mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-09 12:44:07 +01:00
1122 lines
34 KiB
Fortran
1122 lines
34 KiB
Fortran
|
double precision function ao_bielec_integral(i,j,k,l)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
||
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||
|
END_DOC
|
||
|
|
||
|
integer,intent(in) :: i,j,k,l
|
||
|
integer :: p,q,r,s
|
||
|
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
||
|
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
||
|
double precision :: integral
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
||
|
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
||
|
integer :: iorder_p(3), iorder_q(3)
|
||
|
double precision :: ao_bielec_integral_schwartz_accel
|
||
|
|
||
|
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||
|
ao_bielec_integral = ao_bielec_integral_schwartz_accel(i,j,k,l)
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
dim1 = n_pt_max_integrals
|
||
|
|
||
|
num_i = ao_nucl(i)
|
||
|
num_j = ao_nucl(j)
|
||
|
num_k = ao_nucl(k)
|
||
|
num_l = ao_nucl(l)
|
||
|
ao_bielec_integral = 0.d0
|
||
|
|
||
|
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
I_center(p) = nucl_coord(num_i,p)
|
||
|
J_center(p) = nucl_coord(num_j,p)
|
||
|
K_center(p) = nucl_coord(num_k,p)
|
||
|
L_center(p) = nucl_coord(num_l,p)
|
||
|
enddo
|
||
|
|
||
|
double precision :: coef1, coef2, coef3, coef4
|
||
|
double precision :: p_inv,q_inv
|
||
|
double precision :: general_primitive_integral
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||
|
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||
|
I_power,J_power,I_center,J_center,dim1)
|
||
|
p_inv = 1.d0/pp
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||
|
K_power,L_power,K_center,L_center,dim1)
|
||
|
q_inv = 1.d0/qq
|
||
|
integral = general_primitive_integral(dim1, &
|
||
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||
|
ao_bielec_integral = ao_bielec_integral + coef4 * integral
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
else
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
enddo
|
||
|
double precision :: ERI
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||
|
integral = ERI( &
|
||
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||
|
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||
|
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||
|
I_power(3),J_power(3),K_power(3),L_power(3))
|
||
|
ao_bielec_integral = ao_bielec_integral + coef4 * integral
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
endif
|
||
|
|
||
|
end
|
||
|
|
||
|
double precision function ao_bielec_integral_schwartz_accel(i,j,k,l)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
||
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
||
|
END_DOC
|
||
|
integer,intent(in) :: i,j,k,l
|
||
|
integer :: p,q,r,s
|
||
|
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
|
||
|
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
||
|
double precision :: integral
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
||
|
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
||
|
integer :: iorder_p(3), iorder_q(3)
|
||
|
double precision, allocatable :: schwartz_kl(:,:)
|
||
|
double precision :: schwartz_ij
|
||
|
|
||
|
dim1 = n_pt_max_integrals
|
||
|
|
||
|
num_i = ao_nucl(i)
|
||
|
num_j = ao_nucl(j)
|
||
|
num_k = ao_nucl(k)
|
||
|
num_l = ao_nucl(l)
|
||
|
ao_bielec_integral_schwartz_accel = 0.d0
|
||
|
double precision :: thr
|
||
|
thr = ao_integrals_threshold*ao_integrals_threshold
|
||
|
|
||
|
allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k)))
|
||
|
|
||
|
|
||
|
