mirror of
https://github.com/pfloos/quack
synced 2024-11-07 14:43:58 +01:00
321 lines
11 KiB
Fortran
321 lines
11 KiB
Fortran
subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
|
BSE,TDA_W,TDA,singlet_manifold,triplet_manifold, &
|
|
eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF,eG0T0)
|
|
|
|
! Perform eigenvalue self-consistent calculation with a T-matrix self-energy (evGT)
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: maxSCF
|
|
integer,intent(in) :: max_diis
|
|
double precision,intent(in) :: thresh
|
|
logical,intent(in) :: doACFDT
|
|
logical,intent(in) :: exchange_kernel
|
|
logical,intent(in) :: doXBS
|
|
logical,intent(in) :: BSE
|
|
logical,intent(in) :: TDA_W
|
|
logical,intent(in) :: TDA
|
|
logical,intent(in) :: singlet_manifold
|
|
logical,intent(in) :: triplet_manifold
|
|
double precision,intent(in) :: eta
|
|
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
double precision,intent(in) :: ENuc
|
|
double precision,intent(in) :: ERHF
|
|
double precision,intent(in) :: eHF(nBas)
|
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: eG0T0(nBas)
|
|
|
|
|
|
! Local variables
|
|
|
|
logical :: linear_mixing
|
|
integer :: nSCF
|
|
integer :: n_diis
|
|
double precision :: rcond
|
|
double precision :: Conv
|
|
integer :: ispin
|
|
integer :: iblock
|
|
integer :: nOOs,nOOt
|
|
integer :: nVVs,nVVt
|
|
double precision :: dERI
|
|
double precision :: xERI
|
|
double precision :: alpha
|
|
double precision :: EcRPA(nspin)
|
|
double precision :: EcBSE(nspin)
|
|
double precision :: EcAC(nspin)
|
|
double precision,allocatable :: error_diis(:,:)
|
|
double precision,allocatable :: e_diis(:,:)
|
|
double precision,allocatable :: eGT(:)
|
|
double precision,allocatable :: eOld(:)
|
|
double precision,allocatable :: Omega1s(:),Omega1t(:)
|
|
double precision,allocatable :: X1s(:,:),X1t(:,:)
|
|
double precision,allocatable :: Y1s(:,:),Y1t(:,:)
|
|
double precision,allocatable :: rho1s(:,:,:),rho1t(:,:,:)
|
|
double precision,allocatable :: Omega2s(:),Omega2t(:)
|
|
double precision,allocatable :: X2s(:,:),X2t(:,:)
|
|
double precision,allocatable :: Y2s(:,:),Y2t(:,:)
|
|
double precision,allocatable :: rho2s(:,:,:),rho2t(:,:,:)
|
|
double precision,allocatable :: SigT(:)
|
|
double precision,allocatable :: Z(:)
|
|
|
|
double precision,allocatable :: Omega(:,:)
|
|
double precision,allocatable :: XpY(:,:,:)
|
|
double precision,allocatable :: XmY(:,:,:)
|
|
double precision,allocatable :: rho(:,:,:,:)
|
|
|
|
! Output variables
|
|
|
|
! Hello world
|
|
|
|
write(*,*)
|
|
write(*,*)'************************************************'
|
|
write(*,*)'| Self-consistent evGT calculation |'
|
|
write(*,*)'************************************************'
|
|
write(*,*)
|
|
|
|
! Dimensions of the pp-RPA linear reponse matrices
|
|
|
|
nOOs = nO*nO
|
|
nVVs = nV*nV
|
|
|
|
nOOt = nO*(nO - 1)/2
|
|
nVVt = nV*(nV - 1)/2
|
|
|
|
! Memory allocation
|
|
|
|
allocate(Omega1s(nVVs),X1s(nVVs,nVVs),Y1s(nOOs,nVVs), &
|
|
Omega2s(nOOs),X2s(nVVs,nOOs),Y2s(nOOs,nOOs), &
|
|
rho1s(nBas,nO,nVVs),rho2s(nBas,nV,nOOs), &
|
|
Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), &
|
|
Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt), &
|
|
rho1t(nBas,nO,nVVt),rho2t(nBas,nV,nOOt), &
|
|
eGT(nBas),eOld(nBas),Z(nBas),SigT(nBas), &
|
|
error_diis(nBas,max_diis),e_diis(nBas,max_diis))
