10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-09 07:33:53 +01:00
quantum_package/src/Integrals_Monoelec/pot_ao_ints.irp.f

581 lines
16 KiB
Fortran
Raw Normal View History

2014-04-16 22:16:32 +02:00
BEGIN_PROVIDER [ double precision, ao_nucl_elec_integral, (ao_num_align,ao_num)]
BEGIN_DOC
! interaction nuclear electron
END_DOC
implicit none
double precision :: alpha, beta, gama, delta
2015-04-21 15:05:39 +02:00
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision ::overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
2015-05-11 17:58:42 +02:00
ao_nucl_elec_integral = 0.d0
2015-04-21 15:05:39 +02:00
! _
! /| / |_)
! | / | \
!
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, &
!$OMP num_A,num_B,Z,c,n_pt_in) &
2015-05-04 19:05:28 +02:00
!$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp, &
2015-04-21 15:05:39 +02:00
!$OMP n_pt_max_integrals,ao_nucl_elec_integral,nucl_num,nucl_charge)
n_pt_in = n_pt_max_integrals
!$OMP DO SCHEDULE (guided)
do j = 1, ao_num
2015-05-04 19:05:28 +02:00
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
double precision :: c
c = 0.d0
do k = 1, nucl_num
double precision :: Z
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
c = c - Z*NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in)
enddo
ao_nucl_elec_integral(i,j) = ao_nucl_elec_integral(i,j) + &
ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c
enddo
2015-04-21 15:05:39 +02:00
enddo
2014-04-16 22:16:32 +02:00
enddo
2015-04-21 15:05:39 +02:00
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
2015-03-19 21:14:52 +01:00
BEGIN_PROVIDER [ double precision, ao_nucl_elec_integral_per_atom, (ao_num_align,ao_num,nucl_num)]
BEGIN_DOC
! ao_nucl_elec_integral_per_atom(i,j,k) = -<AO(i)|1/|r-Rk|AO(j)>
! where Rk is the geometry of the kth atom
END_DOC
implicit none
double precision :: alpha, beta, gama, delta
integer :: i_c,num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision ::overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
! Important for OpenMP
ao_nucl_elec_integral_per_atom = 0.d0
do k = 1, nucl_num
C_center(1) = nucl_coord(k,1)
C_center(2) = nucl_coord(k,2)
C_center(3) = nucl_coord(k,3)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,l,m,alpha,beta,A_center,B_center,power_A,power_B, &
!$OMP num_A,num_B,c,n_pt_in) &
!$OMP SHARED (k,ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp, &
2015-03-19 21:14:52 +01:00
!$OMP n_pt_max_integrals,ao_nucl_elec_integral_per_atom,nucl_num,C_center)
n_pt_in = n_pt_max_integrals
!$OMP DO SCHEDULE (guided)
double precision :: c
do j = 1, ao_num
power_A(1)= ao_power(j,1)
power_A(2)= ao_power(j,2)
power_A(3)= ao_power(j,3)
num_A = ao_nucl(j)
A_center(1) = nucl_coord(num_A,1)
A_center(2) = nucl_coord(num_A,2)
A_center(3) = nucl_coord(num_A,3)
do i = 1, ao_num
power_B(1)= ao_power(i,1)
power_B(2)= ao_power(i,2)
power_B(3)= ao_power(i,3)
num_B = ao_nucl(i)
B_center(1) = nucl_coord(num_B,1)
B_center(2) = nucl_coord(num_B,2)
B_center(3) = nucl_coord(num_B,3)
c = 0.d0
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
2015-03-19 21:14:52 +01:00
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
2015-03-19 21:14:52 +01:00
c = c + NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in) &
* ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)
2015-03-19 21:14:52 +01:00
enddo
enddo
ao_nucl_elec_integral_per_atom(i,j,k) = -c
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
enddo
END_PROVIDER
2014-04-16 22:16:32 +02:00
double precision function NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in)
! function that calculate the folowing integral :
! int{dr} of (x-A_x)^ax (x-B_X)^bx exp(-alpha (x-A_x)^2 - beta (x-B_x)^2 ) 1/(r-R_c)
implicit none
