quack/src/MBPT/qsGW.f90

322 lines
10 KiB
Fortran

subroutine qsGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,SOSEX,BSE,TDA_W,TDA, &
G0W,GW0,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,S,X,T,V, &
Hc,ERI_AO_basis,ERI_MO_basis,dipole_int,PHF,cHF,eHF)
! Perform a quasiparticle self-consistent GW calculation
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: COHSEX
logical,intent(in) :: SOSEX
logical,intent(in) :: BSE
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: evDyn
logical,intent(in) :: G0W
logical,intent(in) :: GW0
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI_AO_basis(nBas,nBas,nBas,nBas)
double precision,intent(inout):: ERI_MO_basis(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: nSCF
integer :: nBasSq
integer :: ispin
integer :: n_diis
double precision :: EqsGW
double precision :: EcRPA
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision :: EcGM
double precision :: Conv
double precision :: rcond
double precision,external :: trace_matrix
double precision,allocatable :: error_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: OmRPA(:)
double precision,allocatable :: XpY_RPA(:,:)
double precision,allocatable :: XmY_RPA(:,:)
double precision,allocatable :: rho_RPA(:,:,:)
double precision,allocatable :: c(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: P(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: K(:,:)
double precision,allocatable :: SigC(:,:)
double precision,allocatable :: SigCp(:,:)
double precision,allocatable :: SigCm(:,:)
double precision,allocatable :: Z(:)
double precision,allocatable :: error(:,:)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| Self-consistent qsGW calculation |'
write(*,*)'************************************************'
write(*,*)
! Warning
write(*,*) '!! ERIs in MO basis will be overwritten in qsGW !!'
write(*,*)
! Stuff
nBasSq = nBas*nBas
! SOSEX correction
if(SOSEX) then
write(*,*) 'SOSEX correction activated but BUG!'
stop
end if
! COHSEX approximation
if(COHSEX) then
write(*,*) 'COHSEX approximation activated!'
write(*,*)
end if
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Memory allocation
allocate(eGW(nBas),c(nBas,nBas),cp(nBas,nBas),P(nBas,nBas),F(nBas,nBas),Fp(nBas,nBas), &
J(nBas,nBas),K(nBas,nBas),SigC(nBas,nBas),SigCp(nBas,nBas),SigCm(nBas,nBas),Z(nBas), &
OmRPA(nS),XpY_RPA(nS,nS),XmY_RPA(nS,nS),rho_RPA(nBas,nBas,nS), &
error(nBas,nBas),error_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis))
! Initialization
nSCF = -1
n_diis = 0
ispin = 1
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
error_diis(:,:) = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Buid Coulomb matrix
call Coulomb_matrix_AO_basis(nBas,P,ERI_AO_basis,J)
! Compute exchange part of the self-energy
call exchange_matrix_AO_basis(nBas,P,ERI_AO_basis,K)
! AO to MO transformation of two-electron integrals
call AOtoMO_integral_transform(1,1,1,1,nBas,c,ERI_AO_basis,ERI_MO_basis)
! Compute linear response
if(.not. GW0 .or. nSCF == 0) then
call linear_response(ispin,.true.,TDA_W,.false.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO_basis, &
OmRPA,rho_RPA,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
endif
! Compute correlation part of the self-energy
call excitation_density(nBas,nC,nO,nR,nS,ERI_MO_basis,XpY_RPA,rho_RPA)
if(G0W) then
call self_energy_correlation(COHSEX,eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rho_RPA,EcGM,SigC)
call renormalization_factor(COHSEX,eta,nBas,nC,nO,nV,nR,nS,eHF,OmRPA,rho_RPA,Z)
else
call self_energy_correlation(COHSEX,eta,nBas,nC,nO,nV,nR,nS,eGW,OmRPA,rho_RPA,EcGM,SigC)
call renormalization_factor(COHSEX,eta,nBas,nC,nO,nV,nR,nS,eGW,OmRPA,rho_RPA,Z)
endif
! Make correlation self-energy Hermitian and transform it back to AO basis
SigCp = 0.5d0*(SigC + transpose(SigC))
SigCm = 0.5d0*(SigC - transpose(SigC))
call MOtoAO_transform(nBas,S,c,SigCp)
! Solve the quasi-particle equation
F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
! Compute commutator and convergence criteria
error = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
Conv = maxval(abs(error))
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBasSq,nBasSq,n_diis,error_diis,F_diis,error,F)
! Reset DIIS if required
if(abs(rcond) < 1d-15) n_diis = 0
! Diagonalize Hamiltonian in AO basis
Fp = matmul(transpose(X),matmul(F,X))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nBas,cp,eGW)
c = matmul(X,cp)
! Compute new density matrix in the AO basis
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
! Print results
! call print_excitation('RPA ',ispin,nS,Omega(:,ispin))
call print_qsGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,ENuc,P,T,V,J,K,F,SigCp,Z,EcRPA,EqsGW)
enddo
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Compute second-order correction of the Hermitization error
! call qsGW_PT(nBas,nC,nO,nV,nR,nS,eGW,SigCm)
! Compute the overlap between HF and GW orbitals
! call overlap(nBas,cHF,c)
! Compute natural orbitals and occupancies
! call natural_orbital(nBas,nO,cHF,c)
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
endif
! Deallocate memory
deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,SigCm,Z,OmRPA,XpY_RPA,XmY_RPA,rho_RPA,error,error_diis,F_diis)
! Perform BSE calculation
if(BSE) then
call Bethe_Salpeter(TDA_W,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO_basis,dipole_int, &
eGW,eGW,EcBSE)
if(exchange_kernel) then
EcBSE(1) = 0.5d0*EcBSE(1)
EcBSE(2) = 1.5d0*EcBSE(2)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW correlation energy =',EcBSE(1) + EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@BSE@qsGW total energy =',ENuc + EqsGW + EcBSE(1) + EcBSE(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '------------------------------------------------------'
write(*,*) 'Adiabatic connection version of BSE correlation energy'
write(*,*) '------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call ACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,BSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO_basis,eGW,eGW,EcAC)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (singlet) =',EcAC(1)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy (triplet) =',EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW correlation energy =',EcAC(1) + EcAC(2)
write(*,'(2X,A50,F20.10)') 'AC@BSE@qsGW total energy =',ENuc + EqsGW + EcAC(1) + EcAC(2)
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
end subroutine qsGW