10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-06 22:24:00 +01:00
quantum_package/src/Determinants/two_body_dm_map.irp.f

619 lines
23 KiB
Fortran
Raw Normal View History

2016-04-04 17:28:49 +02:00
use map_module
BEGIN_PROVIDER [ type(map_type), two_body_dm_ab_map ]
implicit none
BEGIN_DOC
! Map of the two body density matrix elements for the alpha/beta elements
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
2016-04-17 22:25:25 +02:00
use map_module
2016-04-04 17:28:49 +02:00
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
sze = key_max
call map_init(two_body_dm_ab_map,sze)
print*, 'two_body_dm_ab_map initialized'
END_PROVIDER
subroutine insert_into_two_body_dm_ab_map(n_product,buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into two_body_dm_ab_map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_product
integer(key_kind), intent(inout) :: buffer_i(n_product)
real(integral_kind), intent(inout) :: buffer_values(n_product)
real(integral_kind), intent(in) :: thr
call map_update(two_body_dm_ab_map, buffer_i, buffer_values, n_product, thr)
end
double precision function get_two_body_dm_ab_map_element(i,j,k,l,map)
use map_module
implicit none
BEGIN_DOC
! Returns one value of the wo body density matrix \rho_{ijkl}^{\alpha \beta} defined as :
! \rho_{ijkl}^{\alpha \beta } = <\Psi|a^{\dagger}_{i\alpha} a^{\dagger}_{j\beta} a_{k\beta} a_{l\alpha}|\Psi>
END_DOC
PROVIDE two_body_dm_ab_map
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
type(map_type), intent(inout) :: map
real(integral_kind) :: tmp
PROVIDE two_body_dm_in_map
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(two_body_dm_ab_map,idx,tmp)
get_two_body_dm_ab_map_element = dble(tmp)
end
subroutine get_get_two_body_dm_ab_map_elements(j,k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple elements of the \rho_{ijkl}^{\alpha \beta }, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE two_body_dm_in_map
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(two_body_dm_ab_map, hash, out_val, sze)
else
call map_get_many(two_body_dm_ab_map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
BEGIN_PROVIDER [ logical, two_body_dm_in_map ]
implicit none
BEGIN_DOC
! If True, the map of the two body density matrix alpha/beta is provided
END_DOC
two_body_dm_in_map = .True.
call add_values_to_two_body_dm_map(full_ijkl_bitmask_4)
END_PROVIDER
subroutine add_values_to_two_body_dm_map(mask_ijkl)
use bitmasks
use map_module
implicit none
BEGIN_DOC
! Adds values to the map of two_body_dm according to some bitmask
END_DOC
integer(bit_kind), intent(in) :: mask_ijkl(N_int,4)
integer :: degree
PROVIDE mo_coef psi_coef psi_det
integer :: exc(0:2,2,2)
integer :: h1,h2,p1,p2,s1,s2
double precision :: phase
double precision :: contrib
integer(key_kind),allocatable :: buffer_i(:)
double precision ,allocatable :: buffer_value(:)
integer :: size_buffer
integer :: n_elements
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,k,l,m
size_buffer = min(mo_tot_num*mo_tot_num*mo_tot_num,16000000)
allocate(buffer_i(size_buffer),buffer_value(size_buffer))
n_elements = 0
do i = 1, N_det ! i == |I>
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
do j = i+1, N_det ! j == <J|
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree>2)cycle