|
|
|
|
! Initialization
|
|
|
|
nSCF = 0
|
|
n_diis = 0
|
|
Conv = 1d0
|
|
e_diis(:,:) = 0d0
|
|
error_diis(:,:) = 0d0
|
|
eGT(:) = eG0T0(:)
|
|
eOld(:) = eGT(:)
|
|
Z(:) = 1d0
|
|
|
|
!------------------------------------------------------------------------
|
|
! Main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
do while(Conv > thresh .and. nSCF <= maxSCF)
|
|
|
|
!----------------------------------------------
|
|
! alpha-beta block
|
|
!----------------------------------------------
|
|
|
|
ispin = 1
|
|
iblock = 3
|
|
|
|
! Compute linear response
|
|
|
|
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF(:),ERI(:,:,:,:), &
|
|
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
|
|
|
|
! EcRPA(ispin) = 1d0*EcRPA(ispin)
|
|
|
|
! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:))
|
|
! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:))
|
|
|
|
!----------------------------------------------
|
|
! alpha-alpha block
|
|
!----------------------------------------------
|
|
|
|
ispin = 2
|
|
iblock = 4
|
|
|
|
! Compute linear response
|
|
|
|
call linear_response_pp(iblock,.true.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF(:),ERI(:,:,:,:), &
|
|
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
|
|
|
|
! EcRPA(ispin) = 2d0*EcRPA(ispin)
|
|
! EcRPA(ispin) = 3d0*EcRPA(ispin)
|
|
|
|
! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:))
|
|
! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:))
|
|
|
|
!----------------------------------------------
|
|
! Compute T-matrix version of the self-energy
|
|
!----------------------------------------------
|
|
|
|
SigT(:) = 0d0
|
|
Z(:) = 0d0
|
|
|
|
iblock = 3
|
|
dERI = +1d0
|
|
xERI = +0d0
|
|
alpha = +1d0
|
|
|
|
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI(:,:,:,:), &
|
|
X1s(:,:),Y1s(:,:),rho1s(:,:,:),X2s(:,:),Y2s(:,:),rho2s(:,:,:))
|
|
|
|
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:), &
|
|
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),SigT(:))
|
|
|
|
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:), &
|
|
Omega1s(:),rho1s(:,:,:),Omega2s(:),rho2s(:,:,:),Z(:))
|
|
|
|
iblock = 4
|
|
dERI = +1d0
|
|
xERI = -1d0
|
|
alpha = +1d0
|
|
|
|
call excitation_density_Tmatrix(iblock,dERI,xERI,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI(:,:,:,:), &
|
|
X1t(:,:),Y1t(:,:),rho1t(:,:,:),X2t(:,:),Y2t(:,:),rho2t(:,:,:))
|
|
|
|
call self_energy_Tmatrix_diag(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:), &
|
|
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),SigT(:))
|
|
|
|
call renormalization_factor_Tmatrix(alpha,eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:), &
|
|
Omega1t(:),rho1t(:,:,:),Omega2t(:),rho2t(:,:,:),Z(:))
|
|
|
|
Z(:) = 1d0/(1d0 - Z(:))
|
|
|
|
! Solve the quasi-particle equation
|
|
|
|
!----------------------------------------------
|
|
! Solve the quasi-particle equation
|
|
!----------------------------------------------
|
|
|
|
eGT(:) = eHF(:) + SigT(:)
|
|
|
|
! Convergence criteria
|
|
|
|
Conv = maxval(abs(eGT(:) - eOld(:)))
|
|
|
|
!----------------------------------------------
|
|
! Dump results
|
|
!----------------------------------------------
|
|
|
|
call print_evGT(nBas,nO,nSCF,Conv,eHF(:),SigT(:),Z(:),eGT(:))
|
|
|
|
! DIIS extrapolation
|
|
|
|
n_diis = min(n_diis+1,max_diis)