double precision,intent(in) :: C_center(3),A_center(3),B_center(3),alpha,beta
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt
double precision :: P_center(3)
double precision :: d(0:n_pt_in),pouet,coeff,rho,dist,const,pouet_2,p,p_inv,factor
double precision :: I_n_special_exact,integrate_bourrin,I_n_bibi
double precision :: V_e_n,const_factor,dist_integral,tmp
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
if ( (A_center(1)/=B_center(1)).or. &
(A_center(2)/=B_center(2)).or. &
(A_center(3)/=B_center(3)).or. &
(A_center(1)/=C_center(1)).or. &
(A_center(2)/=C_center(2)).or. &
(A_center(3)/=C_center(3))) then
continue
else
NAI_pol_mult = V_e_n(power_A(1),power_A(2),power_A(3),power_B(1),power_B(2),power_B(3),alpha,beta)
return
endif
p = alpha + beta
! print*, "a"
p_inv = 1.d0/p
rho = alpha * beta * p_inv
dist = 0.d0
dist_integral = 0.d0
do i = 1, 3
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
dist += (A_center(i) - B_center(i))*(A_center(i) - B_center(i))
dist_integral += (P_center(i) - C_center(i))*(P_center(i) - C_center(i))
enddo
const_factor = dist*rho
const = p * dist_integral
2014-05-30 18:07:04 +02:00
if(const_factor.ge.80.d0)then
NAI_pol_mult = 0.d0
return
endif
2014-04-16 22:16:32 +02:00
factor = dexp(-const_factor)
coeff = dtwo_pi * factor * p_inv
lmax = 20
! print*, "b"
do i = 0, n_pt_in
d(i) = 0.d0
enddo
n_pt = 2 * ( (power_A(1) + power_B(1)) +(power_A(2) + power_B(2)) +(power_A(3) + power_B(3)) )
if (n_pt == 0) then
epsilo = 1.d0
pouet = rint(0,const)
NAI_pol_mult = coeff * pouet
return
endif
call give_polynom_mult_center_mono_elec(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out)
if(n_pt_out<0)then
NAI_pol_mult = 0.d0
return
endif
double precision :: accu,epsilo,rint
integer :: n_pt_in,n_pt_out,lmax
accu = 0.d0
! 1/r1 standard attraction integral
epsilo = 1.d0
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
do i =0 ,n_pt_out,2
accu += d(i) * rint(i/2,const)
enddo
NAI_pol_mult = accu * coeff
end
subroutine give_polynom_mult_center_mono_elec(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out)
!!!! subroutine that returns the explicit polynom in term of the "t" variable of the following polynomw ::
!!!! I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q)
!!!! it is for the nuclear electron atraction
implicit none
integer, intent(in) :: n_pt_in
integer,intent(out) :: n_pt_out
double precision, intent(in) :: A_center(3), B_center(3),C_center(3)
double precision, intent(in) :: alpha,beta
integer, intent(in) :: power_A(3), power_B(3)
integer :: a_x,b_x,a_y,b_y,a_z,b_z
double precision :: d(0:n_pt_in)
double precision :: d1(0:n_pt_in)
double precision :: d2(0:n_pt_in)
double precision :: d3(0:n_pt_in)
double precision :: accu, pq_inv, p10_1, p10_2, p01_1, p01_2
double precision :: p,P_center(3),rho,p_inv,p_inv_2
!print*,'n_pt_in = ',n_pt_in
accu = 0.d0
!COMPTEUR irp_rdtsc1 = irp_rdtsc()
ASSERT (n_pt_in > 1)
p = alpha+beta
p_inv = 1.d0/p
p_inv_2 = 0.5d0/p
do i =1, 3
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
enddo
! print*,'passed the P_center'
double precision :: R1x(0:2), B01(0:2), R1xp(0:2),R2x(0:2)
R1x(0) = (P_center(1) - A_center(1))
R1x(1) = 0.d0
R1x(2) = -(P_center(1) - C_center(1))
! R1x = (P_x - A_x) - (P_x - C_x) t^2
R1xp(0) = (P_center(1) - B_center(1))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(1) - C_center(1))
!R1xp = (P_x - B_x) - (P_x - C_x) t^2
R2x(0) = p_inv_2
R2x(1) = 0.d0
R2x(2) = -p_inv_2
!R2x = 0.5 / p - 0.5/p t^2
do i = 0,n_pt_in
d(i) = 0.d0
enddo
do i = 0,n_pt_in
d1(i) = 0.d0
enddo
do i = 0,n_pt_in
d2(i) = 0.d0
enddo
do i = 0,n_pt_in
d3(i) = 0.d0
enddo
integer :: n_pt1,n_pt2,n_pt3,dim,i
n_pt1 = n_pt_in
n_pt2 = n_pt_in
n_pt3 = n_pt_in
a_x = power_A(1)
b_x = power_B(1)