call get_excitation(psi_det(1,1,i),psi_det(1,1,j),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if(degree==2)then ! case of the DOUBLE EXCITATIONS ************************************
if(s1==s2)cycle ! Only the alpha/beta two body density matrix
! <J| a^{\dagger}_{p1 s1} a^{\dagger}_{p2 s2} a_{h2 s2} a_{h1 s1} |I> * c_I * c_J
2016-04-17 22:25:25 +02:00
if(h1>p1)cycle
if(h2>p2)cycle
! if(s1.ne.1)cycle
2016-04-04 17:28:49 +02:00
n_elements += 1
2016-04-17 22:25:25 +02:00
contrib = psi_coef(i,1) * psi_coef(j,1) * phase
2016-04-04 17:28:49 +02:00
buffer_value(n_elements) = contrib
2017-11-27 10:58:32 +01:00
!DIR$ FORCEINLINE
2016-04-04 17:28:49 +02:00
call mo_bielec_integrals_index(h1,h2,p1,p2,buffer_i(n_elements))
2016-04-17 22:25:25 +02:00
! if (n_elements == size_buffer) then
! call insert_into_two_body_dm_ab_map(n_elements,buffer_i,buffer_value,&
! real(mo_integrals_threshold,integral_kind))
! n_elements = 0
! endif
2016-04-04 17:28:49 +02:00
else ! case of the SINGLE EXCITATIONS ***************************************************
2016-04-17 22:25:25 +02:00
cycle
2016-04-04 17:28:49 +02:00
2016-04-17 22:25:25 +02:00
! if(s1==1)then ! Mono alpha :
! do k = 1, elec_beta_num
! m = occ(k,2)
! n_elements += 1
! buffer_value(n_elements) = contrib
! ! <J| a^{\dagger}_{p1 \alpha} \hat{n}_{m \beta} a_{h1 \alpha} |I> * c_I * c_J
! call mo_bielec_integrals_index(h1,m,p1,m,buffer_i(n_elements))
! if (n_elements == size_buffer) then
! call insert_into_two_body_dm_ab_map(n_elements,buffer_i,buffer_value,&
! real(mo_integrals_threshold,integral_kind))
! n_elements = 0
! endif
! enddo
! else ! Mono Beta :
! do k = 1, elec_alpha_num
! m = occ(k,1)
! n_elements += 1
! buffer_value(n_elements) = contrib
! ! <J| a^{\dagger}_{p1 \beta} \hat{n}_{m \alpha} a_{h1 \beta} |I> * c_I * c_J
! call mo_bielec_integrals_index(h1,m,p1,m,buffer_i(n_elements))
! if (n_elements == size_buffer) then
! call insert_into_two_body_dm_ab_map(n_elements,buffer_i,buffer_value,&
! real(mo_integrals_threshold,integral_kind))
! n_elements = 0
! endif
! enddo
! endif
2016-04-04 17:28:49 +02:00
endif
enddo
enddo
print*,'n_elements = ',n_elements
call insert_into_two_body_dm_ab_map(n_elements,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
2017-09-25 20:23:50 +02:00
call map_merge(two_body_dm_ab_map)
2016-04-17 22:25:25 +02:00
deallocate(buffer_i,buffer_value)
2016-04-04 17:28:49 +02:00
end
2016-07-16 16:09:50 +02:00
BEGIN_PROVIDER [double precision, two_body_dm_ab_diag_act, (n_act_orb, n_act_orb)]
&BEGIN_PROVIDER [double precision, two_body_dm_ab_diag_inact, (n_inact_orb_allocate, n_inact_orb_allocate)]
&BEGIN_PROVIDER [double precision, two_body_dm_ab_diag_core, (n_core_orb_allocate, n_core_orb_allocate)]
&BEGIN_PROVIDER [double precision, two_body_dm_ab_diag_all, (mo_tot_num, mo_tot_num)]
&BEGIN_PROVIDER [double precision, two_body_dm_diag_core_a_act_b, (n_core_orb_allocate,n_act_orb)]
&BEGIN_PROVIDER [double precision, two_body_dm_diag_core_b_act_a, (n_core_orb_allocate,n_act_orb)]
&BEGIN_PROVIDER [double precision, two_body_dm_diag_core_act, (n_core_orb_allocate,n_act_orb)]
2016-04-04 17:28:49 +02:00
implicit none
2016-07-16 16:09:50 +02:00
use bitmasks
2016-04-04 17:28:49 +02:00
integer :: i,j,k,l,m
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
2016-07-16 16:09:50 +02:00