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
I_center(p) = nucl_coord(num_i,p)
|
||
|
J_center(p) = nucl_coord(num_j,p)
|
||
|
K_center(p) = nucl_coord(num_k,p)
|
||
|
L_center(p) = nucl_coord(num_l,p)
|
||
|
enddo
|
||
|
|
||
|
schwartz_kl(0,0) = 0.d0
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
||
|
schwartz_kl(0,r) = 0.d0
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
||
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||
|
K_power,L_power,K_center,L_center,dim1)
|
||
|
q_inv = 1.d0/qq
|
||
|
schwartz_kl(s,r) = general_primitive_integral(dim1, &
|
||
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q, &
|
||
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q) &
|
||
|
* coef2
|
||
|
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
||
|
enddo
|
||
|
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
||
|
enddo
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
double precision :: coef1
|
||
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
double precision :: coef2
|
||
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||
|
double precision :: p_inv,q_inv
|
||
|
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||
|
I_power,J_power,I_center,J_center,dim1)
|
||
|
p_inv = 1.d0/pp
|
||
|
schwartz_ij = general_primitive_integral(dim1, &
|
||
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||
|
P_new,P_center,fact_p,pp,p_inv,iorder_p) * &
|
||
|
coef2*coef2
|
||
|
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
double precision :: coef3
|
||
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
double precision :: coef4
|
||
|
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||
|
double precision :: general_primitive_integral
|
||
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||
|
K_power,L_power,K_center,L_center,dim1)
|
||
|
q_inv = 1.d0/qq
|
||
|
integral = general_primitive_integral(dim1, &
|
||
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||
|
ao_bielec_integral_schwartz_accel = ao_bielec_integral_schwartz_accel + coef4 * integral
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
else
|
||
|
|
||
|
do p = 1, 3
|
||
|
I_power(p) = ao_power(i,p)
|
||
|
J_power(p) = ao_power(j,p)
|
||
|
K_power(p) = ao_power(k,p)
|
||
|
L_power(p) = ao_power(l,p)
|
||
|
enddo
|
||
|
double precision :: ERI
|
||
|
|
||
|
schwartz_kl(0,0) = 0.d0
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k)
|
||
|
schwartz_kl(0,r) = 0.d0
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l)
|
||
|
schwartz_kl(s,r) = ERI( &
|
||
|
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||
|
K_power(1),L_power(1),K_power(1),L_power(1), &
|
||
|
K_power(2),L_power(2),K_power(2),L_power(2), &
|
||
|
K_power(3),L_power(3),K_power(3),L_power(3)) * &
|
||
|
coef2
|
||
|
schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r))
|
||
|
enddo
|
||
|
schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0))
|
||
|
enddo
|
||
|
|
||
|
do p = 1, ao_prim_num(i)
|
||
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||
|
do q = 1, ao_prim_num(j)
|
||
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||
|
schwartz_ij = ERI( &
|
||
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),&
|
||
|
I_power(1),J_power(1),I_power(1),J_power(1), &
|
||
|
I_power(2),J_power(2),I_power(2),J_power(2), &
|
||
|
I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2
|
||
|
if (schwartz_kl(0,0)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
do r = 1, ao_prim_num(k)
|
||
|
if (schwartz_kl(0,r)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||
|
do s = 1, ao_prim_num(l)
|
||
|
if (schwartz_kl(s,r)*schwartz_ij < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||
