10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-12 05:58:24 +01:00
quantum_package/plugins/FOBOCI/routines_foboci.irp.f

617 lines
17 KiB
Fortran
Raw Normal View History

2016-02-17 17:15:54 +01:00
subroutine set_intermediate_normalization_lmct_old(norm,i_hole)
implicit none
integer, intent(in) :: i_hole
double precision, intent(out) :: norm(N_states)
integer :: i,j,degree,index_ref_generators_restart,k
integer:: number_of_holes,n_h, number_of_particles,n_p
integer, allocatable :: index_one_hole(:),index_one_hole_one_p(:),index_two_hole_one_p(:),index_two_hole(:)
integer, allocatable :: index_one_p(:)
integer :: n_one_hole,n_one_hole_one_p,n_two_hole_one_p,n_two_hole,n_one_p
logical :: is_the_hole_in_det
double precision :: inv_coef_ref_generators_restart(N_states),hij,hii,accu
integer :: index_good_hole(1000)
integer :: n_good_hole
logical,allocatable :: is_a_ref_det(:)
allocate(index_one_hole(n_det),index_one_hole_one_p(n_det),index_two_hole_one_p(N_det),index_two_hole(N_det),index_one_p(N_det),is_a_ref_det(N_det))
n_one_hole = 0
n_one_hole_one_p = 0
n_two_hole_one_p = 0
n_two_hole = 0
n_one_p = 0
n_good_hole = 0
! Find the one holes and one hole one particle
is_a_ref_det = .False.
do i = 1, N_det
! Find the reference determinant for intermediate normalization
call get_excitation_degree(ref_generators_restart,psi_det(1,1,i),degree,N_int)
if(degree == 0)then
index_ref_generators_restart = i
do k = 1, N_states
inv_coef_ref_generators_restart(k) = 1.d0/psi_coef(i,k)
enddo
! cycle
endif
! Find all the determinants present in the reference wave function
do j = 1, N_det_generators_restart
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_restart(1,1,j),degree,N_int)
if(degree == 0)then
is_a_ref_det(i) = .True.
exit
endif
enddo
if(is_a_ref_det(i))cycle
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 1 .and. n_p == 0)then
if(is_the_hole_in_det(psi_det(1,1,i),1,i_hole).or.is_the_hole_in_det(psi_det(1,1,i),2,i_hole))then
n_good_hole +=1
index_good_hole(n_good_hole) = i
else
do k = 1, N_states
psi_coef(i,k) = 0.d0
enddo
endif
else
do k = 1, N_states
psi_coef(i,k) = 0.d0
enddo
endif
enddo
!do k = 1, N_det
! call debug_det(psi_det(1,1,k),N_int)
! print*,'k,coef = ',k,psi_coef(k,1)/psi_coef(index_ref_generators_restart,1)
!enddo
print*,''
print*,'n_good_hole = ',n_good_hole
do k = 1,N_states
print*,'state ',k
do i = 1, n_good_hole
print*,'psi_coef(index_good_hole) = ',psi_coef(index_good_hole(i),k)/psi_coef(index_ref_generators_restart,k)
enddo
print*,''
enddo
norm = 0.d0
! Set the wave function to the intermediate normalization
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = psi_coef(i,k) * inv_coef_ref_generators_restart(k)
enddo
enddo
do k = 1,N_states
print*,'state ',k
do i = 1, N_det
!! print*,'psi_coef(i_ref) = ',psi_coef(i,1)
if (is_a_ref_det(i))then
print*,'i,psi_coef_ref = ',psi_coef(i,k)
cycle
endif
norm(k) += psi_coef(i,k) * psi_coef(i,k)
enddo
print*,'norm = ',norm(k)
enddo
deallocate(index_one_hole,index_one_hole_one_p,index_two_hole_one_p,index_two_hole,index_one_p,is_a_ref_det)
soft_touch psi_coef
end
subroutine set_intermediate_normalization_mlct_old(norm,i_particl)
implicit none
integer, intent(in) :: i_particl
double precision, intent(out) :: norm(N_states)
integer :: i,j,degree,index_ref_generators_restart,k
integer:: number_of_holes,n_h, number_of_particles,n_p
integer, allocatable :: index_one_hole(:),index_one_hole_one_p(:),index_two_hole_one_p(:),index_two_hole(:)
integer, allocatable :: index_one_p(:),index_one_hole_two_p(:)
integer :: n_one_hole,n_one_hole_one_p,n_two_hole_one_p,n_two_hole,n_one_p,n_one_hole_two_p
logical :: is_the_particl_in_det
double precision :: inv_coef_ref_generators_restart(N_states)
integer :: exc(0:2,2,2)
double precision :: phase,hij,hii,accu
integer :: h1,p1,h2,p2,s1,s2
integer :: index_good_particl(1000)
integer :: n_good_particl
logical,allocatable :: is_a_ref_det(:)
integer :: i_count
allocate(index_one_hole(n_det),index_one_hole_one_p(n_det),index_two_hole_one_p(N_det),index_two_hole(N_det),index_one_p(N_det),is_a_ref_det(N_det))
allocate(index_one_hole_two_p(n_det))
n_one_hole = 0
n_one_hole_one_p = 0
n_two_hole_one_p = 0
n_two_hole = 0
n_one_p = 0
n_one_hole_two_p = 0
n_good_particl = 0
! Find the one holes and one hole one particle
i_count = 0
is_a_ref_det = .False.