integer :: occ_act(N_int*bit_kind_size,2)
integer :: n_occ_ab_act(2)
integer :: occ_core(N_int*bit_kind_size,2)
integer :: n_occ_ab_core(2)
2016-04-04 17:28:49 +02:00
double precision :: contrib
BEGIN_DOC
2016-07-16 16:09:50 +02:00
! two_body_dm_ab_diag_all(k,m) = <\Psi | n_(k\alpha) n_(m\beta) | \Psi>
! two_body_dm_ab_diag_act(k,m) is restricted to the active orbitals :
! orbital k = list_act(k)
! two_body_dm_ab_diag_inact(k,m) is restricted to the inactive orbitals :
! orbital k = list_inact(k)
! two_body_dm_ab_diag_core(k,m) is restricted to the core orbitals :
! orbital k = list_core(k)
! two_body_dm_ab_diag_core_b_act_a(k,m) represents the core beta <-> active alpha part of the two body dm
! orbital k = list_core(k)
! orbital m = list_act(m)
! two_body_dm_ab_diag_core_a_act_b(k,m) represents the core alpha <-> active beta part of the two body dm
! orbital k = list_core(k)
! orbital m = list_act(m)
! two_body_dm_ab_diag_core_act(k,m) represents the core<->active part of the diagonal two body dm
! when we traced on the spin
! orbital k = list_core(k)
! orbital m = list_act(m)
2016-04-04 17:28:49 +02:00
END_DOC
2016-07-16 16:09:50 +02:00
integer(bit_kind) :: key_tmp_core(N_int,2)
integer(bit_kind) :: key_tmp_act(N_int,2)
two_body_dm_ab_diag_all = 0.d0
two_body_dm_ab_diag_act = 0.d0
two_body_dm_ab_diag_core = 0.d0
two_body_dm_ab_diag_inact = 0.d0
two_body_dm_diag_core_a_act_b = 0.d0
two_body_dm_diag_core_b_act_a = 0.d0
two_body_dm_diag_core_act = 0.d0
2016-04-04 17:28:49 +02:00
do i = 1, N_det ! i == |I>
2016-07-16 16:09:50 +02:00
! Full diagonal part of the two body dm
2016-04-04 17:28:49 +02:00
contrib = psi_coef(i,1)**2
2016-07-16 16:09:50 +02:00
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
2016-04-04 17:28:49 +02:00
do j = 1, elec_beta_num
k = occ(j,2)
2016-04-18 20:49:49 +02:00
do l = 1, elec_alpha_num
2016-04-04 17:28:49 +02:00
m = occ(l,1)
2016-07-16 16:09:50 +02:00
two_body_dm_ab_diag_all(k,m) += 0.5d0 * contrib
two_body_dm_ab_diag_all(m,k) += 0.5d0 * contrib
enddo
enddo
! ACTIVE PART of the diagonal part of the two body dm
do j = 1, N_int
key_tmp_act(j,1) = psi_det(j,1,i)
key_tmp_act(j,2) = psi_det(j,2,i)
enddo
do j = 1, N_int
key_tmp_act(j,1) = iand(key_tmp_act(j,1),cas_bitmask(j,1,1))
key_tmp_act(j,2) = iand(key_tmp_act(j,2),cas_bitmask(j,1,1))
enddo
call bitstring_to_list_ab(key_tmp_act, occ_act, n_occ_ab_act, N_int)
do j = 1,n_occ_ab_act(2)
k = list_act_reverse(occ_act(j,2))
do l = 1, n_occ_ab_act(1)
m = list_act_reverse(occ_act(l,1))
two_body_dm_ab_diag_act(k,m) += 0.5d0 * contrib
two_body_dm_ab_diag_act(m,k) += 0.5d0 * contrib
enddo
enddo
2016-07-16 16:09:50 +02:00
! CORE PART of the diagonal part of the two body dm
do j = 1, N_int
key_tmp_core(j,1) = psi_det(j,1,i)
key_tmp_core(j,2) = psi_det(j,2,i)
enddo
do j = 1, N_int
key_tmp_core(j,1) = iand(key_tmp_core(j,1),core_bitmask(j,1))
key_tmp_core(j,2) = iand(key_tmp_core(j,2),core_bitmask(j,1))
enddo
call bitstring_to_list_ab(key_tmp_core, occ_core, n_occ_ab_core, N_int)
do j = 1,n_occ_ab_core(2)
k = list_core_reverse(occ_core(j,2))
do l = 1, n_occ_ab_core(1)
m = list_core_reverse(occ_core(l,1))
two_body_dm_ab_diag_core(k,m) += 0.5d0 * contrib
two_body_dm_ab_diag_core(m,k) += 0.5d0 * contrib
enddo
enddo
! ACT<->CORE PART
! alpha electron in active space
do j = 1,n_occ_ab_act(1)
