mirror of
https://github.com/pfloos/quack
synced 2025-01-08 20:33:30 +01:00
87 lines
2.3 KiB
Fortran
87 lines
2.3 KiB
Fortran
subroutine phLR_transition_vectors(spin_allowed,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
|
|
|
|
! Print transition vectors for linear response calculation
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: spin_allowed
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
double precision :: dipole_int(nBas,nBas,ncart)
|
|
double precision,intent(in) :: Om(nS)
|
|
double precision,intent(in) :: XpY(nS,nS)
|
|
double precision,intent(in) :: XmY(nS,nS)
|
|
|
|
! Local variables
|
|
|
|
integer :: ia,jb,j,b
|
|
integer :: maxS = 10
|
|
double precision :: S2
|
|
double precision,parameter :: thres_vec = 0.1d0
|
|
double precision,allocatable :: X(:)
|
|
double precision,allocatable :: Y(:)
|
|
double precision,allocatable :: os(:)
|
|
|
|
! Memory allocation
|
|
|
|
maxS = min(nS,maxS)
|
|
allocate(X(nS),Y(nS),os(maxS))
|
|
|
|
! Compute oscillator strengths
|
|
|
|
os(:) = 0d0
|
|
if(spin_allowed) call phLR_oscillator_strength(nBas,nC,nO,nV,nR,nS,maxS,dipole_int,Om,XpY,XmY,os)
|
|
|
|
! Print details about excitations
|
|
|
|
do ia=1,maxS
|
|
|
|
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
|
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
|
|
|
! <S**2> values
|
|
|
|
if(spin_allowed) then
|
|
S2 = 0d0
|
|
else
|
|
S2 = 2d0
|
|
end if
|
|
|
|
print*,'-------------------------------------------------------------'
|
|
write(*,'(A15,I3,A2,F10.6,A3,A6,F6.4,A11,F6.4)') &
|
|
' Excitation n. ',ia,': ',Om(ia)*HaToeV,' eV',' f = ',os(ia),' <S**2> = ',S2
|
|
print*,'-------------------------------------------------------------'
|
|
|
|
jb = 0
|
|
do j=nC+1,nO
|
|
do b=nO+1,nBas-nR
|
|
jb = jb + 1
|
|
if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0)
|
|
end do
|
|
end do
|
|
|
|
jb = 0
|
|
do j=nC+1,nO
|
|
do b=nO+1,nBas-nR
|
|
jb = jb + 1
|
|
if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0)
|
|
end do
|
|
end do
|
|
write(*,*)
|
|
|
|
end do
|
|
|
|
! Thomas-Reiche-Kuhn sum rule
|
|
|
|
write(*,'(A30,F10.6)') 'Thomas-Reiche-Kuhn sum rule = ',sum(os(:))
|
|
write(*,*)
|
|
|
|
end subroutine
|