mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-19 12:32:34 +01:00
261 lines
7.0 KiB
Fortran
261 lines
7.0 KiB
Fortran
|
!*****************************************************************************
|
||
|
subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla)
|
||
|
|
||
|
! Compute the overlap integral between a Gaussian function
|
||
|
! with arbitrary angular momemtum and a s-type Slater function
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Input variables
|
||
|
double precision,intent(in) :: expGau,expSla
|
||
|
double precision,intent(in) :: cGau(3),cSla(3)
|
||
|
integer,intent(in) :: aGau(3)
|
||
|
|
||
|
! Final value of the integrals
|
||
|
double precision :: ss,ps,ds
|
||
|
double precision :: pxs,pys,pzs
|
||
|
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
|
||
|
|
||
|
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
|
||
|
|
||
|
pi = 4d0*atan(1d0)
|
||
|
|
||
|
! calculate the length AB between the two centers and other usful quantities
|
||
|
|
||
|
AB = (cGau(1)-cSla(1))**2d0 + (cGau(2)-cSla(2))**2d0 + (cGau(3)-cSla(3))**2d0
|
||
|
AB = sqrt(AB)
|
||
|
|
||
|
AxBx = (cGau(1)-cSla(1))/2d0
|
||
|
AyBy = (cGau(2)-cSla(2))/2d0
|
||
|
AzBz = (cGau(3)-cSla(3))/2d0
|
||
|
|
||
|
! intermediate variables
|
||
|
|
||
|
t = expSla*sqrt(0.25d0/expGau)
|
||
|
u = sqrt(expGau)*AB
|
||
|
|
||
|
if(AB > 0d0) then
|
||
|
|
||
|
! (s|s)
|
||
|
ss = (t+u)*erfc(t+u)*exp(2d0*t*(t+u)) - (t-u)*erfc(t-u)*exp(2d0*t*(t-u))
|
||
|
|
||
|
! (p|s)
|
||
|
ps = (exp(t**2d0-u**2d0)*(-4d0*t+sqrt(pi)*(exp((t-u)**2d0)*(1d0+2d0*t*(t-u))*erfc(t-u) &
|
||
|
+ exp((t+u)**2d0)*(1d0+2d0*t*(t+u))*erfc(t+u))))/sqrt(pi)
|
||
|
|
||
|
! (d|s)
|
||
|
ds = 4d0*exp(2d0*t*(t-u))*t*(-((1d0+t**2d0-t*u)*erfc(t-u))+exp(4d0*t*u)*(1d0+t*(t+u))*erfc(t+u))
|
||
|
|
||
|
! backward scaling
|
||
|
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
|
||
|
ps = ps/u**2d0-ss/u**3d0
|
||
|
ss = ss/u
|
||
|
|
||
|
else
|
||
|
|
||
|
! concentric case
|
||
|
ss = 2d0*exp(t**2d0)*((-2d0*t)/sqrt(pi)+exp(t**2d0)*(1d0+2d0*t**2d0)*erfc(t))
|
||
|
ps = (8d0*exp(t**2d0)*t*(-2d0*(1d0+t**2d0)+exp(t**2d0)*sqrt(pi)*t*(3d0+2d0*t**2d0)*erfc(t)))/(3d0*sqrt(pi))
|
||
|
|
||
|
endif
|
||
|
|
||
|
k = t**3d0*exp(-t**2d0)*4d0*pi/expSla**(3d0/2d0)
|
||
|
|
||
|
! (s|s)
|
||
|
ss = k*ss
|
||
|
|
||
|
! (p|s)
|
||
|
ps = k*ps
|
||
|
|
||
|
pxs = AxBx*ps
|
||
|
pys = AyBy*ps
|
||
|
pzs = AzBz*ps
|
||
|
|
||
|
! (d|s)
|
||
|
ds = k*ds
|
||
|
|
||
|
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2d0*ds
|
||
|
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2d0*ds
|
||
|
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2d0*ds
|
||
|
|
||
|
dxys = AxBx*AyBy*ds
|
||
|
dxzs = AxBx*AzBz*ds
|
||
|
dyzs = AyBy*AzBz*ds
|
||
|
|
||
|
! Print result
|
||
|
write(*,'(A10,F16.10)') &
|
||
|
'(s|s) = ',ss
|
||
|
write(*,'(A10,F16.10,3X,A10,F16.10,3X,A10,F16.10)') &
