4
1
mirror of https://github.com/pfloos/quack synced 2024-11-07 14:43:58 +01:00
quack/src/QuAcK/evGT.f90

321 lines
11 KiB
Fortran

subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
BSE,TDA_W,TDA,singlet_manifold,triplet_manifold, &
eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eG0T0)
! Perform eigenvalue self-consistent calculation with a T-matrix self-energy (evGT)
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: BSE
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: singlet_manifold
logical,intent(in) :: triplet_manifold
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eG0T0(nBas)
! Local variables
logical :: linear_mixing
integer :: nSCF
integer :: n_diis
double precision :: rcond
double precision :: Conv
integer :: ispin
integer :: iblock
integer :: nOOs,nOOt
integer :: nVVs,nVVt
double precision :: dERI
double precision :: xERI
double precision :: alpha
double precision :: EcRPA(nspin)
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision,allocatable :: error_diis(:,:)
double precision,allocatable :: e_diis(:,:)
double precision,allocatable :: eGT(:)
double precision,allocatable :: eOld(:)
double precision,allocatable :: Omega1s(:),Omega1t(:)
double precision,allocatable :: X1s(:,:),X1t(:,:)
double precision,allocatable :: Y1s(:,:),Y1t(:,:)
double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:)
double precision,allocatable :: Omega2s(:),Omega2t(:)
double precision,allocatable :: X2s(:,:),X2t(:,:)
double precision,allocatable :: Y2s(:,:),Y2t(:,:)
double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:)
double precision,allocatable :: SigT(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: Omega(:,:)
double precision,allocatable :: XpY(:,:,:)
double precision,allocatable :: XmY(:,:,:)
double precision,allocatable :: rho(:,:,:,:)
! Output variables
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| Self-consistent evGT calculation |'
write(*,*)'************************************************'
write(*,*)
! Dimensions of the pp-RPA linear reponse matrices
nOOs = nO*nO
nVVs = nV*nV
nOOt = nO*(nO - 1)/2
nVVt = nV*(nV - 1)/2
! Memory allocation
allocate(Omega1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), &
Omega2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), &
rho1s(nBas,nO,nVVs),rho2s(nBas,nV,nOOs), &
Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), &
Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), &
rho1t(nBas,nO,nVVt),rho2t(nBas,nV,nOOt), &
eGT(nBas),eOld(nBas),Z(nBas),SigT(nBas), &
error_diis(nBas,max_diis),e_diis(nBas,max_diis))
! Initialization
nSCF = 0
n_diis = 0
Conv = 1d0
e_diis(:,:) = 0d0
error_diis(:,:) = 0d0
eGT(:) = eG0T0(:)
eOld(:) = eGT(:)
Z(:) = 1d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
!----------------------------------------------
! alpha-beta block
!----------------------------------------------
ispin = 1
iblock = 3
! Compute linear response
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:),ERI(:,:,:,:), &
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
! EcRPA(ispin) = 1d0*EcRPA(ispin)
! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:))
! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:))
!----------------------------------------------
! alpha-alpha block
!----------------------------------------------
ispin = 2
iblock = 4
! Compute linear response
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:),ERI(:,:,:,:), &
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
! EcRPA(ispin) = 2d0*EcRPA(ispin)
! EcRPA(ispin) = 3d0*EcRPA(ispin)
! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:))
! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:))
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
SigT(:) = 0d0
Z(:) = 0d0
iblock = 3
dERI = +1d0
xERI = +0d0
alpha = +1d0
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI(:,:,:,:), &
X1s(:,:),Y1s(:,:),rho1s(:,:,:),X2s(:,:),Y2s(:,:),rho2s(:,:,:))
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:), &
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),SigT(:))
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:), &
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),Z(:))
iblock = 4
dERI = +1d0
xERI = -1d0
alpha = +1d0
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI(:,:,:,:), &
X1t(:,:),Y1t(:,:),rho1t(:,:,:),X2t(:,:),Y2t(:,:),rho2t(:,:,:))
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:), &
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),SigT(:))
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:), &
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),Z(:))
Z(:) = 1d0/(1d0 - Z(:))
! Solve the quasi-particle equation
!----------------------------------------------
! Solve the quasi-particle equation
!----------------------------------------------
eGT(:) = eHF(:) + SigT(:)
! Convergence criteria
Conv = maxval(abs(eGT(:) - eOld(:)))
!----------------------------------------------
! Dump results
!----------------------------------------------
call print_evGT(nBas,nO,nSCF,Conv,eHF(:),SigT(:),Z(:),eGT(:))
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas,nBas,n_diis,error_diis,e_diis,eGT(:)-eOld(:),eGT(:))
! Reset DIIS if required
if(abs(rcond) < 1d-15) n_diis = 0
! Save quasiparticles energy for next cycle
eOld(:) = eGT(:)
! Increment
nSCF = nSCF + 1
enddo
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Compute the ppRPA correlation energy
ispin = 1
iblock = 3
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:),ERI(:,:,:,:), &
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
ispin = 2
iblock = 4
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:),ERI(:,:,:,:), &
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
EcRPA(1) = EcRPA(1) - EcRPA(2)
EcRPA(2) = 3d0*EcRPA(2)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (singlet) =',EcRPA(1)
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (triplet) =',EcRPA(2)
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy =',EcRPA(1) + EcRPA(2)
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Perform BSE calculation
if(BSE) then
allocate(Omega(nS,nspin),XpY(nS,nS,nspin),XmY(nS,nS,nspin),rho(nBas,nBas,nS,nspin))
call Bethe_Salpeter(TDA_W,TDA,singlet_manifold,triplet_manifold,eta, &
nBas,nC,nO,nV,nR,nS,ERI,eGT,eGT,Omega,XpY,XmY,rho,EcRPA,EcBSE)
if(exchange_kernel) then
EcRPA(1) = 0.5d0*EcRPA(1)
EcRPA(2) = 1.5d0*EcRPA(1)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy =',EcBSE(1) + EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '------------------------------------------------------'
write(*,*) 'Adiabatic connection version of BSE correlation energy'
write(*,*) '------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call ACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,singlet_manifold,triplet_manifold,eta, &
nBas,nC,nO,nV,nR,nS,ERI,eGT,eGT,Omega,XpY,XmY,rho,EcAC)
if(exchange_kernel) then
EcAC(1) = 0.5d0*EcAC(1)
EcAC(2) = 1.5d0*EcAC(1)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy (singlet) =',EcAC(1)
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy (triplet) =',EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy =',EcAC(1) + EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT total energy =',ENuc + ERHF + EcAC(1) + EcAC(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
end subroutine evGT