|
integral = ERI( &
|
||
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||
|
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||
|
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||
|
I_power(3),J_power(3),K_power(3),L_power(3))
|
||
|
ao_bielec_integral_schwartz_accel = ao_bielec_integral_schwartz_accel + coef4 * integral
|
||
|
enddo ! s
|
||
|
enddo ! r
|
||
|
enddo ! q
|
||
|
enddo ! p
|
||
|
|
||
|
endif
|
||
|
deallocate (schwartz_kl)
|
||
|
|
||
|
end
|
||
|
|
||
|
|
||
|
integer function ao_l4(i,j,k,l)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Computes the product of l values of i,j,k,and l
|
||
|
END_DOC
|
||
|
integer, intent(in) :: i,j,k,l
|
||
|
ao_l4 = ao_l(i)*ao_l(j)*ao_l(k)*ao_l(l)
|
||
|
end
|
||
|
|
||
|
|
||
|
|
||
|
subroutine compute_ao_bielec_integrals(j,k,l,sze,buffer_value)
|
||
|
implicit none
|
||
|
use map_module
|
||
|
|
||
|
BEGIN_DOC
|
||
|
! Compute AO 1/r12 integrals for all i and fixed j,k,l
|
||
|
END_DOC
|
||
|
|
||
|
include 'Utils/constants.include.F'
|
||
|
integer, intent(in) :: j,k,l,sze
|
||
|
real(integral_kind), intent(out) :: buffer_value(sze)
|
||
|
double precision :: ao_bielec_integral
|
||
|
|
||
|
integer :: i
|
||
|
|
||
|
if (ao_overlap_abs(j,l) < thresh) then
|
||
|
buffer_value = 0._integral_kind
|
||
|
return
|
||
|
endif
|
||
|
if (ao_bielec_integral_schwartz(j,l) < thresh ) then
|
||
|
buffer_value = 0._integral_kind
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
do i = 1, ao_num
|
||
|
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thresh) then
|
||
|
buffer_value(i) = 0._integral_kind
|
||
|
cycle
|
||
|
endif
|
||
|
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh ) then
|
||
|
buffer_value(i) = 0._integral_kind
|
||
|
cycle
|
||
|
endif
|
||
|
!DIR$ FORCEINLINE
|
||
|
buffer_value(i) = ao_bielec_integral(i,k,j,l)
|
||
|
enddo
|
||
|
|
||
|
end
|
||
|
|
||
|
double precision function general_primitive_integral(dim, &
|
||
|
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
||
|
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||
|
END_DOC
|
||
|
integer,intent(in) :: dim
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
||
|
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
||
|
integer, intent(in) :: iorder_p(3)
|
||
|
integer, intent(in) :: iorder_q(3)
|
||
|
|
||
|
double precision :: r_cut,gama_r_cut,rho,dist
|
||
|
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
||
|
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||
|
double precision :: bla
|
||
|
integer :: ix,iy,iz,jx,jy,jz,i
|
||
|
double precision :: a,b,c,d,e,f,accu,pq,const
|
||
|
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||
|
integer :: n_pt_tmp,n_pt_out, iorder
|
||
|
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
||
|
|
||
|
general_primitive_integral = 0.d0
|
||
|
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||
|
|
||
|
! Gaussian Product
|
||
|
! ----------------
|
||
|
double precision :: p_plus_q
|
||
|
p_plus_q = (p+q)
|
||
|
pq = p_inv*0.5d0*q_inv
|
||
|
|
||
|
pq_inv = 0.5d0/p_plus_q
|
||
|
p10_1 = q*pq ! 1/(2p)
|
||
|
p01_1 = p*pq ! 1/(2q)
|
||
|
pq_inv_2 = pq_inv+pq_inv
|
||
|
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||
|
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||
|
|
||
|
|
||
|
accu = 0.d0
|
||
|
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix=0,iorder
|
||
|
Ix_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Ix = 0
|
||
|
do ix = 0, iorder_p(1)
|
||
|
if (abs(P_new(ix,1)) < thresh) cycle
|
||
|
a = P_new(ix,1)
|
||
|
do jx = 0, iorder_q(1)
|
||
|
d = a*Q_new(jx,1)