do i = 1, N_det
call get_excitation_degree(ref_generators_restart,psi_det(1,1,i),degree,N_int)
if(degree == 0)then
index_ref_generators_restart = i
do k = 1, N_states
inv_coef_ref_generators_restart(k) = 1.d0/psi_coef(i,k)
enddo
! cycle
endif
! Find all the determinants present in the reference wave function
do j = 1, N_det_generators_restart
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_restart(1,1,j),degree,N_int)
if(degree == 0)then
is_a_ref_det(i) = .True.
exit
endif
enddo
if(is_a_ref_det(i))cycle
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 1)then ! 1p
if(is_the_particl_in_det(psi_det(1,1,i),1,i_particl).or.is_the_particl_in_det(psi_det(1,1,i),2,i_particl))then
n_good_particl += 1
index_good_particl(n_good_particl) = i
else
do k = 1, N_states
psi_coef(i,k) = 0.d0
enddo
endif
else
do k = 1, N_states
psi_coef(i,k) = 0.d0
enddo
endif
enddo
norm = 0.d0
print*,''
print*,'n_good_particl = ',n_good_particl
do k = 1, N_states
print*,'state ',k
do i = 1, n_good_particl
print*,'psi_coef(index_good_particl,1) = ',psi_coef(index_good_particl(i),k)/psi_coef(index_ref_generators_restart,k)
enddo
print*,''
enddo
! Set the wave function to the intermediate normalization
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = psi_coef(i,k) * inv_coef_ref_generators_restart(k)
enddo
enddo
do k = 1, N_states
print*,'state ',k
do i = 1, N_det
!! print*,'i = ',i, psi_coef(i,1)
if (is_a_ref_det(i))then
print*,'i,psi_coef_ref = ',psi_coef(i,k)
cycle
endif
norm(k) += psi_coef(i,k) * psi_coef(i,k)
enddo
print*,'norm = ',norm
enddo
soft_touch psi_coef
deallocate(index_one_hole,index_one_hole_one_p,index_two_hole_one_p,index_two_hole,index_one_p,is_a_ref_det)
end
subroutine update_density_matrix_osoci
implicit none
BEGIN_DOC
! one_body_dm_mo_alpha_osoci += Delta rho alpha
! one_body_dm_mo_beta_osoci += Delta rho beta
END_DOC
integer :: i,j
integer :: iorb,jorb
do i = 1, mo_tot_num
do j = 1, mo_tot_num
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
enddo
enddo
end
subroutine initialize_density_matrix_osoci
implicit none
one_body_dm_mo_alpha_osoci = one_body_dm_mo_alpha_generators_restart
one_body_dm_mo_beta_osoci = one_body_dm_mo_beta_generators_restart
end
subroutine rescale_density_matrix_osoci(norm)
implicit none
double precision, intent(in) :: norm(N_states)
integer :: i,j
double precision :: norm_tmp
norm_tmp = 0.d0
do i = 1, N_states
norm_tmp += norm(i)
enddo
print*,'norm = ',norm_tmp
do i = 1, mo_tot_num
do j = 1,mo_tot_num
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) * norm_tmp
one_body_dm_mo_beta_osoci(j,i) = one_body_dm_mo_beta_osoci(j,i) * norm_tmp
enddo
enddo
end
subroutine save_osoci_natural_mos
implicit none
BEGIN_DOC
! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:),tmp_bis(:,:)
integer, allocatable :: occ(:,:)
integer :: n_occ_alpha,i,i_core,j_core,iorb,jorb,j,i_inact,j_inact,i_virt,j_virt
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
allocate(tmp_bis(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
allocate (occ(N_int*bit_kind_size,2))
! Negation to have the occupied MOs first after the diagonalization
tmp_bis = -one_body_dm_mo_alpha_osoci - one_body_dm_mo_beta_osoci
! Set to Zero the core-inact-act-virt part
do i = 1, n_core_orb
i_core = list_core(i)
tmp_bis(i_core,i_core) = -10.d0
do j = i+1, n_core_orb
j_core = list_core(j)
tmp_bis(i_core,j_core) = 0.d0
tmp_bis(j_core,i_core) = 0.d0
enddo
do j = 1, n_inact_orb