|
||
|
'(px|s) = ',pxs,'(py|s) = ',pys,'(pz|s) = ',pzs
|
||
|
write(*,'(A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10)') &
|
||
|
'(dx2|s) = ',dxxs,'(dy2|s) = ',dyys,'(dz2|s) = ',dzzs,'(dxy|s) = ',dxys,'(dxz|s) = ',dxzs,'(dyz|s) = ',dyzs
|
||
|
|
||
|
end
|
||
|
!*****************************************************************************
|
||
|
|
||
|
|
||
|
!*****************************************************************************
|
||
|
subroutine GauSlaKinetic(expGau,cGau,aGau,expSla,cSla)
|
||
|
|
||
|
! Compute the kinetic energy integral between a Gaussian function
|
||
|
! with arbitrary angular momemtum and a s-type Slater function
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Input variables
|
||
|
double precision,intent(in) :: expGau,expSla
|
||
|
double precision,intent(in) :: cGau(3),cSla(3)
|
||
|
integer,intent(in) :: aGau(3)
|
||
|
|
||
|
! Final value of the integrals
|
||
|
double precision :: ss,ps,ds
|
||
|
double precision :: pxs,pys,pzs
|
||
|
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
|
||
|
|
||
|
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
|
||
|
|
||
|
pi = 4d0*atan(1d0)
|
||
|
|
||
|
! calculate the length AB between the two centers
|
||
|
|
||
|
AB = (cGau(1)-cSla(1))**2d0 + (cGau(2)-cSla(2))**2d0 + (cGau(3)-cSla(3))**2d0
|
||
|
AB = sqrt(AB)
|
||
|
|
||
|
AxBx = (cGau(1)-cSla(1))/2d0
|
||
|
AyBy = (cGau(2)-cSla(2))/2d0
|
||
|
AzBz = (cGau(3)-cSla(3))/2d0
|
||
|
|
||
|
! intermediate variables
|
||
|
|
||
|
t = expSla*sqrt(0.25d0/expGau)
|
||
|
u = sqrt(expGau)*AB
|
||
|
|
||
|
if(AB > 0d0) then
|
||
|
|
||
|
! (s|s)
|
||
|
ss = (1d0+t*(t-u))*erfc(t-u)*exp(2d0*t*(t-u)) - (1d0+t*(t+u))*erfc(t+u)*exp(2d0*t*(t+u))
|
||
|
|
||
|
! (p|s)
|
||
|
ps = (exp(t**2d0-2d0*t*u-u**2d0)*(4d0*exp(2d0*t*u)*(1d0+t**2d0) &
|
||
|
+ sqrt(pi)*t*(-(exp(t**2d0+u**2d0)*(3d0+2d0*t*(t-u))*erfc(t-u)) &
|
||
|
- exp(2d0*t*u+(t+u)**2d0)*(3d0+2d0*t*(t+u))*erfc(t+u))))/sqrt(pi)
|
||
|
|
||
|
! (d|s)
|
||
|
ds = (-8d0*exp(t**2d0-u**2d0)*u+4d0*exp(2d0*t*(t-u))*sqrt(pi)*t**2d0*((2d0+t**2d0-t*u)*erfc(t-u) &
|
||
|
- exp(4d0*t*u)*(2d0+t*(t+u))*erfc(t+u)))/sqrt(pi)
|
||
|
|
||
|
! backward scaling
|
||
|
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
|
||
|
ps = ps/u**2d0-ss/u**3d0
|
||
|
ss = ss/u
|
||
|
|
||
|
else
|
||
|
|
||
|
! concentric case
|
||
|
ss = (4d0*exp(t**2d0)*(1d0+t**2d0))/sqrt(pi)-2d0*exp(2d0*t**2d0)*t*(3d0+2d0*t**2d0)*erfc(t)
|
||
|
ps = (8d0*exp(t**2d0)*(-1d0+4d0*t**2d0+2d0*t**4d0-exp(t**2)*sqrt(pi)*t**3d0*(5d0+2d0*t**2d0)*erfc(t)))/(3d0*sqrt(pi))
|
||
|
|
||
|
endif
|
||
|
|
||
|
k = expSla*sqrt(expGau)*t**3d0*exp(-t**2d0)*4d0*pi/expSla**(3d0/2d0)
|
||
|
|
||
|
! (s|s)
|
||
|
ss = k*ss
|
||
|
|
||
|
! (p|s)
|
||
|
ps = k*ps
|
||
|
|
||
|
pxs = AxBx*ps
|
||
|
pys = AyBy*ps
|
||
|
pzs = AzBz*ps
|
||
|
|
||
|
! (d|s)
|
||
|
ds = k*ds
|
||