|
||
|
if (abs(d) < thresh) cycle
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
||
|
enddo
|
||
|
enddo
|
||
|
if (n_Ix == -1) then
|
||
|
return
|
||
|
endif
|
||
|
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix=0, iorder
|
||
|
Iy_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iy = 0
|
||
|
do iy = 0, iorder_p(2)
|
||
|
if (abs(P_new(iy,2)) > thresh) then
|
||
|
b = P_new(iy,2)
|
||
|
do jy = 0, iorder_q(2)
|
||
|
e = b*Q_new(jy,2)
|
||
|
if (abs(e) < thresh) cycle
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if (n_Iy == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||
|
do ix=0,iorder
|
||
|
Iz_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iz = 0
|
||
|
do iz = 0, iorder_p(3)
|
||
|
if (abs(P_new(iz,3)) > thresh) then
|
||
|
c = P_new(iz,3)
|
||
|
do jz = 0, iorder_q(3)
|
||
|
f = c*Q_new(jz,3)
|
||
|
if (abs(f) < thresh) cycle
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if (n_Iz == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
rho = p*q *pq_inv_2 ! le rho qui va bien
|
||
|
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||
|
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||
|
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||
|
const = dist*rho
|
||
|
|
||
|
n_pt_tmp = n_Ix+n_Iy
|
||
|
do i=0,n_pt_tmp
|
||
|
d_poly(i)=0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||
|
if (n_pt_tmp == -1) then
|
||
|
return
|
||
|
endif
|
||
|
n_pt_out = n_pt_tmp+n_Iz
|
||
|
do i=0,n_pt_out
|
||
|
d1(i)=0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||
|
double precision :: rint_sum
|
||
|
accu = accu + rint_sum(n_pt_out,const,d1)
|
||
|
|
||
|
! change p+q in dsqrt
|
||
|
general_primitive_integral = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p_plus_q)
|
||
|
end
|
||
|
|
||
|
|
||
|
double precision function ERI(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! ATOMIC PRIMTIVE bielectronic integral between the 4 primitives ::
|
||
|
! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
|
||
|
! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
|
||
|
! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2)
|
||
|
! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2)
|
||
|
END_DOC
|
||
|
double precision, intent(in) :: delta,gama,alpha,beta
|
||
|
integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
|
||
|
integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2
|
||
|
integer :: i,j,k,l,n_pt
|
||
|
integer :: n_pt_sup
|
||
|
double precision :: p,q,denom,coeff
|
||
|
double precision :: I_f
|
||
|
integer :: nx,ny,nz
|
||
|
include 'Utils/constants.include.F'
|
||
|
nx = a_x+b_x+c_x+d_x
|
||
|
if(iand(nx,1) == 1) then
|
||
|
ERI = 0.d0
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
ny = a_y+b_y+c_y+d_y
|
||
|
if(iand(ny,1) == 1) then
|
||
|
ERI = 0.d0
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
nz = a_z+b_z+c_z+d_z
|
||
|
if(iand(nz,1) == 1) then
|
||
|
ERI = 0.d0
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
ASSERT (alpha >= 0.d0)
|
||
|
ASSERT (beta >= 0.d0)
|
||
|
ASSERT (delta >= 0.d0)
|
||
|
ASSERT (gama >= 0.d0)
|
||
|
p = alpha + beta
|
||
|
q = delta + gama
|
||
|
double precision :: p_plus_q
|
||
|
p_plus_q = (p+q)
|
||
|
ASSERT (p+q >= 0.d0)
|
||
|
n_pt = ishft( nx+ny+nz,1 )
|
||
|
|
||
|
coeff = pi_5_2 / (p * q * dsqrt(p_plus_q))
|
||
|
if (n_pt == 0) then
|
||
|
ERI = coeff
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
call integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
|
||
|
|
||
|
ERI = I_f * coeff
|
||
|
end
|
||
|
|
||
|
|
||
|
subroutine integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt)
