10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-07 03:43:20 +01:00
quantum_package/plugins/FOBOCI/density_matrix.irp.f

148 lines
6.0 KiB
Fortran
Raw Normal View History

2016-02-17 17:15:54 +01:00
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_generators_restart, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_generators_restart, (mo_tot_num_align,mo_tot_num) ]
2017-03-20 16:21:00 +01:00
&BEGIN_PROVIDER [ double precision, norm_generators_restart, (N_states)]
2016-02-17 17:15:54 +01:00
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix for the generators restart
END_DOC
2017-03-20 16:21:00 +01:00
integer :: j,k,l,m,istate
2016-02-17 17:15:54 +01:00
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ_alpha
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
integer :: degree_respect_to_HF_k
2017-03-20 16:21:00 +01:00
integer :: degree_respect_to_HF_l,index_ref_generators_restart(N_states)
double precision :: inv_coef_ref_generators_restart(N_states)
2016-02-17 17:15:54 +01:00
integer :: i
2017-03-17 11:40:48 +01:00
print*, 'providing the one_body_dm_mo_alpha_generators_restart'
2016-02-17 17:15:54 +01:00
2017-03-20 16:21:00 +01:00
do istate = 1, N_states
do i = 1, N_det_generators_restart
! Find the reference determinant for intermediate normalization
call get_excitation_degree(ref_generators_restart(1,1,istate),psi_det_generators_restart(1,1,i),degree,N_int)
if(degree == 0)then
index_ref_generators_restart(istate) = i
inv_coef_ref_generators_restart(istate) = 1.d0/psi_coef_generators_restart(i,istate)
exit
endif
enddo
2016-02-17 17:15:54 +01:00
enddo
norm_generators_restart = 0.d0
2017-03-20 16:21:00 +01:00
do istate = 1, N_states
do i = 1, N_det_generators_restart
psi_coef_generators_restart(i,istate) = psi_coef_generators_restart(i,istate) * inv_coef_ref_generators_restart(istate)
norm_generators_restart(istate) += psi_coef_generators_restart(i,istate)**2
enddo
2016-02-17 17:15:54 +01:00
enddo
2017-03-20 16:21:00 +01:00
double precision :: inv_norm(N_States)
do istate = 1, N_states
inv_norm(istate) = 1.d0/dsqrt(norm_generators_restart(istate))
enddo
do istate = 1, N_states
do i = 1, N_det_generators_restart
psi_coef_generators_restart(i,istate) = psi_coef_generators_restart(i,istate) * inv_norm(istate)
enddo
2017-03-16 21:21:27 +01:00
enddo
2016-02-17 17:15:54 +01:00
one_body_dm_mo_alpha_generators_restart = 0.d0
one_body_dm_mo_beta_generators_restart = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, &
!$OMP tmp_a, tmp_b, n_occ_alpha)&
!$OMP SHARED(psi_det_generators_restart,psi_coef_generators_restart,N_int,elec_alpha_num,&
!$OMP elec_beta_num,one_body_dm_mo_alpha_generators_restart,one_body_dm_mo_beta_generators_restart,N_det_generators_restart,mo_tot_num_align,&
!$OMP mo_tot_num,N_states, state_average_weight)
allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
do k=1,N_det_generators_restart
call bitstring_to_list(psi_det_generators_restart(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det_generators_restart(1,2,k), occ(1,2), n_occ_alpha, N_int)
do m=1,N_states
ck = psi_coef_generators_restart(k,m)*psi_coef_generators_restart(k,m) * state_average_weight(m)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j) += ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j) += ck
enddo
enddo
do l=1,k-1
call get_excitation_degree(psi_det_generators_restart(1,1,k),psi_det_generators_restart(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(psi_det_generators_restart(1,1,k),psi_det_generators_restart(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef_generators_restart(k,m) * psi_coef_generators_restart(l,m) * phase * state_average_weight(m)
if (s1==1) then
tmp_a(h1,p1) += ckl
tmp_a(p1,h1) += ckl
else
tmp_b(h1,p1) += ckl
tmp_b(p1,h1) += ckl
endif
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_body_dm_mo_alpha_generators_restart = one_body_dm_mo_alpha_generators_restart + tmp_a
!$OMP END CRITICAL
!$OMP CRITICAL
one_body_dm_mo_beta_generators_restart = one_body_dm_mo_beta_generators_restart + tmp_b
!$OMP END CRITICAL
deallocate(tmp_a,tmp_b)
!$OMP BARRIER
!$OMP END PARALLEL
do i = 1, mo_tot_num
print*,'DM restat',i,one_body_dm_mo_beta_generators_restart(i,i) + one_body_dm_mo_alpha_generators_restart(i,i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo_generators_restart, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! One-body density matrix for the generators_restart
END_DOC
one_body_dm_mo_generators_restart = one_body_dm_mo_alpha_generators_restart + one_body_dm_mo_beta_generators_restart
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_spin_density_mo_generators_restart, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! rho(alpha) - rho(beta)
END_DOC
one_body_spin_density_mo_generators_restart = one_body_dm_mo_alpha_generators_restart - one_body_dm_mo_beta_generators_restart
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_osoci, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_osoci, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix that will be used for the OSOCI approach
END_DOC
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_1h1p, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_1h1p, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix that will be used for the 1h1p approach
END_DOC
END_PROVIDER