4
1
mirror of https://github.com/pfloos/quack synced 2025-01-11 21:48:34 +01:00
quack/src/GT/RG0T0pp.f90
2024-09-11 10:13:11 +02:00

385 lines
13 KiB
Fortran

subroutine RG0T0pp(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_T,TDA,dBSE,dTDA,doppBSE,singlet,triplet, &
linearize,eta,regularize,nBas,nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Perform one-shot calculation with a T-matrix self-energy (G0T0)
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: doppBSE
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: singlet
logical,intent(in) :: triplet
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int(nOrb,nOrb,ncart)
! Local variables
logical :: print_T = .false.
double precision :: lambda
integer :: isp_T
integer :: iblock
integer :: nOOs,nOOt
integer :: nVVs,nVVt
integer :: n_states, n_states_diag
double precision :: EcRPA(nspin)
double precision :: EcBSE(nspin)
double precision :: EcGM
double precision,allocatable :: Bpp(:,:)
double precision,allocatable :: Cpp(:,:)
double precision,allocatable :: Dpp(:,:)
double precision,allocatable :: Om1s(:),Om1t(:)
double precision,allocatable :: X1s(:,:),X1t(:,:)
double precision,allocatable :: Y1s(:,:),Y1t(:,:)
double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:)
double precision,allocatable :: Om2s(:),Om2t(:)
double precision,allocatable :: X2s(:,:),X2t(:,:)
double precision,allocatable :: Y2s(:,:),Y2t(:,:)
double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:)
double precision,allocatable :: Sig(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: eGT(:)
double precision,allocatable :: eGTlin(:)
integer, allocatable :: supp_data_int(:)
double precision, allocatable :: supp_data_dbl(:)
double precision, allocatable :: Om(:), R(:,:)
! Output variables
! Hello world
write(*,*)
write(*,*)'*********************************'
write(*,*)'* Restricted G0T0pp Calculation *'
write(*,*)'*********************************'
write(*,*)
! Initialization
lambda = 1d0
! TDA for T
if(TDA_T) then
write(*,*) 'Tamm-Dancoff approximation activated for pp T-matrix!'
write(*,*)
end if
! Dimensions of the pp-RPA linear reponse matrices
!nOOs = nO*(nO + 1)/2
!nVVs = nV*(nV + 1)/2
nOOs = nO*nO
nVVs = nV*nV
nOOt = nO*(nO - 1)/2
nVVt = nV*(nV - 1)/2
! Memory allocation
allocate(Om1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), &
Om2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), &
rho1s(nOrb,nOrb,nVVs),rho2s(nOrb,nOrb,nOOs), &
Om1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), &
Om2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), &
rho1t(nOrb,nOrb,nVVt),rho2t(nOrb,nOrb,nOOt), &
Sig(nOrb),Z(nOrb),eGT(nOrb),eGTlin(nOrb))
!----------------------------------------------
! alpha-beta block
!----------------------------------------------
isp_T = 1
!iblock = 1
iblock = 3
! Compute linear response
allocate(Bpp(nVVs,nOOs),Cpp(nVVs,nVVs),Dpp(nOOs,nOOs))
call ppLR_C(iblock,nOrb,nC,nO,nV,nR,nVVs,lambda,eHF,ERI,Cpp)
call ppLR_D(iblock,nOrb,nC,nO,nV,nR,nOOs,lambda,eHF,ERI,Dpp)
if(.not.TDA_T) call ppLR_B(iblock,nOrb,nC,nO,nV,nR,nOOs,nVVs,lambda,ERI,Bpp)
call ppLR(TDA_T,nOOs,nVVs,Bpp,Cpp,Dpp,Om1s,X1s,Y1s,Om2s,X2s,Y2s,EcRPA(isp_T))
deallocate(Bpp,Cpp,Dpp)
!print*, 'LAPACK:'
!print*, Om2s
!print*, Om1s
!n_states = nOOs + 5
!n_states_diag = n_states + 4
!allocate(Om(nOOs+nVVs), R(nOOs+nVVs,n_states_diag))