|
||
|
BEGIN_DOC
|
||
|
! calculate the integral of the polynom ::
|
||
|
! I_x1(a_x+b_x, c_x+d_x,p,q) * I_x1(a_y+b_y, c_y+d_y,p,q) * I_x1(a_z+b_z, c_z+d_z,p,q)
|
||
|
! between ( 0 ; 1)
|
||
|
END_DOC
|
||
|
|
||
|
|
||
|
implicit none
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision :: p,q
|
||
|
integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
|
||
|
integer :: i, n_iter, n_pt, j
|
||
|
double precision :: I_f, pq_inv, p10_1, p10_2, p01_1, p01_2,rho,pq_inv_2
|
||
|
integer :: ix,iy,iz, jx,jy,jz, sx,sy,sz
|
||
|
double precision :: p_plus_q
|
||
|
|
||
|
j = ishft(n_pt,-1)
|
||
|
ASSERT (n_pt > 1)
|
||
|
p_plus_q = (p+q)
|
||
|
pq_inv = 0.5d0/(p_plus_q)
|
||
|
pq_inv_2 = pq_inv + pq_inv
|
||
|
p10_1 = 0.5d0/p
|
||
|
p01_1 = 0.5d0/q
|
||
|
p10_2 = 0.5d0 * q /(p * p_plus_q)
|
||
|
p01_2 = 0.5d0 * p /(q * p_plus_q)
|
||
|
double precision :: B00(n_pt_max_integrals)
|
||
|
double precision :: B10(n_pt_max_integrals), B01(n_pt_max_integrals)
|
||
|
double precision :: t1(n_pt_max_integrals), t2(n_pt_max_integrals)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: t1, t2, B10, B01, B00
|
||
|
ix = a_x+b_x
|
||
|
jx = c_x+d_x
|
||
|
iy = a_y+b_y
|
||
|
jy = c_y+d_y
|
||
|
iz = a_z+b_z
|
||
|
jz = c_z+d_z
|
||
|
sx = ix+jx
|
||
|
sy = iy+jy
|
||
|
sz = iz+jz
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i = 1,n_pt
|
||
|
B10(i) = p10_1 - gauleg_t2(i,j)* p10_2
|
||
|
B01(i) = p01_1 - gauleg_t2(i,j)* p01_2
|
||
|
B00(i) = gauleg_t2(i,j)*pq_inv
|
||
|
enddo
|
||
|
if (sx > 0) then
|
||
|
call I_x1_new(ix,jx,B10,B01,B00,t1,n_pt)
|
||
|
else
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i = 1,n_pt
|
||
|
t1(i) = 1.d0
|
||
|
enddo
|
||
|
endif
|
||
|
if (sy > 0) then
|
||
|
call I_x1_new(iy,jy,B10,B01,B00,t2,n_pt)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i = 1,n_pt
|
||
|
t1(i) = t1(i)*t2(i)
|
||
|
enddo
|
||
|
endif
|
||
|
if (sz > 0) then
|
||
|
call I_x1_new(iz,jz,B10,B01,B00,t2,n_pt)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i = 1,n_pt
|
||
|
t1(i) = t1(i)*t2(i)
|
||
|
enddo
|
||
|
endif
|
||
|
I_f= 0.d0
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i = 1,n_pt
|
||
|
I_f += gauleg_w(i,j)*t1(i)
|
||
|
enddo
|
||
|
|
||
|
|
||
|
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x1_new(a,c,B_10,B_01,B_00,res,n_pt)
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
implicit none
|
||
|
include 'Utils/constants.include.F'
|
||
|
integer, intent(in) :: a,c,n_pt
|
||
|
double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals)
|
||
|
double precision, intent(out) :: res(n_pt_max_integrals)
|
||
|
double precision :: res2(n_pt_max_integrals)
|
||
|
integer :: i
|
||
|
|
||
|
if(c<0)then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = 0.d0
|
||
|
enddo
|
||
|
else if (a==0) then
|
||
|
call I_x2_new(c,B_10,B_01,B_00,res,n_pt)
|
||
|
else if (a==1) then
|
||
|
call I_x2_new(c-1,B_10,B_01,B_00,res,n_pt)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = c * B_00(i) * res(i)
|
||
|
enddo
|
||
|
else
|
||
|
call I_x1_new(a-2,c,B_10,B_01,B_00,res,n_pt)
|
||
|
call I_x1_new(a-1,c-1,B_10,B_01,B_00,res2,n_pt)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = (a-1) * B_10(i) * res(i) &
|
||
|
+ c * B_00(i) * res2(i)
|
||
|
enddo
|
||
|
endif
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x2_new(c,B_10,B_01,B_00,res,n_pt)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
include 'Utils/constants.include.F'
|
||
|
integer, intent(in) :: c, n_pt
|
||
|
double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals)
|
||
|
double precision, intent(out) :: res(n_pt_max_integrals)
|
||
|
integer :: i
|
||