k = list_act_reverse(occ_act(j,1))
! beta electron in core space
do l = 1, n_occ_ab_core(2)
m = list_core_reverse(occ_core(l,2))
! The fact that you have 1 * contrib and not 0.5 * contrib
! takes into account the following symmetry :
! 0.5 * <n_k n_m> + 0.5 * <n_m n_k>
two_body_dm_diag_core_b_act_a(m,k) += contrib
enddo
enddo
! beta electron in active space
do j = 1,n_occ_ab_act(2)
k = list_act_reverse(occ_act(j,2))
! alpha electron in core space
do l = 1, n_occ_ab_core(1)
m = list_core_reverse(occ_core(l,1))
! The fact that you have 1 * contrib and not 0.5 * contrib
! takes into account the following symmetry :
! 0.5 * <n_k n_m> + 0.5 * <n_m n_k>
two_body_dm_diag_core_a_act_b(m,k) += contrib
2016-04-04 17:28:49 +02:00
enddo
enddo
enddo
2016-07-16 16:09:50 +02:00
do j = 1, n_core_orb
do l = 1, n_act_orb
two_body_dm_diag_core_act(j,l) = two_body_dm_diag_core_b_act_a(j,l) + two_body_dm_diag_core_a_act_b(j,l)
enddo
enddo
2016-04-04 17:28:49 +02:00
END_PROVIDER
2016-07-16 16:09:50 +02:00
BEGIN_PROVIDER [double precision, two_body_dm_ab_big_array_act, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
&BEGIN_PROVIDER [double precision, two_body_dm_ab_big_array_core_act, (n_core_orb_allocate,n_act_orb,n_act_orb)]
2016-04-17 22:25:25 +02:00
implicit none
2016-07-16 16:09:50 +02:00
use bitmasks
2016-04-17 22:25:25 +02:00
integer :: i,j,k,l,m
integer :: degree
PROVIDE mo_coef psi_coef psi_det
integer :: exc(0:2,2,2)
integer :: h1,h2,p1,p2,s1,s2
double precision :: phase
double precision :: contrib
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
2016-07-16 16:09:50 +02:00
integer :: occ_core(N_int*bit_kind_size,2)
integer :: n_occ_ab_core(2)
integer(bit_kind) :: key_tmp_i(N_int,2)
integer(bit_kind) :: key_tmp_i_core(N_int,2)
integer(bit_kind) :: key_tmp_j(N_int,2)
two_body_dm_ab_big_array_act = 0.d0
two_body_dm_ab_big_array_core_act = 0.d0
2016-04-17 22:25:25 +02:00
BEGIN_DOC
2016-07-16 16:09:50 +02:00
! two_body_dm_ab_big_array_act = Purely active part of the two body density matrix
! two_body_dm_ab_big_array_act_core takes only into account the single excitation
! within the active space that adds terms in the act <-> core two body dm
! two_body_dm_ab_big_array_act_core(i,j,k) = < a^\dagger_i n_k a_j >
! with i,j in the ACTIVE SPACE
! with k in the CORE SPACE
!
! The alpha-beta extra diagonal energy FOR WF DEFINED AS AN APPROXIMATION OF A CAS can be computed thanks to
! sum_{h1,p1,h2,p2} two_body_dm_ab_big_array_act(h1,p1,h2,p2) * (h1p1|h2p2)
! + sum_{h1,p1,h2,p2} two_body_dm_ab_big_array_core_act(h1,p1,h2,p2) * (h1p1|h2p2)
2016-04-17 22:25:25 +02:00
END_DOC
do i = 1, N_det ! i == |I>
2016-07-16 16:09:50 +02:00
! active part of psi_det(i)
do j = 1, N_int
key_tmp_i(j,1) = psi_det(j,1,i)
key_tmp_i(j,2) = psi_det(j,2,i)
key_tmp_i_core(j,1) = psi_det(j,1,i)
key_tmp_i_core(j,2) = psi_det(j,2,i)
enddo
do j = 1, N_int
key_tmp_i(j,1) = iand(key_tmp_i(j,1),cas_bitmask(j,1,1))
key_tmp_i(j,2) = iand(key_tmp_i(j,2),cas_bitmask(j,1,1))
enddo
do j = 1, N_int
key_tmp_i_core(j,1) = iand(key_tmp_i_core(j,1),core_bitmask(j,1))
key_tmp_i_core(j,2) = iand(key_tmp_i_core(j,2),core_bitmask(j,1))
enddo
call bitstring_to_list_ab(key_tmp_i_core, occ_core, n_occ_ab_core, N_int)
call bitstring_to_list_ab(key_tmp_i, occ, n_occ_ab, N_int)