!allocate(supp_data_dbl(1), supp_data_int(1))
!supp_data_int(1) = 0
!supp_data_dbl(1) = 0.d0
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOs, nVVs, &
! 1.d0, & ! lambda
! eHF(1), &
! 0.d0, & ! eF
! ERI(1,1,1,1), &
! supp_data_int(1), 1, &
! supp_data_dbl(1), 1, &
! Om(1), R(1,1), n_states, n_states_diag, "RPA")
!deallocate(supp_data_dbl, supp_data_int)
!deallocate(Om, R)
!stop
if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-beta)',nVVs,Om1s)
if(print_T) call print_excitation_energies('ppRPA@RHF','2h (alpha-beta)',nOOs,Om2s)
!----------------------------------------------
! alpha-alpha block
!----------------------------------------------
isp_T = 2
! iblock = 2
iblock = 4
! Compute linear response
allocate(Bpp(nVVt,nOOt),Cpp(nVVt,nVVt),Dpp(nOOt,nOOt))
call ppLR_C(iblock,nOrb,nC,nO,nV,nR,nVVt,lambda,eHF,ERI,Cpp)
call ppLR_D(iblock,nOrb,nC,nO,nV,nR,nOOt,lambda,eHF,ERI,Dpp)
if(.not.TDA_T) call ppLR_B(iblock,nOrb,nC,nO,nV,nR,nOOt,nVVt,lambda,ERI,Bpp)
call ppLR(TDA_T,nOOt,nVVt,Bpp,Cpp,Dpp,Om1t,X1t,Y1t,Om2t,X2t,Y2t,EcRPA(isp_T))
deallocate(Bpp,Cpp,Dpp)
!print*, 'LAPACK:'
!print*, Om2t
!print*, Om1t
!n_states = nOOt + 5
!n_states_diag = n_states + 4
!allocate(Om(nOOt+nVVt), R(nOOt+nVVt,n_states_diag))
!allocate(supp_data_dbl(1), supp_data_int(1))
!supp_data_int(1) = 0
!supp_data_dbl(1) = 0.d0
!call ppLR_davidson(iblock, TDA_T, nC, nO, nR, nOrb, nOOt, nVVt, &
! 1.d0, & ! lambda
! eHF(1), &
! 0.d0, & ! eF
! ERI(1,1,1,1), &
! supp_data_int(1), 1, &
! supp_data_dbl(1), 1, &
! Om(1), R(1,1), n_states, n_states_diag, "RPA")
!deallocate(Om, R)
!deallocate(supp_data_dbl)
!stop
if(print_T) call print_excitation_energies('ppRPA@RHF','2p (alpha-alpha)',nVVt,Om1t)
if(print_T) call print_excitation_energies('ppRPA@RHF','2h (alpha-alpha)',nOOt,Om2t)
!----------------------------------------------
! Compute excitation densities
!----------------------------------------------
! iblock = 1
iblock = 3
call RGTpp_excitation_density(iblock,nOrb,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
! iblock = 2
iblock = 4
call RGTpp_excitation_density(iblock,nOrb,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
if(regularize) then
call GTpp_regularization(nOrb,nC,nO,nV,nR,nOOs,nVVs,eHF,Om1s,rho1s,Om2s,rho2s)
call GTpp_regularization(nOrb,nC,nO,nV,nR,nOOt,nVVt,eHF,Om1t,rho1t,Om2t,rho2t)
end if
call RGTpp_self_energy_diag(eta,nOrb,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,eHF,Om1s,rho1s,Om2s,rho2s, &
Om1t,rho1t,Om2t,rho2t,EcGM,Sig,Z)
!----------------------------------------------
! Solve the quasi-particle equation
!----------------------------------------------
eGTlin(:) = eHF(:) + Z(:)*Sig(:)
if(linearize) then
write(*,*) ' *** Quasiparticle energies obtained by linearization *** '
write(*,*)
eGT(:) = eGTlin(:)
else
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call RGTpp_QP_graph(eta,nOrb,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,eHF,Om1s,rho1s,Om2s,rho2s, &
Om1t,rho1t,Om2t,rho2t,eGTlin,eHF,eGT,Z)
end if
! call RGTpp_plot_self_energy(nOrb,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,eHF,eGT,Om1s,rho1s,Om2s,rho2s, &
! Om1t,rho1t,Om2t,rho2t)
!----------------------------------------------
! Dump results
!----------------------------------------------
! Compute the ppRPA correlation energy
isp_T = 1
! iblock = 1
iblock = 3
