mirror of
https://github.com/pfloos/quack
synced 2025-05-06 15:24:43 +02:00
348 lines
10 KiB
Fortran
348 lines
10 KiB
Fortran
subroutine complex_qsRGF2(dotest,maxSCF,thresh,max_diis,dophBSE,doppBSE,TDA, &
|
|
dBSE,dTDA,singlet,triplet,eta,doSRG,nNuc,ZNuc, &
|
|
rNuc,ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc, &
|
|
ERI_AO,ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF, &
|
|
CAP_AO,CAP_MO)
|
|
|
|
! Perform a quasiparticle self-consistent GF2 calculation
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
logical,intent(in) :: dotest
|
|
|
|
integer,intent(in) :: maxSCF
|
|
integer,intent(in) :: max_diis
|
|
double precision,intent(in) :: thresh
|
|
logical,intent(in) :: dophBSE
|
|
logical,intent(in) :: doppBSE
|
|
logical,intent(in) :: TDA
|
|
logical,intent(in) :: dBSE
|
|
logical,intent(in) :: dTDA
|
|
logical,intent(in) :: singlet
|
|
logical,intent(in) :: triplet
|
|
double precision,intent(in) :: eta
|
|
logical,intent(in) :: doSRG
|
|
|
|
integer,intent(in) :: nNuc
|
|
double precision,intent(in) :: ZNuc(nNuc)
|
|
double precision,intent(in) :: rNuc(nNuc,ncart)
|
|
double precision,intent(in) :: ENuc
|
|
|
|
integer,intent(in) :: nBas,nOrb,nC,nO,nV,nR,nS
|
|
complex*16,intent(in) :: ERHF
|
|
complex*16,intent(in) :: eHF(nOrb)
|
|
complex*16,intent(in) :: cHF(nBas,nOrb)
|
|
complex*16,intent(in) :: PHF(nBas,nBas)
|
|
double precision,intent(in) :: S(nBas,nBas)
|
|
double precision,intent(in) :: T(nBas,nBas)
|
|
double precision,intent(in) :: V(nBas,nBas)
|
|
double precision,intent(in) :: Hc(nBas,nBas)
|
|
double precision,intent(in) :: X(nBas,nOrb)
|
|
double precision,intent(in) :: CAP_AO(nBas,nBas)
|
|
complex*16,intent(inout) :: CAP_MO(nBas,nBas)
|
|
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
|
|
complex*16,intent(inout) :: ERI_MO(nOrb,nOrb,nOrb,nOrb)
|
|
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
|
|
complex*16,intent(in) :: dipole_int_MO(nOrb,nOrb,ncart)
|
|
|
|
! Local variables
|
|
|
|
integer :: nSCF
|
|
integer :: nBas_Sq
|
|
integer :: ispin
|
|
integer :: n_diis
|
|
complex*16 :: EqsGF2
|
|
double precision :: Conv
|
|
double precision :: flow
|
|
double precision :: rcond
|
|
complex*16,external :: complex_trace_matrix
|
|
complex*16 :: dipole(ncart)
|
|
complex*16 :: ET
|
|
complex*16 :: EV
|
|
complex*16 :: EW
|
|
complex*16 :: EJ
|
|
complex*16 :: Ex
|
|
complex*16 :: Ec
|
|
complex*16 :: EcBSE(nspin)
|
|
|
|
complex*16,allocatable :: err_diis(:,:)
|
|
complex*16,allocatable :: F_diis(:,:)
|
|
complex*16,allocatable :: c(:,:)
|
|
complex*16,allocatable :: cp(:,:)
|
|
complex*16,allocatable :: eGF(:)
|
|
complex*16,allocatable :: P(:,:)
|
|
complex*16,allocatable :: F(:,:)
|
|
complex*16,allocatable :: Fp(:,:)
|
|
complex*16,allocatable :: J(:,:)
|
|
complex*16,allocatable :: K(:,:)
|
|
complex*16,allocatable :: SigC(:,:)
|
|
complex*16,allocatable :: SigCp(:,:)
|
|
complex*16,allocatable :: Z(:)
|
|
complex*16,allocatable :: err(:,:)
|
|
|
|
! Hello world
|
|
|
|
|
|
write(*,*)
|
|
write(*,*)'********************************'
|
|
write(*,*)'* Restricted qsGF2 Calculation *'
|
|
write(*,*)'********************************'
|
|
write(*,*)
|
|
|
|
! SRG regularization
|
|
|
|
flow = 500d0
|
|
|
|
if(doSRG) then
|
|
|
|
write(*,*) '*** SRG regularized qsGF2 scheme ***'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
! Warning
|
|
|
|
write(*,*) '!! ERIs in MO basis will be overwritten in qsGF2 !!'
