10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-26 23:22:18 +02:00
quantum_package/src/Utils/README.rst

178 lines
7.4 KiB
ReStructuredText
Raw Normal View History

2014-04-03 16:23:27 +02:00
============
Utils Module
============
2014-04-07 20:01:30 +02:00
Contains general purpose utilities.
2014-04-03 16:23:27 +02:00
2014-05-13 13:57:58 +02:00
Documentation
=============
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L/subroutine apply_rotation(A,LDA,R,LDR,B,LDB,m,n)/;"
>`_
Apply the rotation found by find_rotation
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L/subroutine find_rotation(A,LDA,B,m,C,n)/;"
>`_
Find A.C = B
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L/subroutine get_pseudo_inverse(A,m,n,C,LDA)/;"
>`_
Find C = A^-1
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L/subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)/;"
>`_
Diagonalize matrix H
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L/subroutine ortho_lowdin(overlap,lda,n,C,ldc,m)/;"
>`_
Compute U.S^-1/2 canonical orthogonalization
`add_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine add_poly(b,nb,c,nc,d,nd)/;"
>`_
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
`add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine add_poly_multiply(b,nb,cst,d,nd)/;"
>`_
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function F_integral(n,p)/;"
>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
`gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine gaussian_product(a,xa,b,xb,k,p,xp)/;"
>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)/;"
>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)/;"
>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)/;"
>`_
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
`hermite <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function hermite(n,x)/;"
>`_
Hermite polynomial
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine multiply_poly(b,nb,c,nc,d,nd)/;"
>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
`recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)/;"
>`_
Recenter two polynomials
`rint <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function rint(n,rho)/;"
>`_
.. math::
.br
\int_0^1 dx \exp(-p x^2) x^n
.br
`rint1 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function rint1(n,rho)/;"
>`_
Standard version of rint
`rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function rint_large_n(n,rho)/;"
>`_
Version of rint for large values of n
`rint_sum <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L/double precision function rint_sum(n_pt_out,rho,d1)/;"
>`_
Needed for the calculation of two-electron integrals.
`overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L/double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_A,power_B,dim)/;"
>`_
.. math::
.br
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
.br
`overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L/subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,&
>`_
.. math::
.br
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
.br
`overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L/subroutine overlap_x_abs(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,lower_exp_val,dx,nx)/;"
>`_
.. math ::
.br
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
.br
`align_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/integer function align_double(n)/;"
>`_
Compute 1st dimension such that it is aligned for vectorization.
`binom <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/BEGIN_PROVIDER [ double precision, binom, (0:20,0:20) ]/;"
>`_
Binomial coefficients
`binom_func <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/double precision function binom_func(i,j)/;"
>`_
.. math ::
.br
\frac{i!}{j!(i-j)!}
.br
`binom_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/&BEGIN_PROVIDER [ double precision, binom_transp, (0:20,0:20) ]/;"
>`_
Binomial coefficients
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/double precision function dble_fact(n) result(fact2)/;"
>`_
n!!
`fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/double precision function fact(n)/;"
>`_
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/BEGIN_PROVIDER [ double precision, fact_inv, (128) ]/;"
>`_
1/n!
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/BEGIN_PROVIDER [ double precision, inv_int, (128) ]/;"
>`_
1/i
`nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/BEGIN_PROVIDER [ integer, nproc ]/;"
>`_
Number of current OpenMP threads
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/subroutine wall_time(t)/;"
>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L/subroutine write_git_log(iunit)/;"
>`_
Write the last git commit in file iunit.