4
1
mirror of https://github.com/pfloos/quack synced 2024-06-18 11:15:30 +02:00
quack/src/eDFT/unrestricted_individual_energy.f90

278 lines
11 KiB
Fortran

subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,AO,dAO, &
T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum,&
Cx_choice,doNcentered)
! Compute unrestricted individual energies as well as excitation energies
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: x_rung,c_rung
integer,intent(in) :: x_DFA,c_DFA
logical,intent(in) :: LDA_centered
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
double precision,intent(in) :: aCC_w1(3)
double precision,intent(in) :: aCC_w2(3)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ENuc
double precision,intent(in) :: eps(nBas,nspin)
double precision,intent(in) :: Pw(nBas,nBas,nspin)
double precision,intent(in) :: rhow(nGrid,nspin)
double precision,intent(in) :: drhow(ncart,nGrid,nspin)
double precision,intent(in) :: P(nBas,nBas,nspin,nEns)
double precision,intent(in) :: rho(nGrid,nspin,nEns)
double precision,intent(in) :: drho(ncart,nGrid,nspin,nEns)
double precision,intent(in) :: J(nBas,nBas,nspin)
double precision,intent(in) :: Fx(nBas,nBas,nspin)
double precision,intent(in) :: FxHF(nBas,nBas,nspin)
double precision,intent(in) :: Fc(nBas,nBas,nspin)
double precision :: Ew
double precision,intent(in) :: occnum(nBas,nspin,nEns)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
! Local variables
double precision :: ET(nspin,nEns)
double precision :: EV(nspin,nEns)
double precision :: EJ(nsp,nEns)
double precision :: Ex(nspin,nEns)
double precision :: Ec(nsp,nEns)
double precision :: Exc(nEns)
double precision :: Eaux(nspin,nEns)
double precision :: ExDD(nspin,nEns)
double precision :: EcDD(nsp,nEns)
double precision :: ExcDD(nsp,nEns)
double precision :: Omx(nEns),Omc(nEns),Omxc(nEns)
double precision :: Omaux(nEns)
double precision :: OmxDD(nEns),OmcDD(nEns),OmxcDD(nEns)
double precision,external :: trace_matrix
integer :: ispin,iEns,iBas
double precision,allocatable :: nEl(:)
double precision,allocatable :: kappa(:)
double precision,external :: electron_number
! Output variables
double precision,intent(out) :: E(nEns)
double precision,intent(out) :: Om(nEns)
allocate(nEl(nEns),kappa(nEns))
nEl(:) = 0d0
do iEns=1,nEns
do iBas=1,nBas
do ispin=1,nspin
nEl(iEns) = nEl(iEns) + occnum(iBas,ispin,iEns)
end do
end do
kappa(iEns) = nEl(iEns)/nEl(1)
end do
!------------------------------------------------------------------------
! Kinetic energy
!------------------------------------------------------------------------
do ispin=1,nspin
do iEns=1,nEns
ET(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),T(:,:)))
end do
end do
!------------------------------------------------------------------------
! Potential energy
!------------------------------------------------------------------------
do iEns=1,nEns
do ispin=1,nspin
EV(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),V(:,:)))
end do
end do
!------------------------------------------------------------------------
! Individual Hartree energy
!------------------------------------------------------------------------
do iEns=1,nEns
do ispin=1,nspin
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
end do
if(doNcentered) then
EJ(1,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
+ kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
EJ(3,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
else
EJ(1,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
+ trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
EJ(3,iEns) = trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
end if
end do
!------------------------------------------------------------------------
! Checking Hartree contributions for each individual states
!------------------------------------------------------------------------
! print*,'Hartree contributions for each individual states'
! print*,''
! print*,''
! print*,'EJ(aa,1)=',EJ(1,1),'EJ(ab,1)=',EJ(2,1),'EJ(bb,1)=',EJ(3,1)
! print*,''
! print*,'EJ(aa,2)=',EJ(1,2),'EJ(ab,2)=',EJ(2,2),'EJ(bb,2)=',EJ(3,2)
! print*,''
! print*,'EJ(aa,3)=',EJ(1,3),'EJ(ab,3)=',EJ(2,3),'EJ(bb,3)=',EJ(3,3)
! print*,''