2016-04-17 22:25:25 +02:00
do j = i+1, N_det ! j == <J|
2016-07-16 16:09:50 +02:00
! active part of psi_det(j)
do k = 1, N_int
key_tmp_j(k,1) = psi_det(k,1,j)
key_tmp_j(k,2) = psi_det(k,2,j)
enddo
do k = 1, N_int
key_tmp_j(k,1) = iand(key_tmp_j(k,1),cas_bitmask(k,1,1))
key_tmp_j(k,2) = iand(key_tmp_j(k,2),cas_bitmask(k,1,1))
enddo
! control if the two determinants are connected by
! at most a double excitation WITHIN THE ACTIVE SPACE
call get_excitation_degree(key_tmp_i,key_tmp_j,degree,N_int)
2016-04-17 22:25:25 +02:00
if(degree>2)cycle
2016-07-16 16:09:50 +02:00
! if it is the case, then compute the hamiltonian matrix element with the proper phase
2016-04-17 22:25:25 +02:00
call get_excitation(psi_det(1,1,i),psi_det(1,1,j),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
contrib = 0.5d0 * psi_coef(i,1) * psi_coef(j,1) * phase
if(degree==2)then ! case of the DOUBLE EXCITATIONS ************************************
if(s1==s2)cycle ! Only the alpha/beta two body density matrix
2016-04-17 22:25:25 +02:00
! <J| a^{\dagger}_{p1 s1} a^{\dagger}_{p2 s2} a_{h2 s2} a_{h1 s1} |I> * c_I * c_J
2016-07-16 16:09:50 +02:00
h1 = list_act_reverse(h1)
h2 = list_act_reverse(h2)
p1 = list_act_reverse(p1)
p2 = list_act_reverse(p2)
call insert_into_two_body_dm_big_array( two_body_dm_ab_big_array_act,n_act_orb,n_act_orb,n_act_orb,n_act_orb,contrib,h1,p1,h2,p2)
2016-04-17 22:25:25 +02:00
else if(degree==1)then! case of the SINGLE EXCITATIONS ***************************************************
2016-07-16 16:09:50 +02:00
print*,'h1 = ',h1
h1 = list_act_reverse(h1)
print*,'h1 = ',h1
print*,'p1 = ',p1
p1 = list_act_reverse(p1)
print*,'p1 = ',p1
2016-04-17 22:25:25 +02:00
if(s1==1)then ! Mono alpha :
2016-07-16 16:09:50 +02:00
! purely active part of the extra diagonal two body dm
do k = 1, n_occ_ab(2)
m = list_act_reverse(occ(k,2))
! <J| a^{\dagger}_{p1 \alpha} \hat{n}_{m \beta} a_{h1 \alpha} |I> * c_I * c_J
call insert_into_two_body_dm_big_array( two_body_dm_ab_big_array_act,n_act_orb,n_act_orb,n_act_orb,n_act_orb,contrib,h1,p1,m,m)
enddo
! core <-> active part of the extra diagonal two body dm
do k = 1, n_occ_ab_core(2)
m = list_core_reverse(occ_core(k,2))
2016-04-17 22:25:25 +02:00
! <J| a^{\dagger}_{p1 \alpha} \hat{n}_{m \beta} a_{h1 \alpha} |I> * c_I * c_J
2016-07-16 16:09:50 +02:00
two_body_dm_ab_big_array_core_act(m,h1,p1) += 2.d0 * contrib
two_body_dm_ab_big_array_core_act(m,p1,h1) += 2.d0 * contrib
2016-04-17 22:25:25 +02:00
enddo
else ! Mono Beta :
2016-07-16 16:09:50 +02:00
! purely active part of the extra diagonal two body dm
do k = 1, n_occ_ab(1)
m = list_act_reverse(occ(k,1))
2016-04-17 22:25:25 +02:00
! <J| a^{\dagger}_{p1 \beta} \hat{n}_{m \alpha} a_{h1 \beta} |I> * c_I * c_J
2016-07-16 16:09:50 +02:00
call insert_into_two_body_dm_big_array(two_body_dm_ab_big_array_act,n_act_orb,n_act_orb,n_act_orb,n_act_orb,contrib,h1,p1,m,m)
enddo
! core <-> active part of the extra diagonal two body dm
do k = 1, n_occ_ab_core(1)
m = list_core_reverse(occ_core(k,1))
! <J| a^{\dagger}_{p1 \alpha} \hat{n}_{m \beta} a_{h1 \alpha} |I> * c_I * c_J
two_body_dm_ab_big_array_core_act(m,h1,p1) += 2.d0 * contrib
two_body_dm_ab_big_array_core_act(m,p1,h1) += 2.d0 * contrib
2016-04-17 22:25:25 +02:00
enddo
endif
endif
enddo
enddo
print*,'Big array for density matrix provided !'