|
|
||
|
if(c==1)then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = 0.d0
|
||
|
enddo
|
||
|
elseif(c==0) then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = 1.d0
|
||
|
enddo
|
||
|
else
|
||
|
call I_x1_new(0,c-2,B_10,B_01,B_00,res,n_pt)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do i=1,n_pt
|
||
|
res(i) = (c-1) * B_01(i) * res(i)
|
||
|
enddo
|
||
|
endif
|
||
|
end
|
||
|
|
||
|
|
||
|
integer function n_pt_sup(a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Returns the upper boundary of the degree of the polynomial involved in the
|
||
|
! bielctronic integral :
|
||
|
! Ix(a_x,b_x,c_x,d_x) * Iy(a_y,b_y,c_y,d_y) * Iz(a_z,b_z,c_z,d_z)
|
||
|
END_DOC
|
||
|
integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z
|
||
|
n_pt_sup = ishft( a_x+b_x+c_x+d_x + a_y+b_y+c_y+d_y + a_z+b_z+c_z+d_z,1 )
|
||
|
end
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
subroutine give_polynom_mult_center_x(P_center,Q_center,a_x,d_x,p,q,n_pt_in,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,d,n_pt_out)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! subroutine that returns the explicit polynom in term of the "t"
|
||
|
! variable of the following polynomw :
|
||
|
! I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q)
|
||
|
END_DOC
|
||
|
integer, intent(in) :: n_pt_in
|
||
|
integer,intent(out) :: n_pt_out
|
||
|
integer, intent(in) :: a_x,d_x
|
||
|
double precision, intent(in) :: P_center, Q_center
|
||
|
double precision, intent(in) :: p,q,pq_inv,p10_1,p01_1,p10_2,p01_2,pq_inv_2
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision,intent(out) :: d(0:max_dim)
|
||
|
double precision :: accu
|
||
|
accu = 0.d0
|
||
|
ASSERT (n_pt_in >= 0)
|
||
|
! pq_inv = 0.5d0/(p+q)
|
||
|
! pq_inv_2 = 1.d0/(p+q)
|
||
|
! p10_1 = 0.5d0/p
|
||
|
! p01_1 = 0.5d0/q
|
||
|
! p10_2 = 0.5d0 * q /(p * q + p * p)
|
||
|
! p01_2 = 0.5d0 * p /(q * q + q * p)
|
||
|
double precision :: B10(0:2), B01(0:2), B00(0:2),C00(0:2),D00(0:2)
|
||
|
B10(0) = p10_1
|
||
|
B10(1) = 0.d0
|
||
|
B10(2) = - p10_2
|
||
|
! B10 = p01_1 - t**2 * p10_2
|
||
|
B01(0) = p01_1
|
||
|
B01(1) = 0.d0
|
||
|
B01(2) = - p01_2
|
||
|
! B01 = p01_1- t**2 * pq_inv
|
||
|
B00(0) = 0.d0
|
||
|
B00(1) = 0.d0
|
||
|
B00(2) = pq_inv
|
||
|
! B00 = t**2 * pq_inv
|
||
|
do i = 0,n_pt_in
|
||
|
d(i) = 0.d0
|
||
|
enddo
|
||
|
integer :: n_pt1,dim,i
|
||
|
n_pt1 = n_pt_in
|
||
|
! C00 = -q/(p+q)*(Px-Qx) * t^2
|
||
|
C00(0) = 0.d0
|
||
|
C00(1) = 0.d0
|
||
|
C00(2) = -q*(P_center-Q_center) * pq_inv_2
|
||
|
! D00 = -p/(p+q)*(Px-Qx) * t^2
|
||
|
D00(0) = 0.d0
|
||
|
D00(1) = 0.d0
|
||
|
D00(2) = -p*(Q_center-P_center) * pq_inv_2
|
||
|
!D00(2) = -p*(Q_center(1)-P_center(1)) /(p+q)
|
||
|
!DIR$ FORCEINLINE
|
||
|
call I_x1_pol_mult(a_x,d_x,B10,B01,B00,C00,D00,d,n_pt1,n_pt_in)
|
||
|
n_pt_out = n_pt1
|
||
|
if(n_pt1<0)then
|
||
|
n_pt_out = -1
|
||
|
do i = 0,n_pt_in
|
||
|
d(i) = 0.d0
|
||
|
enddo
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
end
|
||
|
|
||
|
subroutine I_x1_pol_mult(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
integer , intent(in) :: n_pt_in
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision,intent(inout) :: d(0:max_dim)
|
||
|
integer,intent(inout) :: nd
|
||
|
integer, intent(in) :: a,c
|
||
|
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
|
||
|
if( (c>=0).and.(nd>=0) )then
|
||
|
|
||
|
if (a==1) then
|
||
|
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
else if (a==2) then
|
||
|
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
else if (a>2) then
|
||
|
call I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
else ! a == 0