call I_x1_pol_mult_mono_elec(a_x,b_x,R1x,R1xp,R2x,d1,n_pt1,n_pt_in)
! print*,'passed the first I_x1'
if(n_pt1<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(2) - A_center(2))
R1x(1) = 0.d0
R1x(2) = -(P_center(2) - C_center(2))
! R1x = (P_x - A_x) - (P_x - C_x) t^2
R1xp(0) = (P_center(2) - B_center(2))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(2) - C_center(2))
!R1xp = (P_x - B_x) - (P_x - C_x) t^2
a_y = power_A(2)
b_y = power_B(2)
call I_x1_pol_mult_mono_elec(a_y,b_y,R1x,R1xp,R2x,d2,n_pt2,n_pt_in)
! print*,'passed the second I_x1'
if(n_pt2<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
R1x(0) = (P_center(3) - A_center(3))
R1x(1) = 0.d0
R1x(2) = -(P_center(3) - C_center(3))
! R1x = (P_x - A_x) - (P_x - C_x) t^2
R1xp(0) = (P_center(3) - B_center(3))
R1xp(1) = 0.d0
R1xp(2) =-(P_center(3) - C_center(3))
!R2x = 0.5 / p - 0.5/p t^2
a_z = power_A(3)
b_z = power_B(3)
! print*,'a_z = ',a_z
! print*,'b_z = ',b_z
call I_x1_pol_mult_mono_elec(a_z,b_z,R1x,R1xp,R2x,d3,n_pt3,n_pt_in)
! print*,'passed the third I_x1'
if(n_pt3<0)then
n_pt_out = -1
do i = 0,n_pt_in
d(i) = 0.d0
enddo
return
endif
integer :: n_pt_tmp
n_pt_tmp = 0
call multiply_poly(d1,n_pt1,d2,n_pt2,d,n_pt_tmp)
do i = 0,n_pt_tmp
d1(i) = 0.d0
enddo
n_pt_out = 0
call multiply_poly(d ,n_pt_tmp ,d3,n_pt3,d1,n_pt_out)
do i = 0, n_pt_out
d(i) = d1(i)
enddo
end
recursive subroutine I_x1_pol_mult_mono_elec(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
!!!! recursive function involved in the electron nucleus potential
implicit none
integer , intent(in) :: n_pt_in
double precision,intent(inout) :: d(0:n_pt_in)
integer,intent(inout) :: nd
integer, intent(in):: a,c
double precision, intent(in) :: R1x(0:2),R1xp(0:2),R2x(0:2)
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
double precision :: X(0:max_dim)
double precision :: Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y
integer :: nx, ix,dim,iy,ny
dim = n_pt_in
! print*,'a,c = ',a,c
! print*,'nd_in = ',nd
if( (a==0) .and. (c==0))then
nd = 0
d(0) = 1.d0
return
elseif( (c<0).or.(nd<0) )then
nd = -1
return
else if ((a==0).and.(c.ne.0)) then
call I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,d,nd,n_pt_in)
! print*,'nd 0,c',nd
else if (a==1) then
nx = nd
do ix=0,n_pt_in
X(ix) = 0.d0
Y(ix) = 0.d0
enddo
call I_x2_pol_mult_mono_elec(c-1,R1x,R1xp,R2x,X,nx,n_pt_in)
do ix=0,nx
X(ix) *= c
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
ny=0
call I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
else
do ix=0,n_pt_in
X(ix) = 0.d0
Y(ix) = 0.d0
enddo
nx = 0
call I_x1_pol_mult_mono_elec(a-2,c,R1x,R1xp,R2x,X,nx,n_pt_in)
! print*,'nx a-2,c= ',nx
do ix=0,nx
X(ix) *= a-1
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! print*,'nd out = ',nd
nx = nd
do ix=0,n_pt_in
X(ix) = 0.d0
enddo
call I_x1_pol_mult_mono_elec(a-1,c-1,R1x,R1xp,R2x,X,nx,n_pt_in)
! print*,'nx a-1,c-1 = ',nx
do ix=0,nx
X(ix) *= c
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
ny=0
call I_x1_pol_mult_mono_elec(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
endif
end
recursive subroutine I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,d,nd,dim)
implicit none
integer , intent(in) :: dim
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
double precision :: d(0:max_dim)
integer,intent(inout) :: nd
integer, intent(in):: c
double precision, intent(in) :: R1x(0:2),R1xp(0:2),R2x(0:2)
integer :: i
!print*,'X2,c = ',c
!print*,'nd_in = ',nd
if(c==0) then
nd = 0
d(0) = 1.d0
! print*,'nd IX2 = ',nd
return
elseif ((nd<0).or.(c<0))then
nd = -1
return
else
integer :: nx, ix,ny
double precision :: X(0:max_dim),Y(0:max_dim)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y
do ix=0,dim
X(ix) = 0.d0
Y(ix) = 0.d0
enddo
nx = 0
