10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-08 15:13:52 +01:00
quantum_package/src/MO_Basis/mos.irp.f

261 lines
7.5 KiB
Fortran
Raw Normal View History

2014-04-03 01:50:22 +02:00
BEGIN_PROVIDER [ integer, mo_tot_num ]
implicit none
BEGIN_DOC
! Total number of molecular orbitals and the size of the keys corresponding
END_DOC
PROVIDE ezfio_filename
2014-09-18 17:01:43 +02:00
logical :: exists
call ezfio_has_mo_basis_mo_tot_num(exists)
if (exists) then
call ezfio_get_mo_basis_mo_tot_num(mo_tot_num)
else
mo_tot_num = ao_ortho_canonical_num
2014-09-18 17:01:43 +02:00
endif
call write_int(6,mo_tot_num,'mo_tot_num')
2014-04-03 01:50:22 +02:00
ASSERT (mo_tot_num > 0)
END_PROVIDER
BEGIN_PROVIDER [ integer, mo_tot_num_align ]
implicit none
BEGIN_DOC
! Aligned variable for dimensioning of arrays
END_DOC
integer :: align_double
mo_tot_num_align = align_double(mo_tot_num)
END_PROVIDER
2014-04-10 22:26:42 +02:00
BEGIN_PROVIDER [ double precision, mo_coef, (ao_num_align,mo_tot_num) ]
2014-04-03 01:50:22 +02:00
implicit none
BEGIN_DOC
2014-04-10 22:26:42 +02:00
! Molecular orbital coefficients on AO basis set
! mo_coef(i,j) = coefficient of the ith ao on the jth mo
! mo_label : Label characterizing the MOS (local, canonical, natural, etc)
2014-04-03 01:50:22 +02:00
END_DOC
2014-04-10 22:26:42 +02:00
integer :: i, j
double precision, allocatable :: buffer(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: buffer
2014-04-03 01:50:22 +02:00
logical :: exists
PROVIDE ezfio_filename
2014-04-10 22:26:42 +02:00
! Coefs
2014-09-18 17:01:43 +02:00
call ezfio_has_mo_basis_mo_coef(exists)
if (exists) then
allocate(buffer(ao_num,mo_tot_num))
buffer = 0.d0
call ezfio_get_mo_basis_mo_coef(buffer)
do i=1,mo_tot_num
do j=1,ao_num
mo_coef(j,i) = buffer(j,i)
enddo
do j=ao_num+1,ao_num_align
mo_coef(j,i) = 0.d0
enddo
2014-04-03 01:50:22 +02:00
enddo
2014-09-18 17:01:43 +02:00
deallocate(buffer)
else
! Orthonormalized AO basis
do i=1,mo_tot_num
do j=1,ao_num
mo_coef(j,i) = ao_ortho_canonical_coef(j,i)
enddo
do j=ao_num+1,ao_num_align
mo_coef(j,i) = 0.d0
enddo
enddo
2014-09-18 17:01:43 +02:00
endif
2015-06-24 09:02:22 +02:00
END_PROVIDER
BEGIN_PROVIDER [ character*(64), mo_label ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on AO basis set
! mo_coef(i,j) = coefficient of the ith ao on the jth mo
! mo_label : Label characterizing the MOS (local, canonical, natural, etc)
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_mo_basis_mo_label(exists)
if (exists) then
call ezfio_get_mo_basis_mo_label(mo_label)
else
mo_label = 'no_label'
endif
2014-04-03 01:50:22 +02:00
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_transp, (mo_tot_num_align,ao_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on AO basis set
END_DOC
integer :: i, j
do j=1,ao_num
do i=1,mo_tot_num
mo_coef_transp(i,j) = mo_coef(j,i)
enddo
do i=mo_tot_num+1,mo_tot_num_align
mo_coef_transp(i,j) = 0.d0
enddo
enddo
END_PROVIDER
2014-10-03 16:40:18 +02:00
BEGIN_PROVIDER [ double precision, S_mo_coef, (ao_num_align, mo_tot_num) ]
implicit none
BEGIN_DOC
! Product S.C where S is the overlap matrix in the AO basis and C the mo_coef matrix.
