4
1
mirror of https://github.com/pfloos/quack synced 2024-06-02 03:15:31 +02:00
quack/src/HF/print_GHF.f90
2023-10-26 22:07:55 +02:00

125 lines
4.5 KiB
Fortran

subroutine print_GHF(nBas,nBas2,nO,e,C,P,ENuc,ET,EV,EJ,EK,EHF,dipole)
! Print one-electron energies and other stuff for GHF
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nBas2
integer,intent(in) :: nO
double precision,intent(in) :: e(nBas2)
double precision,intent(in) :: C(nBas2,nBas2)
double precision,intent(in) :: P(nBas2,nBas2)
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET
double precision,intent(in) :: EV
double precision,intent(in) :: EJ
double precision,intent(in) :: EK
double precision,intent(in) :: EHF
double precision,intent(in) :: dipole(ncart)
! Local variables
integer :: ixyz
integer :: i,j
integer :: HOMO
integer :: LUMO
double precision :: Gap
double precision :: Sx2,Sy2,Sz2,S2
double precision,allocatable :: Paa(:,:)
double precision,allocatable :: Pab(:,:)
double precision,allocatable :: Pba(:,:)
double precision,allocatable :: Pbb(:,:)
double precision,external :: trace_matrix
! HOMO and LUMO
HOMO = nO
LUMO = HOMO + 1
Gap = e(LUMO)-e(HOMO)
! Density matrices
allocate(Paa(nBas,nBas),Pab(nBas,nBas),Pba(nBas,nBas),Pbb(nBas,nBas))
Paa(:,:) = P( 1:nBas , 1:nBas )
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
! Compute expectation values of S^2
Sx2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab+Pba)**2
do i=1,nBas
do j=1,nBas
Sx2 = Sx2 - 0.5d0*(Paa(i,j)*Pbb(j,i) + Pab(i,j)*Pab(j,i))
end do
end do
Sy2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) - 0.25d0*trace_matrix(nBas,Pab+Pba)**2
do i=1,nBas
do j=1,nBas
Sy2 = Sy2 - 0.5d0*(Paa(i,j)*Pbb(j,i) - Pab(i,j)*Pab(j,i))
end do
end do
Sz2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab-Pba)**2
do i=1,nBas
do j=1,nBas
Sz2 = Sz2 - 0.25d0*(Paa(i,j)*Pbb(j,i) - Pab(i,j)*Pab(j,i))
Sz2 = Sz2 + 0.25d0*(Pab(i,j)*Pba(j,i) - Pba(i,j)*Pab(j,i))
end do
end do
S2 = Sx2 + Sy2 + Sz2
! Dump results
write(*,*)
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32)') ' Summary '
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32,1X,F16.10,A3)') ' One-electron energy: ',ET + EV,' au'
write(*,'(A32,1X,F16.10,A3)') ' Kinetic energy: ',ET,' au'
write(*,'(A32,1X,F16.10,A3)') ' Potential energy: ',EV,' au'
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32,1X,F16.10,A3)') ' Two-electron energy: ',EJ + EK,' au'
write(*,'(A32,1X,F16.10,A3)') ' Hartree energy: ',EJ,' au'
write(*,'(A32,1X,F16.10,A3)') ' Exchange energy: ',EK,' au'
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32,1X,F16.10,A3)') ' Electronic energy: ',EHF,' au'
write(*,'(A32,1X,F16.10,A3)') ' Nuclear repulsion: ',ENuc,' au'
write(*,'(A32,1X,F16.10,A3)') ' GHF energy: ',EHF + ENuc,' au'
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32,1X,F16.6,A3)') ' GHF HOMO energy: ',e(HOMO)*HaToeV,' eV'
write(*,'(A32,1X,F16.6,A3)') ' GHF LUMO energy: ',e(LUMO)*HaToeV,' eV'
write(*,'(A32,1X,F16.6,A3)') ' GHF HOMO-LUMO gap : ',Gap*HaToeV,' eV'
write(*,'(A50)') '-----------------------------------------'
write(*,'(A32,1X,F16.6)') ' <S**2> :',S2
write(*,'(A50)') '-----------------------------------------'
write(*,'(A35)') ' Dipole moment (Debye) '
write(*,'(10X,4A10)') 'X','Y','Z','Tot.'
write(*,'(10X,4F10.6)') (dipole(ixyz)*auToD,ixyz=1,ncart),norm2(dipole)*auToD
write(*,'(A50)') '-----------------------------------------'
write(*,*)
! Print results
write(*,'(A50)') '---------------------------------------'
write(*,'(A32)') 'MO coefficients'
write(*,'(A50)') '---------------------------------------'
call matout(nBas2,nBas2,c)
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A32)') 'MO energies'
write(*,'(A50)') '---------------------------------------'
call matout(nBas2,1,e)
write(*,*)
end subroutine