quack/src/GT/GTpp_excitation_density.f90

261 lines
6.9 KiB
Fortran

subroutine GTpp_excitation_density(ispin,nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,rho1,X2,Y2,rho2)
! Compute excitation densities for T-matrix self-energy
implicit none
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: X1(nVV,nVV)
double precision,intent(in) :: Y1(nOO,nVV)
double precision,intent(in) :: X2(nVV,nOO)
double precision,intent(in) :: Y2(nOO,nOO)
! Local variables
integer :: i,j,k,l
integer :: a,b,c,d
integer :: p,q
integer :: ab,cd,ij,kl
double precision,external :: Kronecker_delta
! Output variables
double precision,intent(out) :: rho1(nBas,nBas,nVV)
double precision,intent(out) :: rho2(nBas,nBas,nOO)
! Initialization
rho1(:,:,:) = 0d0
rho2(:,:,:) = 0d0
!----------------------------------------------
! Singlet manifold
!----------------------------------------------
if(ispin == 1) then
!$OMP PARALLEL &
!$OMP SHARED(nC,nBas,nR,nO,nVV,nOO,rho1,rho2,ERI,X1,Y1,X2,Y2) &
!$OMP PRIVATE(q,p,ab,cd,kl,ij) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
ab = 0
do a=nO+1,nBas-nR
do b=a,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,c,d) + ERI(p,q,d,c))*X1(cd,ab)/ &
(1d0 + Kronecker_delta(c,d))
! sqrt((1d0 + Kronecker_delta(p,q))*(1d0 + Kronecker_delta(c,d)))
end do
end do
kl = 0
do k=nC+1,nO
do l=k,nO
kl = kl + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,k,l) + ERI(p,q,l,k))*Y1(kl,ab)/ &
(1d0 + Kronecker_delta(k,l))
! sqrt((1d0 + Kronecker_delta(p,q))*(1d0 + Kronecker_delta(k,l)))
end do
end do
end do
end do
ij = 0
do i=nC+1,nO
do j=i,nO
ij = ij + 1
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,c,d) + ERI(p,q,d,c))*X2(cd,ij)/ &
(1d0 + Kronecker_delta(c,d))
! sqrt((1d0 + Kronecker_delta(p,q))*(1d0 + Kronecker_delta(c,d)))
end do
end do
kl = 0
do k=nC+1,nO
do l=k,nO
kl = kl + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,k,l) + ERI(p,q,l,k))*Y2(kl,ij)/ &
(1d0 + Kronecker_delta(k,l))
! sqrt((1d0 + Kronecker_delta(p,q))*(1d0 + Kronecker_delta(k,l)))
end do
end do
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
end if
!----------------------------------------------
! Triplet manifold
!----------------------------------------------
if(ispin == 2 .or. ispin == 4) then
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
! do ab=1,nVV
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,c,d) - ERI(p,q,d,c))*X1(cd,ab)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
rho1(p,q,ab) = rho1(p,q,ab) &
+ (ERI(p,q,k,l) - ERI(p,q,l,k))*Y1(kl,ab)
end do
end do
end do
end do
! do ij=1,nOO
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,c,d) - ERI(p,q,d,c))*X2(cd,ij)
end do
end do
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
rho2(p,q,ij) = rho2(p,q,ij) &
+ (ERI(p,q,k,l) - ERI(p,q,l,k))*Y2(kl,ij)
end do
end do
end do
end do
end do
end do
end if
!----------------------------------------------
! alpha-beta block
!----------------------------------------------
if(ispin == 3) then
!$OMP PARALLEL &
!$OMP SHARED(nC,nBas,nR,nO,nVV,nOO,rho1,rho2,ERI,X1,Y1,X2,Y2) &
!$OMP PRIVATE(q,p,ab,cd,kl,ij,c,d,k,l) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nBas-nR
do p=nC+1,nBas-nR
! do ab=1,nVV
ab = 0
do a=nO+1,nBas-nR
do b=nO+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
cd = cd + 1
rho1(p,q,ab) = rho1(p,q,ab) + ERI(p,q,c,d)*X1(cd,ab)
end do
end do
kl = 0
do k=nC+1,nO
do l=nC+1,nO
kl = kl + 1
rho1(p,q,ab) = rho1(p,q,ab) + ERI(p,q,k,l)*Y1(kl,ab)
end do
end do
end do
end do
! do ij=1,nOO
ij = 0
do i=nC+1,nO
do j=nC+1,nO
ij = ij + 1
cd = 0
do c=nO+1,nBas-nR
do d=nO+1,nBas-nR
cd = cd + 1
rho2(p,q,ij) = rho2(p,q,ij) + ERI(p,q,c,d)*X2(cd,ij)
end do
end do
kl = 0
do k=nC+1,nO
do l=nC+1,nO
kl = kl + 1
rho2(p,q,ij) = rho2(p,q,ij) + ERI(p,q,k,l)*Y2(kl,ij)
end do
end do
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
end if
end subroutine