|
|
write(*,*)
|
|
|
|
! Stuff
|
|
|
|
nBas_Sq = nBas*nBas
|
|
|
|
! TDA
|
|
|
|
if(TDA) then
|
|
write(*,*) 'Tamm-Dancoff approximation activated!'
|
|
write(*,*)
|
|
end if
|
|
|
|
! Memory allocation
|
|
|
|
allocate(eGF(nOrb))
|
|
allocate(c(nBas,nOrb))
|
|
|
|
allocate(cp(nOrb,nOrb))
|
|
allocate(Fp(nOrb,nOrb))
|
|
|
|
allocate(P(nBas,nBas))
|
|
allocate(F(nBas,nBas))
|
|
allocate(J(nBas,nBas))
|
|
allocate(K(nBas,nBas))
|
|
allocate(err(nBas,nBas))
|
|
|
|
allocate(Z(nOrb))
|
|
allocate(SigC(nOrb,nOrb))
|
|
|
|
allocate(SigCp(nBas,nBas))
|
|
|
|
allocate(err_diis(nBas_Sq,max_diis))
|
|
allocate(F_diis(nBas_Sq,max_diis))
|
|
|
|
! Initialization
|
|
|
|
nSCF = -1
|
|
n_diis = 0
|
|
ispin = 1
|
|
Conv = 1d0
|
|
P(:,:) = PHF(:,:)
|
|
eGF(:) = eHF(:)
|
|
c(:,:) = cHF(:,:)
|
|
F_diis(:,:) = 0d0
|
|
err_diis(:,:) = 0d0
|
|
rcond = 0d0
|
|
|
|
|
|
|
|
!------------------------------------------------------------------------
|
|
! Main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
do while(Conv > thresh .and. nSCF <= maxSCF)
|
|
|
|
! Increment
|
|
|
|
nSCF = nSCF + 1
|
|
|
|
! Buid Hartree matrix
|
|
|
|
call complex_Hartree_matrix_AO_basis(nBas, P, ERI_AO, J)
|
|
|
|
! Compute exchange part of the self-energy
|
|
|
|
call complex_exchange_matrix_AO_basis(nBas, P, ERI_AO, K)
|
|
|
|
! AO to MO transformation of two-electron integrals
|
|
|
|
call complex_AOtoMO_ERI_RHF(nBas, nOrb, c, ERI_AO, ERI_MO)
|
|
|
|
! Compute self-energy and renormalization factor
|
|
|
|
if(doSRG) then
|
|
|
|
call complex_cRGF2_SRG_self_energy(flow,eta, nOrb, nC, nO, nV, nR, eGF, ERI_MO, SigC, Z)
|
|
|
|
else
|
|
|
|
call complex_cRGF2_self_energy(eta, nOrb, nC, nO, nV, nR, eGF, ERI_MO, SigC, Z)
|
|
|
|
end if
|
|
|
|
! Make correlation self-energy Hermitian and transform it back to AO basis
|
|
|
|
SigC = 0.5d0*(SigC + transpose(SigC))
|
|
|
|
call complex_MOtoAO(nBas, nOrb, S, c, SigC, SigCp)
|
|
|
|
! Solve the quasi-particle equation
|
|
|
|
F(:,:) = cmplx(Hc(:,:),CAP_AO(:,:),kind=8) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
|
|
if(nBas .ne. nOrb) then
|
|
call complex_complex_AOtoMO(nBas, nOrb, c, F, Fp)
|
|
call complex_MOtoAO(nBas, nOrb, S, c, Fp, F)
|
|
endif
|
|
|
|
! Compute commutator and convergence criteria
|
|
|
|
err = matmul(F, matmul(P, S)) - matmul(matmul(S, P), F)
|
|
|
|
Conv = maxval(abs(err))
|
|
|
|
! Kinetic energy
|
|
|
|
ET = complex_trace_matrix(nBas, matmul(P, T))
|
|
|
|
! Potential energy
|
|
|
|
EV = complex_trace_matrix(nBas, matmul(P, V))
|
|
|
|
! CAP
|
|
|
|
EW = complex_trace_matrix(nBas,matmul(P,(0d0,1d0)*CAP_AO))
|
|
|
|
! Hartree energy
|
|
|
|
EJ = 0.5d0*complex_trace_matrix(nBas, matmul(P, J))
|
|
|
|
! Exchange energy
|
|
|
|
Ex = 0.25d0*complex_trace_matrix(nBas, matmul(P, K))
|
|
|
|
|
|
! Total energy
|
|
|
|
EqsGF2 = ET + EV + EJ + Ex + Ec + EW
|
|
|
|
! DIIS extrapolation
|
|
|
|
if(max_diis>1) then
|
|
|
|
n_diis = min(n_diis+1,max_diis)
|
|
call complex_DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,err_diis,F_diis,err,F)
|
|
|
|
end if
|
|
|
|
! Diagonalize Hamiltonian in AO basis
|
|
|
|
if(nBas == nOrb) then
|
|
Fp = matmul(transpose(X), matmul(F, X))
|
|
cp(:,:) = Fp(:,:)
|
|
call complex_diagonalize_matrix(nOrb, cp, eGF)
|
|