|
|
call DIIS_extrapolation(rcond,nBas,nBas,n_diis,error_diis,e_diis,eGT(:)-eOld(:),eGT(:))
|
|
|
|
! Reset DIIS if required
|
|
|
|
if(abs(rcond) < 1d-15) n_diis = 0
|
|
|
|
! Save quasiparticles energy for next cycle
|
|
|
|
eOld(:) = eGT(:)
|
|
|
|
! Increment
|
|
|
|
nSCF = nSCF + 1
|
|
|
|
enddo
|
|
!------------------------------------------------------------------------
|
|
! End main loop
|
|
!------------------------------------------------------------------------
|
|
|
|
! Compute the ppRPA correlation energy
|
|
|
|
ispin = 1
|
|
iblock = 3
|
|
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT(:),ERI(:,:,:,:), &
|
|
Omega1s(:),X1s(:,:),Y1s(:,:),Omega2s(:),X2s(:,:),Y2s(:,:),EcRPA(ispin))
|
|
ispin = 2
|
|
iblock = 4
|
|
call linear_response_pp(iblock,.false.,.false.,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT(:),ERI(:,:,:,:), &
|
|
Omega1t(:),X1t(:,:),Y1t(:,:),Omega2t(:),X2t(:,:),Y2t(:,:),EcRPA(ispin))
|
|
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
|
EcRPA(2) = 3d0*EcRPA(2)
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (singlet) =',EcRPA(1)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (triplet) =',EcRPA(2)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy =',EcRPA(1) + EcRPA(2)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
|
|
! Perform BSE calculation
|
|
|
|
if(BSE) then
|
|
|
|
allocate(Omega(nS,nspin),XpY(nS,nS,nspin),XmY(nS,nS,nspin),rho(nBas,nBas,nS,nspin))
|
|
|
|
call Bethe_Salpeter(TDA_W,TDA,singlet_manifold,triplet_manifold,eta, &
|
|
nBas,nC,nO,nV,nR,nS,ERI,eGT,eGT,Omega,XpY,XmY,rho,EcRPA,EcBSE)
|
|
|
|
if(exchange_kernel) then
|
|
|
|
EcRPA(1) = 0.5d0*EcRPA(1)
|
|
EcRPA(2) = 1.5d0*EcRPA(1)
|
|
|
|
end if
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy (singlet) =',EcBSE(1)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy (triplet) =',EcBSE(2)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT correlation energy =',EcBSE(1) + EcBSE(2)
|
|
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGT total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
! Compute the BSE correlation energy via the adiabatic connection
|
|
|
|
if(doACFDT) then
|
|
|
|
write(*,*) '------------------------------------------------------'
|
|
write(*,*) 'Adiabatic connection version of BSE correlation energy'
|
|
write(*,*) '------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
if(doXBS) then
|
|
|
|
write(*,*) '*** scaled screening version (XBS) ***'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
call ACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,singlet_manifold,triplet_manifold,eta, &
|
|
nBas,nC,nO,nV,nR,nS,ERI,eGT,eGT,Omega,XpY,XmY,rho,EcAC)
|
|
|
|
if(exchange_kernel) then
|
|
|
|
EcAC(1) = 0.5d0*EcAC(1)
|
|
EcAC(2) = 1.5d0*EcAC(1)
|
|
|
|
end if
|
|
|
|
write(*,*)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy (singlet) =',EcAC(1)
|
|
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy (triplet) =',EcAC(2)
|
|
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT correlation energy =',EcAC(1) + EcAC(2)
|
|
write(*,'(2X,A50,F20.10)') 'AC@BSE@evGT total energy =',ENuc + ERHF + EcAC(1) + EcAC(2)
|
|
write(*,*)'-------------------------------------------------------------------------------'
|
|
write(*,*)
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
end subroutine evGT
|