quack/src/GT/GTpp_self_energy.f90

136 lines
3.6 KiB
Fortran

subroutine GTpp_self_energy(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,e,Om1s,rho1s,Om2s,rho2s,Om1t,rho1t,Om2t,rho2t,EcGM,Sig,Z)
! Compute the correlation part of the T-matrix self-energy and the renormalization factor
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOOs,nOOt
integer,intent(in) :: nVVs,nVVt
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om1s(nVVs),Om1t(nVVt)
double precision,intent(in) :: rho1s(nBas,nBas,nVVs),rho1t(nBas,nBas,nVVt)
double precision,intent(in) :: Om2s(nOOs),Om2t(nOOt)
double precision,intent(in) :: rho2s(nBas,nBas,nOOs),rho2t(nBas,nBas,nOOt)
! Local variables
integer :: i,j,a,b,p,q,cd,kl
double precision :: num,eps
! Output variables
double precision,intent(inout):: EcGM
double precision,intent(inout):: Sig(nBas,nBas)
double precision,intent(inout):: Z(nBas)
! Initialization
Sig(:,:) = 0d0
Z(:) = 0d0
EcGM = 0d0
!----------------------------------------------
! Occupied part of the T-matrix self-energy
!----------------------------------------------
do p=nC+1,nBas-nR
do q=nC+1,nBas-nR
do i=nC+1,nO
do cd=1,nVVs
eps = e(p) + e(i) - Om1s(cd)
num = rho1s(p,i,cd)*rho1s(q,i,cd)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
do cd=1,nVVt
eps = e(p) + e(i) - Om1t(cd)
num = rho1t(p,i,cd)*rho1t(q,i,cd)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
end do
!----------------------------------------------
! Virtual part of the T-matrix self-energy
!----------------------------------------------
do p=nC+1,nBas-nR
do q=nC+1,nBas-nR
do a=nO+1,nBas-nR
do kl=1,nOOs
eps = e(p) + e(a) - Om2s(kl)
num = rho2s(p,a,kl)*rho2s(q,a,kl)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
do kl=1,nOOt
eps = e(p) + e(a) - Om2t(kl)
num = rho2t(p,a,kl)*rho2t(q,a,kl)
Sig(p,q) = Sig(p,q) + num*eps/(eps**2 + eta**2)
if(p == q) Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
end do
end do
!----------------------------------------------
! Galitskii-Migdal correlation energy
!----------------------------------------------
do i=nC+1,nO
do j=nC+1,nO
do cd=1,nVVs
eps = e(i) + e(j) - Om1s(cd)
num = rho1s(i,j,cd)*rho1s(i,j,cd)
EcGM = EcGM + num*eps/(eps**2 + eta**2)
end do
do cd=1,nVVt
eps = e(i) + e(j) - Om1t(cd)
num = rho1t(i,j,cd)*rho1t(i,j,cd)
EcGM = EcGM + num*eps/(eps**2 + eta**2)
end do
end do
end do
do a=nO+1,nBas-nR
do b=nO+1,nBas-nR
do kl=1,nOOs
eps = e(a) + e(b) - Om2s(kl)
num = rho2s(a,b,kl)*rho2s(a,b,kl)
EcGM = EcGM - num*eps/(eps**2 + eta**2)
end do
do kl=1,nOOt
eps = e(a) + e(b) - Om2t(kl)
num = rho2t(a,b,kl)*rho2t(a,b,kl)
EcGM = EcGM - num*eps/(eps**2 + eta**2)
end do
end do
end do
Z(:) = 1d0/(1d0 - Z(:))
end subroutine