4
1
mirror of https://github.com/pfloos/quack synced 2024-11-08 15:13:53 +01:00
quack/src/RPA/print_transition_vectors.f90

117 lines
3.0 KiB
Fortran

subroutine print_transition_vectors(spin_allowed,nBas,nC,nO,nV,nR,nS,dipole_int,Omega,XpY,XmY)
! Print transition vectors for linear response calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: spin_allowed
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision :: dipole_int(nBas,nBas,ncart)
double precision,intent(in) :: Omega(nS)
double precision,intent(in) :: XpY(nS,nS)
double precision,intent(in) :: XmY(nS,nS)
! Local variables
logical :: debug = .false.
integer :: ia,jb,i,j,a,b
integer :: ixyz
integer,parameter :: maxS = 10
double precision :: norm
double precision,parameter :: thres_vec = 0.1d0
double precision,allocatable :: X(:)
double precision,allocatable :: Y(:)
double precision,allocatable :: f(:,:)
double precision,allocatable :: os(:)
! Memory allocation
allocate(X(nS),Y(nS),f(nS,ncart),os(nS))
! Initialization
f(:,:) = 0d0
os(:) = 0d0
! Compute dipole moments and oscillator strengths
if(spin_allowed) then
do ia=1,nS
do ixyz=1,ncart
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
f(ia,ixyz) = f(ia,ixyz) + dipole_int(j,b,ixyz)*XpY(ia,jb)
end do
end do
end do
end do
f(:,:) = sqrt(2d0)*f(:,:)
do ia=1,nS
os(ia) = 2d0/3d0*Omega(ia)*sum(f(ia,:)**2)
end do
if(debug) then
write(*,*) '------------------------'
write(*,*) ' Dipole moments (X Y Z) '
write(*,*) '------------------------'
call matout(nS,ncart,f)
write(*,*)
write(*,*) '----------------------'
write(*,*) ' Oscillator strengths '
write(*,*) '----------------------'
call matout(nS,1,os)
write(*,*)
end if
end if
! Print details about excitations
do ia=1,min(nS,maxS)
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
print*,'---------------------------------------------'
write(*,'(A15,I3,A2,F10.6,A3,A6,F6.4,A1)') ' Excitation n. ',ia,': ',Omega(ia)*HaToeV,' eV',' (f = ',os(ia),')'
print*,'---------------------------------------------'
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
if(abs(X(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' -> ',b,' = ',X(jb)/sqrt(2d0)
end do
end do
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
if(abs(Y(jb)) > thres_vec) write(*,'(I3,A4,I3,A3,F10.6)') j,' <- ',b,' = ',Y(jb)/sqrt(2d0)
end do
end do
write(*,*)
end do
write(*,'(A30,F10.6)') 'Thomas-Reiche-Kuhn sum rule = ',sum(os(:))
write(*,*)
end subroutine print_transition_vectors