|
||
|
|
||
|
if( c==0 )then
|
||
|
nd = 0
|
||
|
d(0) = 1.d0
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
endif
|
||
|
else
|
||
|
nd = -1
|
||
|
endif
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
integer , intent(in) :: n_pt_in
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision,intent(inout) :: d(0:max_dim)
|
||
|
integer,intent(inout) :: nd
|
||
|
integer, intent(in) :: a,c
|
||
|
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
|
||
|
double precision :: X(0:max_dim)
|
||
|
double precision :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
integer :: nx, ix,iy,ny
|
||
|
|
||
|
ASSERT (a>2)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
nx = 0
|
||
|
if (a==3) then
|
||
|
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
else if (a==4) then
|
||
|
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
else
|
||
|
ASSERT (a>=5)
|
||
|
call I_x1_pol_mult_recurs(a-2,c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
endif
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,nx
|
||
|
X(ix) *= dble(a-1)
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_10,2,d,nd)
|
||
|
|
||
|
nx = nd
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
if (c>0) then
|
||
|
if (a==3) then
|
||
|
call I_x1_pol_mult_a2(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
else
|
||
|
ASSERT(a >= 4)
|
||
|
call I_x1_pol_mult_recurs(a-1,c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
endif
|
||
|
if (c>1) then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,nx
|
||
|
X(ix) *= c
|
||
|
enddo
|
||
|
endif
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_00,2,d,nd)
|
||
|
endif
|
||
|
|
||
|
ny=0
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
ASSERT(a > 2)
|
||
|
if (a==3) then
|
||
|
call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||
|
else
|
||
|
ASSERT(a >= 4)
|
||
|
call I_x1_pol_mult_recurs(a-1,c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||
|
endif
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||
|
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
integer , intent(in) :: n_pt_in
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision,intent(inout) :: d(0:max_dim)
|
||
|
integer,intent(inout) :: nd
|
||
|
integer, intent(in) :: c
|
||
|
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
|
||
|
double precision :: X(0:max_dim)
|
||
|
double precision :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
integer :: nx, ix,iy,ny
|
||
|
|
||
|
if( (c<0).or.(nd<0) )then
|
||
|
nd = -1
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
nx = nd
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
|
||
|
if (c>1) then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,nx
|
||
|
X(ix) *= dble(c)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_00,2,d,nd)
|
||
|
|
||
|
ny=0
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||
|
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
integer , intent(in) :: n_pt_in
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision,intent(inout) :: d(0:max_dim)
|
||
|
integer,intent(inout) :: nd
|
||
|
integer, intent(in) :: c
|
||
|
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
|
||
|
double precision :: X(0:max_dim)
|
||
|
double precision :: Y(0:max_dim)
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y
|
||
|
integer :: nx, ix,iy,ny
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
nx = 0
|
||
|
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_10,2,d,nd)
|
||
|
|
||
|
nx = nd
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
!DIR$ FORCEINLINE
|
||
|
call I_x1_pol_mult_a1(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||