END_PROVIDER
subroutine insert_into_two_body_dm_big_array(big_array,dim1,dim2,dim3,dim4,contrib,h1,p1,h2,p2)
implicit none
integer, intent(in) :: h1,p1,h2,p2
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4)
double precision :: contrib
2016-04-18 20:49:49 +02:00
! Two spin symmetry
big_array(h1,p1,h2,p2) += contrib
big_array(h2,p2,h1,p1) += contrib
! Hermicity : hole-particle symmetry
big_array(p1,h1,p2,h2) += contrib
big_array(p2,h2,p1,h1) += contrib
2016-04-17 22:25:25 +02:00
end
double precision function compute_extra_diag_two_body_dm_ab(r1,r2)
implicit none
BEGIN_DOC
! compute the extra diagonal contribution to the alpha/bet two body density at r1, r2
END_DOC
double precision :: r1(3), r2(3)
double precision :: compute_extra_diag_two_body_dm_ab_act,compute_extra_diag_two_body_dm_ab_core_act
compute_extra_diag_two_body_dm_ab = compute_extra_diag_two_body_dm_ab_act(r1,r2)+compute_extra_diag_two_body_dm_ab_core_act(r1,r2)
end
double precision function compute_extra_diag_two_body_dm_ab_act(r1,r2)
implicit none
BEGIN_DOC
! compute the extra diagonal contribution to the two body density at r1, r2
! involving ONLY THE ACTIVE PART, which means that the four index of the excitations
! involved in the two body density matrix are ACTIVE
END_DOC
PROVIDE n_act_orb
double precision, intent(in) :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_r1(n_act_orb),mos_array_r2(n_act_orb)
double precision :: contrib
double precision :: contrib_tmp
!print*,'n_act_orb = ',n_act_orb
compute_extra_diag_two_body_dm_ab_act = 0.d0
call give_all_act_mos_at_r(r1,mos_array_r1)
call give_all_act_mos_at_r(r2,mos_array_r2)
do l = 1, n_act_orb ! p2
do k = 1, n_act_orb ! h2
do j = 1, n_act_orb ! p1
do i = 1,n_act_orb ! h1
contrib_tmp = mos_array_r1(i) * mos_array_r1(j) * mos_array_r2(k) * mos_array_r2(l)
compute_extra_diag_two_body_dm_ab_act += two_body_dm_ab_big_array_act(i,j,k,l) * contrib_tmp
enddo
enddo
enddo
enddo
end
double precision function compute_extra_diag_two_body_dm_ab_core_act(r1,r2)
implicit none
BEGIN_DOC
! compute the extra diagonal contribution to the two body density at r1, r2
! involving ONLY THE ACTIVE PART, which means that the four index of the excitations
! involved in the two body density matrix are ACTIVE
END_DOC
double precision, intent(in) :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_act_r1(n_act_orb),mos_array_act_r2(n_act_orb)
double precision :: mos_array_core_r1(n_core_orb),mos_array_core_r2(n_core_orb)
double precision :: contrib_core_1,contrib_core_2
double precision :: contrib_act_1,contrib_act_2
double precision :: contrib_tmp
compute_extra_diag_two_body_dm_ab_core_act = 0.d0
call give_all_act_mos_at_r(r1,mos_array_act_r1)
call give_all_act_mos_at_r(r2,mos_array_act_r2)
call give_all_core_mos_at_r(r1,mos_array_core_r1)
call give_all_core_mos_at_r(r2,mos_array_core_r2)
do i = 1, n_act_orb ! h1
do j = 1, n_act_orb ! p1
contrib_act_1 = mos_array_act_r1(i) * mos_array_act_r1(j)
contrib_act_2 = mos_array_act_r2(i) * mos_array_act_r2(j)
do k = 1,n_core_orb ! h2
contrib_core_1 = mos_array_core_r1(k) * mos_array_core_r1(k)
contrib_core_2 = mos_array_core_r2(k) * mos_array_core_r2(k)
contrib_tmp = 0.5d0 * (contrib_act_1 * contrib_core_2 + contrib_act_2 * contrib_core_1)
compute_extra_diag_two_body_dm_ab_core_act += two_body_dm_ab_big_array_core_act(k,i,j) * contrib_tmp
enddo
enddo
enddo
end
double precision function compute_diag_two_body_dm_ab_core(r1,r2)
implicit none
double precision :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_r1(n_core_orb_allocate),mos_array_r2(n_core_orb_allocate)
double precision :: contrib,contrib_tmp
compute_diag_two_body_dm_ab_core = 0.d0
call give_all_core_mos_at_r(r1,mos_array_r1)
call give_all_core_mos_at_r(r2,mos_array_r2)
do l = 1, n_core_orb !