END_DOC
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, ao_overlap,size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, S_mo_coef, size(S_mo_coef,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_occ, (mo_tot_num) ]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
PROVIDE ezfio_filename
logical :: exists
call ezfio_has_mo_basis_mo_occ(exists)
if (exists) then
call ezfio_get_mo_basis_mo_occ(mo_occ)
else
mo_occ = 0.d0
integer :: i
do i=1,elec_beta_num
mo_occ(i) = 2.d0
enddo
do i=elec_beta_num+1,elec_alpha_num
mo_occ(i) = 1.d0
enddo
endif
END_PROVIDER
2015-01-07 16:48:03 +01:00
subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
END_DOC
double precision, intent(in) :: A_ao(LDA_ao)
double precision, intent(out) :: A_mo(LDA_mo)
integer, intent(in) :: LDA_ao,LDA_mo
double precision, allocatable :: T(:,:)
allocate ( T(ao_num_align,mo_tot_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, A_ao,LDA_ao, &
mo_coef, size(mo_coef,1), &
0.d0, T, ao_num_align)
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, ao_num_align, &
0.d0, A_mo, LDA_mo)
deallocate(T)
end
subroutine mo_to_ao(A_mo,LDA_mo,A_ao,LDA_ao)
implicit none
BEGIN_DOC
! Transform A from the MO basis to the AO basis
END_DOC
double precision, intent(in) :: A_mo(LDA_mo)
double precision, intent(out) :: A_ao(LDA_ao)
integer, intent(in) :: LDA_ao,LDA_mo
double precision, allocatable :: T(:,:), SC(:,:)
allocate ( SC(ao_num_align,mo_tot_num) )
allocate ( T(mo_tot_num_align,ao_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, ao_overlap,size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, SC, ao_num_align)
call dgemm('N','T', mo_tot_num, ao_num, mo_tot_num, &
1.d0, A_mo,LDA_mo, &
SC, size(SC,1), &
0.d0, T, mo_tot_num_align)
call dgemm('N','N', ao_num, ao_num, mo_tot_num, &
1.d0, SC,size(SC,1), &
T, mo_tot_num_align, &
0.d0, A_ao, LDA_ao)
deallocate(T,SC)
end
subroutine mo_to_ao_no_overlap(A_mo,LDA_mo,A_ao,LDA_ao)
implicit none
BEGIN_DOC
! Transform A from the MO basis to the S^-1 AO basis
END_DOC
double precision, intent(in) :: A_mo(LDA_mo)
double precision, intent(out) :: A_ao(LDA_ao)
integer, intent(in) :: LDA_ao,LDA_mo
double precision, allocatable :: T(:,:)
allocate ( T(mo_tot_num_align,ao_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','T', mo_tot_num, ao_num, mo_tot_num, &
1.d0, A_mo,LDA_mo, &
mo_coef, size(mo_coef,1), &
0.d0, T, mo_tot_num_align)
call dgemm('N','N', ao_num, ao_num, mo_tot_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, mo_tot_num_align, &
0.d0, A_ao, LDA_ao)
deallocate(T)
end
subroutine mix_mo_jk(j,k)
implicit none
integer, intent(in) :: j,k
integer :: i,i_plus,i_minus
BEGIN_DOC
! subroutine that rotates the jth MO with the kth MO
! to give two new MO's that are
! '+' = 1/sqrt(2) (|j> + |k>)
! '-' = 1/sqrt(2) (|j> - |k>)
! by convention, the '+' MO is in the lower index (min(j,k))
! by convention, the '-' MO is in the greater index (max(j,k))
END_DOC
double precision :: array_tmp(ao_num,2),dsqrt_2
if(j==k)then
2015-01-11 16:01:46 +01:00
print*,'You want to mix two orbitals that are the same !'
2015-01-07 16:48:03 +01:00
print*,'It does not make sense ... '
print*,'Stopping ...'
stop
endif
array_tmp = 0.d0
dsqrt_2 = 1.d0/dsqrt(2.d0)
do i = 1, ao_num
array_tmp(i,1) = dsqrt_2 * (mo_coef(i,j) + mo_coef(i,k))
array_tmp(i,2) = dsqrt_2 * (mo_coef(i,j) - mo_coef(i,k))
enddo
i_plus = min(j,k)
i_minus = max(j,k)
do i = 1, ao_num
mo_coef(i,i_plus) = array_tmp(i,1)
mo_coef(i,i_minus) = array_tmp(i,2)
enddo
end