!------------------------------------------------------------------------
! Individual exchange energy
!------------------------------------------------------------------------
do iEns=1,nEns
do ispin=1,nspin
call unrestricted_exchange_individual_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,nBas,ERI, &
Pw(:,:,ispin),P(:,:,ispin,iEns),rhow(:,ispin),drhow(:,:,ispin), &
rho(:,ispin,iEns),drho(:,:,ispin,iEns),Cx_choice,doNcentered,kappa(iEns), &
Ex(ispin,iEns))
end do
end do
!------------------------------------------------------------------------
! Checking exchange contributions for each individual states
!------------------------------------------------------------------------
! print*,''
! print*,''
! print*,'Exchange contributions for each individual states'
! print*,''
! print*,''
! print*,'Ex(aa,1) =' ,Ex(1,1),'Ex(bb,1) =' ,Ex(2,1)
! print*,''
! print*,'Ex(aa,2) =' ,Ex(1,2),'Ex(bb,2) =' ,Ex(2,2)
! print*,''
! print*,'Ex(aa,3) =' ,Ex(1,3),'Ex(bb,3) =' ,Ex(2,3)
!------------------------------------------------------------------------
! Checking number of alpha and beta electrons for each individual states
!------------------------------------------------------------------------
! print*,''
! print*,''
! print*,'Checking number of alpha and beta electrons for each individual states'
! print*,''
! print*,''
! print*,'nEl(a,1) = ',electron_number(nGrid,weight,rho(:,1,1)),'nEl(b,1) = ',electron_number(nGrid,weight,rho(:,2,1))
! print*,''
! print*,'nEl(a,2) = ',electron_number(nGrid,weight,rho(:,1,2)),'nEl(b,2) = ',electron_number(nGrid,weight,rho(:,2,2))
! print*,''
! print*,'nEl(a,3) = ',electron_number(nGrid,weight,rho(:,1,3)),'nEl(b,3) = ',electron_number(nGrid,weight,rho(:,2,3))
!------------------------------------------------------------------------
! Individual correlation energy
!------------------------------------------------------------------------
do iEns=1,nEns
call unrestricted_correlation_individual_energy(c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight, &
rhow,drhow,rho(:,:,iEns),drho(:,:,:,iEns),doNcentered,kappa(iEns),Ec(:,iEns))
end do
!------------------------------------------------------------------------
! Compute auxiliary energies
!------------------------------------------------------------------------
call unrestricted_auxiliary_energy(nBas,nEns,eps,occnum,doNcentered,Eaux)
!------------------------------------------------------------------------
! Compute derivative discontinuities
!------------------------------------------------------------------------
do ispin=1,nspin
call unrestricted_exchange_derivative_discontinuity(x_rung,x_DFA,nEns,wEns,aCC_w1,aCC_w2,nGrid,weight, &
rhow(:,ispin),drhow(:,:,ispin),Cx_choice,doNcentered,kappa,ExDD(ispin,:))
end do
call unrestricted_correlation_derivative_discontinuity(c_rung,c_DFA,nEns,wEns,nGrid,weight,rhow,drhow,kappa,EcDD)
ExcDD(1,:) = ExDD(1,:) + EcDD(1,:)
ExcDD(2,:) = EcDD(2,:)
ExcDD(3,:) = ExDD(2,:) + EcDD(3,:)
!------------------------------------------------------------------------
! Total energy
!------------------------------------------------------------------------
do iEns=1,nEns
Exc(iEns) = sum(Ex(:,iEns)) + sum(Ec(:,iEns))
E(iEns) = sum(ET(:,iEns)) + sum(EV(:,iEns)) + sum(EJ(:,iEns)) &
+ sum(Ex(:,iEns)) + sum(Ec(:,iEns)) + sum(ExcDD(:,iEns))
end do
!------------------------------------------------------------------------
! Excitation energies
!------------------------------------------------------------------------
do iEns=1,nEns
Om(iEns) = E(iEns) - E(1)
Omx(iEns) = sum(Ex(:,iEns)) - sum(Ex(:,1))
Omc(iEns) = sum(Ec(:,iEns)) - sum(Ec(:,1))
Omxc(iEns) = Exc(iEns) - Exc(1)
Omaux(iEns) = sum(Eaux(:,iEns)) - sum(Eaux(:,1))
OmxDD(iEns) = sum(ExDD(:,iEns)) - sum(ExDD(:,1))
OmcDD(iEns) = sum(EcDD(:,iEns)) - sum(EcDD(:,1))
OmxcDD(iEns) = sum(ExcDD(:,iEns)) - sum(ExcDD(:,1))
end do
!------------------------------------------------------------------------
! Dump results
!------------------------------------------------------------------------
call print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,Eaux,ExDD,EcDD,ExcDD,E, &
Om,Omx,Omc,Omxc,Omaux,OmxDD,OmcDD,OmxcDD)
end subroutine unrestricted_individual_energy