allocate(Bpp(nVVs,nOOs),Cpp(nVVs,nVVs),Dpp(nOOs,nOOs))
call ppLR_C(iblock,nOrb,nC,nO,nV,nR,nVVs,lambda,eGT,ERI,Cpp)
call ppLR_D(iblock,nOrb,nC,nO,nV,nR,nOOs,lambda,eGT,ERI,Dpp)
if(.not.TDA_T) call ppLR_B(iblock,nOrb,nC,nO,nV,nR,nOOs,nVVs,lambda,ERI,Bpp)
call ppLR(TDA_T,nOOs,nVVs,Bpp,Cpp,Dpp,Om1s,X1s,Y1s,Om2s,X2s,Y2s,EcRPA(isp_T))
deallocate(Bpp,Cpp,Dpp)
isp_T = 2
! iblock = 2
iblock = 4
allocate(Bpp(nVVt,nOOt),Cpp(nVVt,nVVt),Dpp(nOOt,nOOt))
call ppLR_C(iblock,nOrb,nC,nO,nV,nR,nVVt,lambda,eGT,ERI,Cpp)
call ppLR_D(iblock,nOrb,nC,nO,nV,nR,nOOt,lambda,eGT,ERI,Dpp)
if(.not.TDA_T) call ppLR_B(iblock,nOrb,nC,nO,nV,nR,nOOt,nVVt,lambda,ERI,Bpp)
call ppLR(TDA_T,nOOt,nVVt,Bpp,Cpp,Dpp,Om1t,X1t,Y1t,Om2t,X2t,Y2t,EcRPA(isp_T))
deallocate(Bpp,Cpp,Dpp)
EcRPA(1) = EcRPA(1) - EcRPA(2)
EcRPA(2) = 3d0*EcRPA(2)
call print_RG0T0pp(nOrb,nO,eHF,ENuc,ERHF,Sig,Z,eGT,EcGM,EcRPA)
! Perform BSE calculation
if(dophBSE) then
call RGTpp_phBSE(TDA_T,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
Om1s,X1s,Y1s,Om2s,X2s,Y2s,rho1s,rho2s,Om1t,X1t,Y1t,Om2t,X2t,Y2t,rho1t,rho2t, &
ERI,dipole_int,eHF,eGT,EcBSE)
if(exchange_kernel) then
EcBSE(1) = 0.5d0*EcBSE(1)
EcBSE(2) = 1.5d0*EcBSE(1)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp correlation energy (singlet) =',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp correlation energy (triplet) =',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp correlation energy =',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@G0T0pp total energy =',ENuc + ERHF + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '--------------------------------------------------------'
write(*,*) 'Adiabatic connection version of phBSE correlation energy'
write(*,*) '--------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call RGTpp_phACFDT(exchange_kernel,doXBS,.false.,TDA_T,TDA,dophBSE,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS, &
nOOs,nVVs,nOOt,nVVt,Om1s,X1s,Y1s,Om2s,X2s,Y2s,rho1s,rho2s,Om1t,X1t,Y1t, &
Om2t,X2t,Y2t,rho1t,rho2t,ERI,eHF,eGT,EcBSE)
if(exchange_kernel) then
EcBSE(1) = 0.5d0*EcBSE(1)
EcBSE(2) = 1.5d0*EcBSE(2)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@RHF correlation energy (singlet) = ',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@RHF correlation energy (triplet) = ',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@RHF correlation energy = ',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phBSE@G0T0pp@RHF total energy = ',ENuc + ERHF + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
if(doppBSE) then
call RGTpp_ppBSE(TDA_T,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt, &
Om1s,X1s,Y1s,Om2s,X2s,Y2s,rho1s,rho2s,Om1t,X1t,Y1t,Om2t,X2t,Y2t,rho1t,rho2t, &
ERI,dipole_int,eHF,eGT,EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@RHF correlation energy (singlet) = ',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@RHF correlation energy (triplet) = ',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@RHF correlation energy = ',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0T0pp@RHF total energy = ',ENuc + ERHF + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
! Testing zone
if(dotest) then
call dump_test_value('R','G0T0pp correlation energy',sum(EcRPA))
call dump_test_value('R','G0T0pp HOMO energy',eGT(nO))
call dump_test_value('R','G0T0pp LUMO energy',eGT(nO+1))
end if
end subroutine