call I_x1_pol_mult_mono_elec(0,c-2,R1x,R1xp,R2x,X,nx,dim)
! print*,'nx 0,c-2 = ',nx
do ix=0,nx
X(ix) *= c-1
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! print*,'nd = ',nd
ny = 0
do ix=0,dim
Y(ix) = 0.d0
enddo
call I_x1_pol_mult_mono_elec(0,c-1,R1x,R1xp,R2x,Y,ny,dim)
! print*,'ny = ',ny
! do ix=0,ny
! print*,'Y(ix) = ',Y(ix)
! enddo
if(ny.ge.0)then
call multiply_poly(Y,ny,R1xp,2,d,nd)
endif
endif
end
double precision function V_e_n(a_x,a_y,a_z,b_x,b_y,b_z,alpha,beta)
implicit none
!!! primitve nuclear attraction between the two primitves centered on the same atom ::
!!!! primitive_1 = x**(a_x) y**(a_y) z**(a_z) exp(-alpha * r**2)
!!!! primitive_2 = x**(b_x) y**(b_y) z**(b_z) exp(- beta * r**2)
integer :: a_x,a_y,a_z,b_x,b_y,b_z
double precision :: alpha,beta
double precision :: V_r, V_phi, V_theta
if(iand((a_x+b_x),1)==1.or.iand(a_y+b_y,1)==1.or.iand((a_z+b_z),1)==1)then
V_e_n = 0.d0
else
V_e_n = V_r(a_x+b_x+a_y+b_y+a_z+b_z+1,alpha+beta) &
& * V_phi(a_x+b_x,a_y+b_y) &
& * V_theta(a_z+b_z,a_x+b_x+a_y+b_y+1)
endif
end
double precision function int_gaus_pol(alpha,n)
!!!! calculate the integral of
!! integral on "x" with boundaries (- infinity; + infinity) of [ x**n exp(-alpha * x**2) ]
implicit none
double precision :: alpha
integer :: n
double precision :: dble_fact
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
!if(iand(n,1).eq.1)then
! int_gaus_pol= 0.d0
!else
! int_gaus_pol = dsqrt(pi/alpha) * dble_fact(n -1)/(alpha+alpha)**(n/2)
!endif
int_gaus_pol = 0.d0
if(iand(n,1).eq.0)then
int_gaus_pol = dsqrt(alpha/pi)
double precision :: two_alpha
two_alpha = alpha+alpha
integer :: i
do i=1,n,2
int_gaus_pol = int_gaus_pol * two_alpha
enddo
int_gaus_pol = dble_fact(n -1) / int_gaus_pol
endif
end
double precision function V_r(n,alpha)
!!!! calculate the radial part of the nuclear attraction integral which is the following integral :
!! integral on "r" with boundaries ( 0 ; + infinity) of [ r**n exp(-alpha * r**2) ]
!!! CAUTION :: this function requires the constant sqpi = dsqrt(pi)
implicit none
double precision :: alpha, fact
integer :: n
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
if(iand(n,1).eq.1)then
V_r = 0.5d0 * fact(ishft(n,-1)) / (alpha ** (ishft(n,-1) + 1))
else
V_r = sqpi * fact(n) / fact(ishft(n,-1)) * (0.5d0/sqrt(alpha)) ** (n+1)
endif
end
double precision function V_phi(n,m)
implicit none
!!!! calculate the angular "phi" part of the nuclear attraction integral wich is the following integral :
!! integral on "phi" with boundaries ( 0 ; 2 pi) of [ cos(phi) **n sin(phi) **m ]
integer :: n,m, i
double precision :: prod, Wallis
prod = 1.d0
do i = 0,ishft(n,-1)-1
prod = prod/ (1.d0 + dfloat(m+1)/dfloat(n-i-i-1))
enddo
V_phi = 4.d0 * prod * Wallis(m)
end
double precision function V_theta(n,m)
implicit none
!!!! calculate the angular "theta" part of the nuclear attraction integral wich is the following integral :
!! integral on "theta" with boundaries ( 0 ; pi) of [ cos(theta) **n sin(theta) **m ]
integer :: n,m,i
double precision :: Wallis, prod
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
V_theta = 0.d0
prod = 1.d0
do i = 0,ishft(n,-1)-1
prod = prod / (1.d0 + dfloat(m+1)/dfloat(n-i-i-1))
enddo
V_theta = (prod+prod) * Wallis(m)
end
double precision function Wallis(n)
!!!! calculate the Wallis integral :
!! integral on "theta" with boundaries ( 0 ; pi/2) of [ cos(theta) **n ]
implicit none
double precision :: fact
integer :: n,p
2015-06-04 16:40:00 +02:00
include 'Utils/constants.include.F'
2014-04-16 22:16:32 +02:00
if(iand(n,1).eq.0)then
Wallis = fact(ishft(n,-1))
Wallis = pi * fact(n) / (dble(ibset(0_8,n)) * (Wallis+Wallis)*Wallis)
else
p = ishft(n,-1)
Wallis = fact(p)
Wallis = dble(ibset(0_8,p+p)) * Wallis*Wallis / fact(p+p+1)
endif
end