iorb = list_inact(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
do j = 1, n_act_orb
iorb = list_act(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
do j = 1, n_virt_orb
iorb = list_virt(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
enddo
do i = 1, n_core_orb
print*,'dm core = ',list_core(i),tmp_bis(list_core(i),list_core(i))
enddo
! Set to Zero the inact-inact part to avoid arbitrary rotations
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = i+1, n_inact_orb
j_inact = list_inact(j)
tmp_bis(i_inact,j_inact) = 0.d0
tmp_bis(j_inact,i_inact) = 0.d0
enddo
enddo
! Set to Zero the inact-virt part to avoid arbitrary rotations
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = 1, n_virt_orb
j_virt = list_virt(j)
tmp_bis(i_inact,j_virt) = 0.d0
tmp_bis(j_virt,i_inact) = 0.d0
enddo
enddo
! Set to Zero the virt-virt part to avoid arbitrary rotations
do i = 1, n_virt_orb
i_virt = list_virt(i)
do j = i+1, n_virt_orb
j_virt = list_virt(j)
tmp_bis(i_virt,j_virt) = 0.d0
tmp_bis(j_virt,i_virt) = 0.d0
enddo
enddo
double precision :: accu
! Set to Zero the act-act part to avoid arbitrary rotations
do i = 1,n_act_orb
iorb = list_act(i)
do j = i+1,n_act_orb
jorb = list_act(j)
tmp_bis(iorb,jorb) = 0.d0
tmp_bis(jorb,iorb) = 0.d0
enddo
enddo
tmp = tmp_bis
!! Symetrization act-virt
do j = 1, n_virt_orb
j_virt= list_virt(j)
accu = 0.d0
do i = 1, n_act_orb
jorb = list_act(i)
accu += dabs(tmp_bis(j_virt,jorb))
enddo
do i = 1, n_act_orb
iorb = list_act(i)
tmp(j_virt,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
tmp(iorb,j_virt) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
enddo
enddo
!! Symetrization act-inact
!do j = 1, n_inact_orb
! j_inact = list_inact(j)
! accu = 0.d0
! do i = 1, n_act_orb
! jorb = list_act(i)
! accu += dabs(tmp_bis(j_inact,jorb))
! enddo
! do i = 1, n_act_orb
! iorb = list_act(i)
! tmp(j_inact,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_inact,iorb))
! tmp(iorb,j_inact) = dsign(accu/dble(n_act_orb),tmp_bis(j_inact,iorb))
! enddo
!enddo
!!! Symetrization act-act
!!accu = 0.d0
!!do i = 1, n_act_orb
!! iorb = list_act(i)
!! accu += tmp_bis(iorb,iorb)
!!enddo
!!do i = 1, n_act_orb
!! iorb = list_act(i)
!! tmp(iorb,iorb) = accu/dble(n_act_orb)
!!enddo
call bitstring_to_list(reunion_of_bitmask(1,1), occ(1,1), n_occ_alpha, N_int)
double precision :: maxvaldm,imax,jmax
maxvaldm = 0.d0
imax = 1
jmax = 1
print*,''
print*,'Inactive-active Part of the One body DM'
print*,''
do i = 1,n_act_orb
iorb = list_act(i)
print*,''
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
endif
enddo
enddo
do i = 1, mo_tot_num
do j = i+1, mo_tot_num
if(dabs(tmp(i,j)).le.threshold_fobo_dm)then
tmp(i,j) = 0.d0
tmp(j,i) = 0.d0
endif
enddo
enddo
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
deallocate(tmp,occ)
end
subroutine set_osoci_natural_mos
implicit none
BEGIN_DOC
! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:),tmp_bis(:,:)
integer, allocatable :: occ(:,:)
integer :: n_occ_alpha,i,i_core,j_core,iorb,jorb,j,i_inact,j_inact,i_virt,j_virt
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
allocate(tmp_bis(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
allocate (occ(N_int*bit_kind_size,2))
! Negation to have the occupied MOs first after the diagonalization
tmp_bis = -one_body_dm_mo_alpha_osoci - one_body_dm_mo_beta_osoci
! Set to Zero the core-inact-act-virt part
do i = 1, n_core_orb
i_core = list_core(i)
tmp_bis(i_core,i_core) = -10.d0