|
|
||
|
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2d0*ds
|
||
|
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2d0*ds
|
||
|
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2d0*ds
|
||
|
|
||
|
dxys = AxBx*AyBy*ds
|
||
|
dxzs = AxBx*AzBz*ds
|
||
|
dyzs = AyBy*AzBz*ds
|
||
|
|
||
|
! Print result
|
||
|
write(*,'(A12,F16.10)') &
|
||
|
'(s|T|s) = ',ss
|
||
|
write(*,'(A12,F16.10,3X,A12,F16.10,3X,A12,F16.10)') &
|
||
|
'(px|T|s) = ',pxs,'(py|T|s) = ',pys,'(pz|T|s) = ',pzs
|
||
|
write(*,'(A12,F16.10,3X,A12,F16.10,3X,A12,F16.10,3X,A12,F16.10,3X,A12,F16.10,3X,A12,F16.10)') &
|
||
|
'(dx2|T|s) = ',dxxs,'(dy2|T|s) = ',dyys,'(dz2|T|s) = ',dzzs,'(dxy|T|s) = ',dxys,'(dxz|T|s) = ',dxzs,'(dyz|T|s) = ',dyzs
|
||
|
|
||
|
end
|
||
|
!*****************************************************************************
|
||
|
|
||
|
|
||
|
!*****************************************************************************
|
||
|
subroutine GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc)
|
||
|
|
||
|
! Compute the nuclear attraction integral between a Gaussian function
|
||
|
! with arbitrary angular momemtum and a s-type Slater function
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
! Input variables
|
||
|
double precision,intent(in) :: expGau,expSla
|
||
|
double precision,intent(in) :: cGau(3),cSla(3)
|
||
|
integer,intent(in) :: aGau(3)
|
||
|
double precision,intent(in) :: cNuc(3)
|
||
|
double precision,intent(in) :: ZNuc
|
||
|
|
||
|
! Final value of the overlap integral
|
||
|
double precision :: ss,ps,ds,fs
|
||
|
double precision :: pxs,pys,pzs
|
||
|
|
||
|
double precision :: pi,E,AB,x,y,k
|
||
|
|
||
|
pi = 4d0*atan(1d0)
|
||
|
E = exp(1d0)
|
||
|
|
||
|
! calculate the length AB between the two centers
|
||
|
|
||
|
AB = (cGau(1)-cSla(1))**2d0 + (cGau(2)-cSla(2))**2d0 + (cGau(3)-cSla(3))**2d0
|
||
|
AB = sqrt(AB)
|
||
|
|
||
|
! intermediate variables
|
||
|
|
||
|
x = sqrt(expSla**2d0/(4d0*expGau))
|
||
|
y = sqrt(expGau)*AB
|
||
|
|
||
|
if(AB > 0d0) then
|
||
|
ss = (1d0+x*(x+y))*erfc(x+y)*exp(2d0*x*(x+y)) - (1d0+x*(x-y))*erfc(x-y)*exp(2d0*x*(x-y))
|
||
|
ss = ss/y
|
||
|
else
|
||
|
ss = (4d0*E**x**2d0*(1d0+x**2d0))/sqrt(Pi)-2d0*E**(2d0*x**2d0)*x*(3d0+2d0*x**2d0)*Erfc(x)
|
||
|
endif
|
||
|
|
||
|
k = expSla*sqrt(expGau)*x**3d0*exp(-x**2)*4d0*pi/expSla**(3d0/2d0)
|
||
|
ss = k*ss
|
||
|
|
||
|
! Print result
|
||
|
write(*,*) ss
|
||
|
|
||
|
end
|
||
|
!*****************************************************************************
|
||
|
double precision function BoysF0(t)
|
||
|
|
||
|
double precision :: pi
|
||
|
|
||
|
pi = 4d0*atan(1d0)
|
||
|
|
||
|
if(t > 0d0) then
|
||
|
BoysF0 = 0.5d0*sqrt(pi/t)*erf(sqrt(t))
|
||
|
else
|
||
|
BoysF0 = 1d0
|
||
|
endif
|
||
|
|
||
|
end
|
||
|
!*****************************************************************************
|
||
|
|
||
|
|
||
|
|