call complex_orthogonalize_matrix(nBas,cp)
|
|
c = matmul(X, cp)
|
|
else
|
|
Fp = matmul(transpose(c), matmul(F, c))
|
|
cp(:,:) = Fp(:,:)
|
|
call complex_diagonalize_matrix(nOrb, cp, eGF)
|
|
call complex_orthogonalize_matrix(nBas,cp)
|
|
c = matmul(c, cp)
|
|
endif
|
|
|
|
call complex_complex_AOtoMO(nBas,nOrb,c,SigCp,SigC)
|
|
|
|
! Compute new density matrix in the AO basis
|
|
|
|
P(:,:) = 2d0*matmul(c(:,1:nO), transpose(c(:,1:nO)))
|
|
|
|
!------------------------------------------------------------------------
|
|
! Print results
|
|
!------------------------------------------------------------------------
|
|
|
|
!call dipole_moment(nBas, P, nNuc, ZNuc, rNuc, dipole_int_AO, dipole)
|
|
call print_complex_qsRGF2(nBas, nOrb, nO, nSCF, Conv, thresh, eHF, eGF, &
|
|
c, SigC, Z, ENuc, ET, EV,EW, EJ, Ex, Ec, EqsGF2, dipole)
|
|
end do
|
|
!------------------------------------------------------------------------
|
|
! End main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
! Did it actually converge?
|
|
|
|
if(nSCF == maxSCF+1) then
|
|
|
|
write(*,*)
|
|
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
write(*,*)' Convergence failed '
|
|
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
|
|
write(*,*)
|
|
|
|
deallocate(c, cp, P, F, Fp, J, K, SigC, SigCp, Z, err, err_diis, F_diis)
|
|
stop
|
|
|
|
end if
|
|
|
|
! Deallocate memory
|
|
|
|
deallocate(c, cp, P, F, Fp, J, K, SigC, SigCp, Z, err, err_diis, F_diis)
|
|
|
|
!! Perform phBSE@GF2 calculation
|
|
!
|
|
! if(dophBSE) then
|
|
!
|
|
! call RGF2_phBSE(TDA, dBSE, dTDA, singlet, triplet, eta, nOrb, nC, nO, &
|
|
! nV, nR, nS, ERI_MO, dipole_int_MO, eGF, EcBSE)
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@qsGF2 correlation energy (singlet) =',EcBSE(1)
|
|
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@qsGF2 correlation energy (triplet) =',EcBSE(2)
|
|
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@qsGF2 correlation energy =',sum(EcBSE(:))
|
|
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@qsGF2 total energy =',ENuc + EqsGF2 + sum(EcBSE(:))
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,*)
|
|
!
|
|
! end if
|
|
|
|
|
|
! Perform ppBSE@GF2 calculation
|
|
!
|
|
! if(doppBSE) then
|
|
!
|
|
! call RGF2_ppBSE(TDA, dBSE, dTDA, singlet, triplet, eta, nOrb, &
|
|
! nC, nO, nV, nR, ERI_MO, dipole_int_MO, eGF, EcBSE)
|
|
!
|
|
! write(*,*)
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGF2 correlation energy (singlet) =',EcBSE(1),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGF2 correlation energy (triplet) =',3d0*EcBSE(2),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGF2 correlation energy =',EcBSE(1) + 3d0*EcBSE(2),' au'
|
|
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGF2 total energy =',ENuc + EqsGF2 + EcBSE(1) + 3d0*EcBSE(2),' au'
|
|
! write(*,*)'-------------------------------------------------------------------------------'
|
|
! write(*,*)
|
|
!
|
|
! end if
|
|
!
|
|
!! Testing zone
|
|
!
|
|
! if(dotest) then
|
|
!
|
|
! call dump_test_value('R','qsGF2 correlation energy',Ec)
|
|
! call dump_test_value('R','qsGF2 HOMO energy',eGF(nO))
|
|
! call dump_test_value('R','qsGF2 LUMO energy',eGF(nO+1))
|
|
!
|
|
! end if
|
|
|
|
end subroutine
|