mirror of
https://github.com/pfloos/quack
synced 2024-11-09 15:43:56 +01:00
234 lines
5.2 KiB
Fortran
234 lines
5.2 KiB
Fortran
subroutine unrestricted_ACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,nSa,nSb,nSt, &
|
|
ERI_aaaa,ERI_aabb,ERI_bbbb,XpY,XmY,EcAC)
|
|
|
|
! Compute the correlation energy via the adiabatic connection formula
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
integer,intent(in) :: ispin
|
|
logical,intent(in) :: exchange_kernel
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nC(nspin)
|
|
integer,intent(in) :: nO(nspin)
|
|
integer,intent(in) :: nV(nspin)
|
|
integer,intent(in) :: nR(nspin)
|
|
integer,intent(in) :: nS(nspin)
|
|
integer,intent(in) :: nSa
|
|
integer,intent(in) :: nSb
|
|
integer,intent(in) :: nSt
|
|
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
|
|
double precision,intent(in) :: XpY(nSt,nSt)
|
|
double precision,intent(in) :: XmY(nSt,nSt)
|
|
|
|
! Local variables
|
|
|
|
integer :: i,j,a,b
|
|
integer :: ia,jb
|
|
double precision :: delta_Kx
|
|
double precision,allocatable :: Ap(:,:)
|
|
double precision,allocatable :: Bp(:,:)
|
|
double precision,allocatable :: X(:,:)
|
|
double precision,allocatable :: Y(:,:)
|
|
double precision,external :: trace_matrix
|
|
|
|
! Output variables
|
|
|
|
double precision,intent(out) :: EcAC
|
|
|
|
! Exchange kernel
|
|
|
|
delta_Kx = 0d0
|
|
if(exchange_kernel) delta_Kx = 1d0
|
|
|
|
! Memory allocation
|
|
|
|
allocate(Ap(nSt,nSt),Bp(nSt,nSt),X(nSt,nSt),Y(nSt,nSt))
|
|
|
|
! Compute Aiajb = (ia|bj) and Biajb = (ia|jb)
|
|
|
|
! Initialization
|
|
|
|
Ap(:,:) = 0d0
|
|
Bp(:,:) = 0d0
|
|
|
|
!-----------------------------------------------
|
|
! Build kernel for spin-conserving transitions
|
|
!-----------------------------------------------
|
|
|
|
if(ispin == 1) then
|
|
|
|
! aaaa block
|
|
|
|
ia = 0
|
|
do i=nC(1)+1,nO(1)
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(1)+1,nO(1)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
jb = jb + 1
|
|
|
|
Ap(ia,jb) = ERI_aaaa(i,b,a,j) - delta_Kx*ERI_aaaa(i,b,j,a)
|
|
Bp(ia,jb) = ERI_aaaa(i,j,a,b) - delta_Kx*ERI_aaaa(i,j,b,a)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! aabb block
|
|
|
|
ia = 0
|
|
do i=nC(1)+1,nO(1)
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(2)+1,nO(2)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
jb = jb + 1
|
|
|
|
Ap(ia,nSa+jb) = ERI_aabb(i,b,a,j)
|
|
Bp(ia,nSa+jb) = ERI_aabb(i,j,a,b)
|
|
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! bbaa block
|
|
|
|
ia = 0
|
|
do i=nC(2)+1,nO(2)
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(1)+1,nO(1)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
jb = jb + 1
|
|
|
|
Ap(nSa+ia,jb) = ERI_aabb(b,i,j,a)
|
|
Bp(nSa+ia,jb) = ERI_aabb(j,i,b,a)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! bbbb block
|
|
|
|
ia = 0
|
|
do i=nC(2)+1,nO(2)
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(2)+1,nO(2)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
jb = jb + 1
|
|
|
|
Ap(nSa+ia,nSa+jb) = ERI_bbbb(i,b,a,j) - delta_Kx*ERI_bbbb(i,b,j,a)
|
|
Bp(nSa+ia,nSa+jb) = ERI_bbbb(i,j,a,b) - delta_Kx*ERI_bbbb(i,j,b,a)
|
|
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
!-----------------------------------------------
|
|
! Build A matrix for spin-flip transitions
|
|
!-----------------------------------------------
|
|
|
|
if(ispin == 2) then
|
|
|
|
! abab block
|
|
|
|
ia = 0
|
|
do i=nC(1)+1,nO(1)
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(1)+1,nO(1)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
jb = jb + 1
|
|
Ap(ia,jb) = - delta_Kx*ERI_aabb(i,b,j,a)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! baba block
|
|
|
|
ia = 0
|
|
do i=nC(2)+1,nO(2)
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(2)+1,nO(2)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
jb = jb + 1
|
|
|
|
Ap(nSa+ia,nSa+jb) = - delta_Kx*ERI_aabb(b,i,a,j)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! abba block
|
|
|
|
ia = 0
|
|
do i=nC(1)+1,nO(1)
|
|
do a=nO(2)+1,nBas-nR(2)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(2)+1,nO(2)
|
|
do b=nO(1)+1,nBas-nR(1)
|
|
jb = jb + 1
|
|
|
|
Bp(ia,nSa+jb) = - delta_Kx*ERI_aabb(i,j,b,a)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
! baab block
|
|
|
|
ia = 0
|
|
do i=nC(2)+1,nO(2)
|
|
do a=nO(1)+1,nBas-nR(1)
|
|
ia = ia + 1
|
|
jb = 0
|
|
do j=nC(1)+1,nO(1)
|
|
do b=nO(2)+1,nBas-nR(2)
|
|
jb = jb + 1
|
|
|
|
Bp(nSa+ia,jb) = - delta_Kx*ERI_aabb(j,i,a,b)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
end if
|
|
|
|
! Compute Tr(K x P_lambda)
|
|
|
|
X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:))
|
|
Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:))
|
|
|
|
EcAC = trace_matrix(nSt,matmul(X,matmul(Bp,transpose(Y))) + matmul(Y,matmul(Bp,transpose(X)))) &
|
|
+ trace_matrix(nSt,matmul(X,matmul(Ap,transpose(X))) + matmul(Y,matmul(Ap,transpose(Y)))) &
|
|
- trace_matrix(nSt,Ap)
|
|
|
|
end subroutine unrestricted_ACFDT_correlation_energy
|