4
1
mirror of https://github.com/pfloos/quack synced 2024-12-22 20:35:36 +01:00
quack/src/LR/ppLR_transition_vectors.f90
2024-09-06 11:26:47 +02:00

195 lines
5.1 KiB
Fortran

subroutine ppLR_transition_vectors(spin_allowed,nBas,nC,nO,nV,nR,nOO,nVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2)
! Print transition vectors for p-p linear response calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: spin_allowed
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: Om1(nVV)
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: Om2(nOO)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
! Local variables
integer :: a,b,c,d,ab,cd
integer :: i,j,k,l,ij,kl
integer :: maxOO = 10
integer :: maxVV = 10
double precision :: S2
double precision,parameter :: thres_vec = 0.1d0
double precision,allocatable :: os1(:)
double precision,allocatable :: os2(:)
! Memory allocation
maxOO = min(nOO,maxOO)
maxVV = min(nVV,maxVV)
allocate(os1(nVV),os2(nOO))
! Compute oscillator strengths
os1(:) = 0d0
os2(:) = 0d0
if(spin_allowed) &
call ppLR_oscillator_strength(nBas,nC,nO,nV,nR,nOO,nVV,maxOO,maxVV,dipole_int,Om1,X1,Y1,Om2,X2,Y2,os1,os2)
!-----------------------------------------------!
! Print details about excitations for pp sector !
!-----------------------------------------------!
write(*,*) '*****************************'
write(*,*) '*** (N+2)-electron states ***'
write(*,*) '*****************************'
write(*,*)
do ab=1,maxVV
! <S**2> values
if(spin_allowed) then
S2 = 0d0
else
S2 = 2d0
end if
print*,'-------------------------------------------------------------'
write(*,'(A20,I3,A2,F12.6,A3,A6,F6.4,A11,F6.4)') &
' p-p excitation n. ',ab,': ',Om1(ab)*HaToeV,' eV',' f = ',os1(ab),' <S**2> = ',S2
print*,'-------------------------------------------------------------'
if(spin_allowed) then
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
if(abs(X1(cd,ab)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') c,' -- ',d,' = ',X1(cd,ab)/sqrt(2d0)
end do
end do
kl = 0
do k=nC+1,nO
do l=k,nO
kl = kl + 1
if(abs(Y1(kl,ab)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') k,' -- ',l,' = ',Y1(kl,ab)/sqrt(2d0)
end do
end do
else
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
if(abs(X1(cd,ab)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') c,' -- ',d,' = ',X1(cd,ab)/sqrt(2d0)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
if(abs(Y1(kl,ab)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') k,' -- ',l,' = ',Y1(kl,ab)/sqrt(2d0)
end do
end do
end if
write(*,*)
end do
! Thomas-Reiche-Kuhn sum rule
! if(nVV > 0) write(*,'(A50,F10.6)') 'Thomas-Reiche-Kuhn sum rule for p-p sector = ',sum(os1(:))
! write(*,*)
!-----------------------------------------------!
! Print details about excitations for hh sector !
!-----------------------------------------------!
write(*,*) '*****************************'
write(*,*) '*** (N-2)-electron states ***'
write(*,*) '*****************************'
write(*,*)
do ij=nOO,nOO-maxOO+1,-1
! <S**2> values
if(spin_allowed) then
S2 = 0d0
else
S2 = 2d0
end if
print*,'-------------------------------------------------------------'
write(*,'(A20,I3,A2,F12.6,A3,A6,F6.4,A11,F6.4)') &
' h-h excitation n. ',ij,': ',Om2(ij)*HaToeV,' eV',' f = ',os2(ij),' <S**2> = ',S2
print*,'-------------------------------------------------------------'
if(spin_allowed) then
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
if(abs(X2(cd,ij)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') c,' -- ',d,' = ',X2(cd,ij)/sqrt(2d0)
end do
end do
kl = 0
do k=nC+1,nO
do l=k,nO
kl = kl + 1
if(abs(Y2(kl,ij)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') k,' -- ',l,' = ',Y2(kl,ij)/sqrt(2d0)
end do
end do
else
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
if(abs(X2(cd,ij)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') c,' -- ',d,' = ',X2(cd,ij)/sqrt(2d0)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
if(abs(Y2(kl,ij)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') k,' -- ',l,' = ',Y2(kl,ij)/sqrt(2d0)
end do
end do
end if
write(*,*)
end do
! Thomas-Reiche-Kuhn sum rule
! if(nOO > 0) write(*,'(A50,F10.6)') 'Thomas-Reiche-Kuhn sum rule for h-h sector = ',sum(os2(:))
! write(*,*)
end subroutine