10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-19 04:22:36 +01:00
quantum_package/src/MRCC/mrcc_utils.irp.f

289 lines
7.6 KiB
FortranFixed
Raw Normal View History

2015-04-01 13:23:02 +02:00
use bitmasks
2015-04-02 10:13:33 +02:00
BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ]
implicit none
BEGIN_DOC
! Bitmasks for CAS reference determinants. (N_int, alpha/beta, CAS reference)
END_DOC
logical :: exists
integer :: i
PROVIDE ezfio_filename
call ezfio_has_bitmasks_cas(exists)
if (exists) then
call ezfio_get_bitmasks_cas(cas_bitmask)
else
do i=1,N_cas_bitmask
cas_bitmask(:,:,i) = iand(not(HF_bitmask(:,:)),full_ijkl_bitmask(:,:))
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, N_det_cas ]
implicit none
BEGIN_DOC
! Number of generator detetrminants
END_DOC
integer :: i,k,l
logical :: good
call write_time(output_dets)
N_det_cas = 0
do i=1,N_det
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) )
enddo
if (good) then
exit
endif
enddo
if (good) then
N_det_cas += 1
endif
enddo
N_det_cas = max(N_det_cas, 1)
call write_int(output_dets,N_det_cas, 'Number of determinants in the CAS')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,N_det_cas) ]
&BEGIN_PROVIDER [ double precision, psi_cas_coefs, (N_det_cas,n_states) ]
&BEGIN_PROVIDER [ integer, idx_cas, (N_det_cas) ]
implicit none
BEGIN_DOC
! For Single reference wave functions, the generator is the
! Hartree-Fock determinant
END_DOC
integer :: i, k, l, m
logical :: good
m=0
do i=1,N_det
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) )
enddo
if (good) then
exit
endif
enddo
if (good) then
m = m+1
do k=1,N_int
psi_cas(k,1,m) = psi_det(k,1,i)
psi_cas(k,2,m) = psi_det(k,2,i)
enddo
idx_cas(m) = i
do k=1,N_states
psi_cas_coefs(m,k) = psi_coef(i,k)
enddo
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_sd, (N_int,2,N_det) ]
2015-04-01 13:23:02 +02:00
&BEGIN_PROVIDER [ double precision, psi_sd_coefs, (N_det,n_states) ]
&BEGIN_PROVIDER [ integer, idx_sd, (N_det) ]
&BEGIN_PROVIDER [ integer, N_det_sd]
implicit none
BEGIN_DOC
! SD
END_DOC
2015-04-02 10:13:33 +02:00
integer :: i_sd,j,k
2015-04-01 13:23:02 +02:00
integer :: degree
logical :: in_cas
i_sd =0
do k=1,N_det
in_cas = .False.
2015-04-02 10:13:33 +02:00
do j=1,N_det_cas
call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int)
2015-04-01 13:23:02 +02:00
if (degree == 0) then
in_cas = .True.
exit
endif
enddo
if (.not.in_cas) then
double precision :: hij
i_sd += 1
psi_sd(1:N_int,1:2,i_sd) = psi_det(1:N_int,1:2,k)
psi_sd_coefs(i_sd,1:N_states) = psi_coef(k,1:N_states)
idx_sd(i_sd) = k
endif
enddo
N_det_sd = i_sd
END_PROVIDER
BEGIN_PROVIDER [ double precision, lambda_mrcc, (psi_det_size,n_states) ]
implicit none
BEGIN_DOC
! cm/<Psi_0|H|D_m>
END_DOC
integer :: i,k
double precision :: ihpsi(N_states)
do i=1,N_det_sd
call i_h_psi(psi_sd(1,1,i), psi_cas, psi_cas_coefs, N_int, N_det_cas, &
size(psi_cas_coefs,1), n_states, ihpsi)
double precision :: hij
do k=1,N_states
if (dabs(ihpsi(k)) < 1.d-6) then
lambda_mrcc(i,k) = 0.d0
else
lambda_mrcc(i,k) = psi_sd_coefs(i,k)/ihpsi(k)
lambda_mrcc(i,k) = min( lambda_mrcc (i,k),0.d0 )
endif
enddo
enddo
END_PROVIDER
2015-04-03 14:26:14 +02:00
BEGIN_PROVIDER [ character*(32), dressing_type ]
implicit none
BEGIN_DOC
! [ Simple | MRCC ]
END_DOC
dressing_type = "MRCC"
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij_sd, (N_det_sd, N_det_sd,N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in SD basis
END_DOC
delta_ij_sd = 0.d0
2015-04-09 21:46:37 +02:00
call H_apply_mrcc_simple(delta_ij_sd,N_det_sd)
2015-04-03 14:26:14 +02:00
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
delta_ij = 0.d0
2015-04-09 21:46:37 +02:00
if (dressing_type == "MRCC") then
call H_apply_mrcc(delta_ij,N_det)
else if (dressing_type == "Simple") then
do m=1,N_states
do j=1,N_det_sd
do i=1,N_det_sd
delta_ij(idx_sd(i),idx_sd(j),m) = delta_ij_sd(i,j,m)
enddo
enddo
2015-04-03 14:26:14 +02:00
enddo
2015-04-09 21:46:37 +02:00
endif
2015-04-03 14:26:14 +02:00
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ]
implicit none
BEGIN_DOC
! Dressed H with Delta_ij
END_DOC
integer :: i, j
do j=1,N_det
do i=1,N_det
h_matrix_dressed(i,j) = h_matrix_all_dets(i,j) + delta_ij(i,j,1)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
if (diag_algorithm == "Davidson") then
stop 'use Lapack'
! call davidson_diag(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, &
! size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_Dets)
else if (diag_algorithm == "Lapack") then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
do i=1,N_det
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
enddo
integer :: i_state
double precision :: s2
i_state = 0
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
if(dabs(s2-expected_s2).le.0.3d0)then
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
endif
if (i_state.ge.N_states_diag) then
exit
endif
enddo
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the dressed CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(output_Dets)
do j=1,N_states_diag
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
enddo
END_PROVIDER
2015-04-09 21:46:37 +02:00
subroutine diagonalize_CI_dressed
implicit none
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
enddo
enddo
SOFT_TOUCH psi_coef
end