do j = i+1, n_core_orb
j_core = list_core(j)
tmp_bis(i_core,j_core) = 0.d0
tmp_bis(j_core,i_core) = 0.d0
enddo
do j = 1, n_inact_orb
iorb = list_inact(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
do j = 1, n_act_orb
iorb = list_act(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
do j = 1, n_virt_orb
iorb = list_virt(j)
tmp_bis(i_core,iorb) = 0.d0
tmp_bis(iorb,i_core) = 0.d0
enddo
enddo
do i = 1, n_core_orb
print*,'dm core = ',list_core(i),tmp_bis(list_core(i),list_core(i))
enddo
! Set to Zero the inact-inact part to avoid arbitrary rotations
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = i+1, n_inact_orb
j_inact = list_inact(j)
tmp_bis(i_inact,j_inact) = 0.d0
tmp_bis(j_inact,i_inact) = 0.d0
enddo
enddo
! Set to Zero the inact-virt part to avoid arbitrary rotations
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = 1, n_virt_orb
j_virt = list_virt(j)
tmp_bis(i_inact,j_virt) = 0.d0
tmp_bis(j_virt,i_inact) = 0.d0
enddo
enddo
! Set to Zero the virt-virt part to avoid arbitrary rotations
do i = 1, n_virt_orb
i_virt = list_virt(i)
do j = i+1, n_virt_orb
j_virt = list_virt(j)
tmp_bis(i_virt,j_virt) = 0.d0
tmp_bis(j_virt,i_virt) = 0.d0
enddo
enddo
double precision :: accu
! Set to Zero the act-act part to avoid arbitrary rotations
do i = 1,n_act_orb
iorb = list_act(i)
do j = i+1,n_act_orb
jorb = list_act(j)
tmp_bis(iorb,jorb) = 0.d0
tmp_bis(jorb,iorb) = 0.d0
enddo
enddo
tmp = tmp_bis
call bitstring_to_list(reunion_of_bitmask(1,1), occ(1,1), n_occ_alpha, N_int)
double precision :: maxvaldm,imax,jmax
maxvaldm = 0.d0
imax = 1
jmax = 1
print*,''
print*,'Inactive-active Part of the One body DM'
print*,''
do i = 1,n_act_orb
iorb = list_act(i)
print*,''
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
endif
enddo
enddo
do i = 1, mo_tot_num
do j = i+1, mo_tot_num
if(dabs(tmp(i,j)).le.threshold_fobo_dm)then
tmp(i,j) = 0.d0
tmp(j,i) = 0.d0
endif
enddo
enddo
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
deallocate(tmp,occ)
end
subroutine check_symetry(i_hole,thr,test)
implicit none
integer, intent(in) :: i_hole
double precision, intent(in) :: thr
logical, intent(out) :: test
integer :: i,j,k,l
double precision :: accu
accu = 0.d0
do i = 1, n_act_orb
accu += dabs(mo_mono_elec_integral(i_hole,list_act(i)))
enddo
if(accu.gt.thr)then
test = .True.
else
test = .false.
endif
end
subroutine check_symetry_1h1p(i_hole,i_part,thr,test)
implicit none
integer, intent(in) :: i_hole,i_part
double precision, intent(in) :: thr
logical, intent(out) :: test
integer :: i,j,k,l
double precision :: accu
accu = dabs(mo_mono_elec_integral(i_hole,i_part))
if(accu.gt.thr)then
test = .True.
else
test = .false.
endif
end
subroutine update_one_body_dm_mo
implicit none
integer :: i
double precision :: accu_tot,accu_sd
print*,'touched the one_body_dm_mo_beta'
one_body_dm_mo_alpha = one_body_dm_mo_alpha_osoci
one_body_dm_mo_beta = one_body_dm_mo_beta_osoci
touch one_body_dm_mo_alpha one_body_dm_mo_beta
accu_tot = 0.d0
accu_sd = 0.d0
do i = 1, mo_tot_num
accu_tot += one_body_dm_mo_alpha(i,i) + one_body_dm_mo_beta(i,i)
accu_sd += one_body_dm_mo_alpha(i,i) - one_body_dm_mo_beta(i,i)
enddo
print*,'accu_tot = ',accu_tot
print*,'accu_sdt = ',accu_sd
end
subroutine provide_properties
implicit none
integer :: i
double precision :: accu
if(.True.)then
accu= 0.d0
do i = 1, nucl_num
accu += mulliken_spin_densities(i)
print*,i,nucl_charge(i),mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
endif
end