..d230011d --- /dev/null +++ b/src/Properties/EZFIO.cfg @@ -0,0 +1,5 @@ +[z_one_point] +type: double precision +doc: z point on which the integrated delta rho is calculated +interface: input +default: 3.9 \ No newline at end of file