|
|
||
|
if (c>1) then
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,nx
|
||
|
X(ix) *= dble(c)
|
||
|
enddo
|
||
|
endif
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_00,2,d,nd)
|
||
|
|
||
|
ny=0
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(8)
|
||
|
do ix=0,n_pt_in
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
!DEC$ FORCEINLINE
|
||
|
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||
|
|
||
|
end
|
||
|
|
||
|
recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! recursive function involved in the bielectronic integral
|
||
|
END_DOC
|
||
|
integer , intent(in) :: dim
|
||
|
include 'Utils/constants.include.F'
|
||
|
double precision :: d(0:max_dim)
|
||
|
integer,intent(inout) :: nd
|
||
|
integer, intent(in) :: c
|
||
|
double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2)
|
||
|
integer :: nx, ix,ny
|
||
|
double precision :: X(0:max_dim),Y(0:max_dim)
|
||
|
!DEC$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y
|
||
|
integer :: i
|
||
|
|
||
|
select case (c)
|
||
|
case (0)
|
||
|
nd = 0
|
||
|
d(0) = 1.d0
|
||
|
return
|
||
|
|
||
|
case (:-1)
|
||
|
nd = -1
|
||
|
return
|
||
|
|
||
|
case (1)
|
||
|
nd = 2
|
||
|
d(0) = D_00(0)
|
||
|
d(1) = D_00(1)
|
||
|
d(2) = D_00(2)
|
||
|
return
|
||
|
|
||
|
case (2)
|
||
|
nd = 2
|
||
|
d(0) = B_01(0)
|
||
|
d(1) = B_01(1)
|
||
|
d(2) = B_01(2)
|
||
|
|
||
|
ny = 2
|
||
|
Y(0) = D_00(0)
|
||
|
Y(1) = D_00(1)
|
||
|
Y(2) = D_00(2)
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Y,ny,D_00,2,d,nd)
|
||
|
return
|
||
|
|
||
|
case default
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix=0,c+c
|
||
|
X(ix) = 0.d0
|
||
|
enddo
|
||
|
nx = 0
|
||
|
call I_x2_pol_mult(c-2,B_10,B_01,B_00,C_00,D_00,X,nx,dim)
|
||
|
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix=0,nx
|
||
|
X(ix) *= dble(c-1)
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(X,nx,B_01,2,d,nd)
|
||
|
|
||
|
ny = 0
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
!DIR$ LOOP COUNT(6)
|
||
|
do ix=0,c+c
|
||
|
Y(ix) = 0.d0
|
||
|
enddo
|
||
|
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,Y,ny,dim)
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Y,ny,D_00,2,d,nd)
|
||
|
|
||
|
end select
|
||
|
end
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||
|
implicit none
|
||
|
use map_module
|
||
|
BEGIN_DOC
|
||
|
! Parallel client for AO integrals
|
||
|
END_DOC
|
||
|
|
||
|
integer, intent(in) :: j,l
|
||
|
integer,intent(out) :: n_integrals
|
||
|
integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num)
|
||
|
real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num)
|
||
|
|
||
|
integer :: i,k
|
||
|
double precision :: ao_bielec_integral,cpu_1,cpu_2, wall_1, wall_2
|
||
|
double precision :: integral, wall_0
|
||
|
double precision :: thr
|
||
|
integer :: kk, m, j1, i1
|
||
|
|
||
|
thr = ao_integrals_threshold
|
||
|
|
||
|
n_integrals = 0
|
||
|
|
||
|
j1 = j+ishft(l*l-l,-1)
|
||
|
do k = 1, ao_num ! r1
|
||
|
i1 = ishft(k*k-k,-1)
|
||
|
if (i1 > j1) then
|
||
|
exit
|
||
|
endif
|
||
|
do i = 1, k
|
||
|
i1 += 1
|
||
|
if (i1 > j1) then
|
||
|
exit
|
||
|
endif
|
||
|
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thr ) then
|
||
|
cycle
|
||
|
endif
|
||
|
!DIR$ FORCEINLINE
|
||
|
integral = ao_bielec_integral(i,k,j,l) ! i,k : r1 j,l : r2
|
||
|
if (abs(integral) < thr) then
|
||
|
cycle
|
||
|
endif
|
||
|
n_integrals += 1
|
||
|
!DIR$ FORCEINLINE
|
||
|
call bielec_integrals_index(i,j,k,l,buffer_i(n_integrals))
|
||
|
buffer_value(n_integrals) = integral
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
end
|