contrib = mos_array_r2(l)*mos_array_r2(l)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do k = 1, n_core_orb !
contrib_tmp = contrib * mos_array_r1(k)*mos_array_r1(k)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
compute_diag_two_body_dm_ab_core += two_body_dm_ab_diag_core(k,l) * contrib_tmp
enddo
enddo
end
double precision function compute_diag_two_body_dm_ab_act(r1,r2)
implicit none
double precision :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_r1(n_act_orb),mos_array_r2(n_act_orb)
double precision :: contrib,contrib_tmp
compute_diag_two_body_dm_ab_act = 0.d0
call give_all_act_mos_at_r(r1,mos_array_r1)
call give_all_act_mos_at_r(r2,mos_array_r2)
do l = 1, n_act_orb !
contrib = mos_array_r2(l)*mos_array_r2(l)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do k = 1, n_act_orb !
contrib_tmp = contrib * mos_array_r1(k)*mos_array_r1(k)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
compute_diag_two_body_dm_ab_act += two_body_dm_ab_diag_act(k,l) * contrib_tmp
enddo
enddo
end
double precision function compute_diag_two_body_dm_ab_core_act(r1,r2)
implicit none
double precision :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_core_r1(n_core_orb_allocate),mos_array_core_r2(n_core_orb_allocate)
double precision :: mos_array_act_r1(n_act_orb),mos_array_act_r2(n_act_orb)
double precision :: contrib_core_1,contrib_core_2
double precision :: contrib_act_1,contrib_act_2
double precision :: contrib_tmp
compute_diag_two_body_dm_ab_core_act = 0.d0
call give_all_act_mos_at_r(r1,mos_array_act_r1)
call give_all_act_mos_at_r(r2,mos_array_act_r2)
call give_all_core_mos_at_r(r1,mos_array_core_r1)
call give_all_core_mos_at_r(r2,mos_array_core_r2)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do k = 1, n_act_orb !
contrib_act_1 = mos_array_act_r1(k) * mos_array_act_r1(k)
contrib_act_2 = mos_array_act_r2(k) * mos_array_act_r2(k)
contrib_tmp = 0.5d0 * (contrib_act_1 * contrib_act_2 + contrib_act_2 * contrib_act_1)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do l = 1, n_core_orb !
contrib_core_1 = mos_array_core_r1(l) * mos_array_core_r1(l)
contrib_core_2 = mos_array_core_r2(l) * mos_array_core_r2(l)
compute_diag_two_body_dm_ab_core_act += two_body_dm_diag_core_act(l,k) * contrib_tmp
enddo
enddo
end
double precision function compute_diag_two_body_dm_ab(r1,r2)
implicit none
double precision,intent(in) :: r1(3),r2(3)
double precision :: compute_diag_two_body_dm_ab_act,compute_diag_two_body_dm_ab_core
double precision :: compute_diag_two_body_dm_ab_core_act
compute_diag_two_body_dm_ab = compute_diag_two_body_dm_ab_act(r1,r2)+compute_diag_two_body_dm_ab_core(r1,r2) &
+ compute_diag_two_body_dm_ab_core_act(r1,r2)
end