10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 04:17:17 +01:00
quantum_package/plugins/MRCC_Utils/mrcc_utils.irp.f

204 lines
6.0 KiB
Fortran
Raw Normal View History

2016-04-01 23:33:58 +02:00
BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
&BEGIN_PROVIDER [ integer, lambda_mrcc_pt2, (0:psi_det_size) ]
implicit none
BEGIN_DOC
! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
END_DOC
2016-03-31 16:48:23 +02:00
integer :: i,k
2016-03-30 21:33:38 +02:00
double precision :: ihpsi_current(N_states)
2016-04-01 23:33:58 +02:00
integer :: i_pert_count
double precision :: hii, lambda_pert
integer :: N_lambda_mrcc_pt2
2016-03-31 16:48:23 +02:00
2016-03-30 21:33:38 +02:00
i_pert_count = 0
lambda_mrcc = 0.d0
2016-04-01 23:33:58 +02:00
N_lambda_mrcc_pt2 = 0
lambda_mrcc_pt2(0) = 0
2016-03-31 16:48:23 +02:00
do i=1,N_det_non_ref
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
2016-03-31 16:48:23 +02:00
size(psi_ref_coef,1), N_states,ihpsi_current)
call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
do k=1,N_states
if (ihpsi_current(k) == 0.d0) then
ihpsi_current(k) = 1.d-32
endif
lambda_mrcc(k,i) = min(0.d0,psi_non_ref_coef(i,k)/ihpsi_current(k) )
lambda_pert = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
if (lambda_pert / lambda_mrcc(k,i) < 0.5d0) then
2016-03-31 16:48:23 +02:00
i_pert_count += 1
lambda_mrcc(k,i) = 0.d0
2016-04-01 23:33:58 +02:00
if (lambda_mrcc_pt2(N_lambda_mrcc_pt2) /= i) then
N_lambda_mrcc_pt2 += 1
lambda_mrcc_pt2(N_lambda_mrcc_pt2) = i
endif
2016-03-31 16:48:23 +02:00
endif
enddo
enddo
2016-04-01 23:33:58 +02:00
lambda_mrcc_pt2(0) = N_lambda_mrcc_pt2
2016-03-31 16:48:23 +02:00
2016-03-30 21:33:38 +02:00
print*,'N_det_non_ref = ',N_det_non_ref
2016-03-31 16:48:23 +02:00
print*,'Number of ignored determinants = ',i_pert_count
2016-03-30 21:33:38 +02:00
print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1)
2016-03-31 16:48:23 +02:00
print*,'lambda max = ',maxval(dabs(lambda_mrcc))
2015-09-08 15:29:05 +02:00
2015-04-01 13:23:02 +02:00
END_PROVIDER
2015-04-03 14:26:14 +02:00
2016-03-31 16:48:23 +02:00
2015-06-29 10:35:29 +02:00
2016-03-29 23:18:26 +02:00
BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ]
implicit none
BEGIN_DOC
! < ref | H | Non-ref > matrix
END_DOC
integer :: i_I, k_sd
do i_I=1,N_det_ref
do k_sd=1,N_det_non_ref
call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,k_sd),N_int,hij_mrcc(k_sd,i_I))
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii, (N_states,N_det_ref) ]
2015-04-03 14:26:14 +02:00
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
delta_ij = 0.d0
delta_ii = 0.d0
2016-03-29 23:18:26 +02:00
call H_apply_mrcc(delta_ij,delta_ii,N_states,N_det_non_ref,N_det_ref)
2015-04-03 14:26:14 +02:00
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
2015-04-03 14:26:14 +02:00
implicit none
BEGIN_DOC
! Dressed H with Delta_ij
END_DOC
integer :: i, j,istate,ii,jj
do istate = 1,N_states
do j=1,N_det
do i=1,N_det
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
enddo
2015-04-03 14:26:14 +02:00
enddo
2015-07-13 18:00:38 +02:00
do ii = 1, N_det_ref
i =idx_ref(ii)
2016-03-29 23:18:26 +02:00
h_matrix_dressed(i,i,istate) += delta_ii(istate,ii)
2015-07-13 18:00:38 +02:00
do jj = 1, N_det_non_ref
2015-07-20 13:35:38 +02:00
j =idx_non_ref(jj)
2016-03-29 23:18:26 +02:00
h_matrix_dressed(i,j,istate) += delta_ij(istate,jj,ii)
h_matrix_dressed(j,i,istate) += delta_ij(istate,jj,ii)
enddo
enddo
2015-04-03 14:26:14 +02:00
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
2015-07-03 14:42:55 +02:00
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
if (diag_algorithm == "Davidson") then
integer :: istate
istate = 1
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
else if (diag_algorithm == "Lapack") then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
do i=1,N_det
2015-04-03 14:26:14 +02:00
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
2015-07-03 14:42:55 +02:00
enddo
integer :: i_state
double precision :: s2
i_state = 0
if (s2_eig) then
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
if(dabs(s2-expected_s2).le.0.3d0)then
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
endif
if (i_state.ge.N_states_diag) then
exit
endif
enddo
else
do j=1,N_states_diag
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
2015-04-03 14:26:14 +02:00
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the dressed CI matrix
END_DOC
integer :: j
character*(8) :: st
2015-04-20 10:12:08 +02:00
call write_time(output_determinants)
2015-04-03 14:26:14 +02:00
do j=1,N_states_diag
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
enddo
END_PROVIDER
2016-03-30 21:33:38 +02:00
subroutine diagonalize_CI_dressed(lambda)
2015-04-09 21:46:37 +02:00
implicit none
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
2016-03-30 21:33:38 +02:00
double precision, intent(in) :: lambda
2015-04-09 21:46:37 +02:00
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
2016-03-30 21:33:38 +02:00
psi_coef(i,j) = lambda * CI_eigenvectors_dressed(i,j) + (1.d0 - lambda) * psi_coef(i,j)
2015-04-09 21:46:37 +02:00
enddo
2016-03-30 21:33:38 +02:00
call normalize(psi_coef(1,j), N_det)
2015-04-09 21:46:37 +02:00
enddo
SOFT_TOUCH psi_coef
end
2016-03-29 23:18:26 +02:00