4
1
mirror of https://github.com/pfloos/quack synced 2024-06-02 11:25:28 +02:00
quack/src/HF/print_GHF.f90
2023-11-17 11:08:38 +01:00

314 lines
9.5 KiB
Fortran

subroutine print_GHF(nBas,nBas2,nO,eHF,C,P,S,ENuc,ET,EV,EJ,EK,EGHF,dipole)
! Print one-electron energies and other stuff for GHF
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
integer,intent(in) :: nBas2
integer,intent(in) :: nO
double precision,intent(in) :: eHF(nBas2)
double precision,intent(in) :: C(nBas2,nBas2)
double precision,intent(in) :: P(nBas2,nBas2)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: ENuc
double precision,intent(in) :: ET
double precision,intent(in) :: EV
double precision,intent(in) :: EJ
double precision,intent(in) :: EK
double precision,intent(in) :: EGHF
double precision,intent(in) :: dipole(ncart)
! Local variables
integer :: i,j
integer :: ixyz
integer :: mu,nu
integer :: HOMO
integer :: LUMO
double precision :: Gap
double precision :: Sx,Sy,Sz
double precision :: SmSp,SpSm,Sz2,S2
! double precision :: na, nb
! double precision :: nonco_z, contam_uhf, xy_perp, contam_ghf
double precision,allocatable :: Ca(:,:)
double precision,allocatable :: Cb(:,:)
double precision,allocatable :: Paa(:,:)
double precision,allocatable :: Pab(:,:)
double precision,allocatable :: Pba(:,:)
double precision,allocatable :: Pbb(:,:)
double precision,allocatable :: tmp(:,:)
double precision,allocatable :: Mx(:,:)
double precision,allocatable :: My(:,:)
double precision,allocatable :: Mz(:,:)
double precision,allocatable :: PP(:,:)
double precision :: T(3,3)
double precision :: vec(3,3)
double precision :: val(3)
double precision :: lambda
double precision,external :: trace_matrix
logical :: dump_orb = .false.
! HOMO and LUMO
HOMO = nO
LUMO = HOMO + 1
Gap = eHF(LUMO)-eHF(HOMO)
! Density matrices
allocate(Paa(nO,nO),Pab(nO,nO),Pba(nO,nO),Pbb(nO,nO))
allocate(Ca(nBas,nO),Cb(nBas,nO))
Ca(:,:) = C( 1:nBas ,1:nO)
Cb(:,:) = C(nBas+1:nBas2,1:nO)
Paa = matmul(transpose(Ca),matmul(S,Ca))
Pab = matmul(transpose(Ca),matmul(S,Cb))
Pba = matmul(transpose(Cb),matmul(S,Ca))
Pbb = matmul(transpose(Cb),matmul(S,Cb))
! Compute components of S = (Sx,Sy,Sz)
Sx = 0.5d0*(trace_matrix(nO,Pab) + trace_matrix(nO,Pba))
Sy = 0.5d0*(trace_matrix(nO,Pab) - trace_matrix(nO,Pba))
Sz = 0.5d0*(trace_matrix(nO,Paa) - trace_matrix(nO,Pbb))
! Compute <S^2> = <Sx^2> + <Sy^2> + <Sz^2>
SpSm = 0d0
do i=1,nO
do j=1,nO
SpSm = SpSm + Pab(i,i)*Pba(j,j) - Pab(i,j)*Pba(j,i)
end do
end do
SpSm = trace_matrix(nO,Paa) + SpSm
SmSp = 0d0
do i=1,nO
do j=1,nO
SmSp = SmSp + Pba(i,i)*Pab(j,j) - Pba(i,j)*Pab(j,i)
end do
end do
SmSp = trace_matrix(nO,Pbb) + SmSp
Sz2 = 0d0
do i=1,nO
do j=1,nO
Sz2 = Sz2 + (Paa(i,i) - Pbb(i,i))*(Paa(j,j) - Pbb(j,j)) - (Paa(i,j) - Pbb(i,j))**2
end do
end do
Sz2 = 0.25d0*(dble(nO) + Sz2)
! Compute <S^2> from Sz^2, S^+S^- and S^-S^+
S2 = Sz2 + 0.5d0*(SpSm + SmSp)
! deallocate(Paa,Pab,Pba,Pbb)
! Check collinearity and coplanarity
! allocate(PP(nO,nO),Mx(nO,nO),My(nO,nO),Mz(nO,nO))
! PP(:,:) = 0.5d0*(Paa(:,:) + Pbb(:,:))
! Mx(:,:) = 0.5d0*(Pba(:,:) + Pab(:,:))
! My(:,:) = 0.5d0*(Pba(:,:) - Pab(:,:))
! Mz(:,:) = 0.5d0*(Paa(:,:) - Pbb(:,:))
! T(1,1) = trace_matrix(nO,matmul(Mx,Mx))
! T(1,2) = trace_matrix(nO,matmul(Mx,My))
! T(1,3) = trace_matrix(nO,matmul(Mx,Mz))
! T(2,1) = trace_matrix(nO,matmul(My,Mx))
! T(2,2) = trace_matrix(nO,matmul(My,My))
! T(2,3) = trace_matrix(nO,matmul(My,Mz))
! T(3,1) = trace_matrix(nO,matmul(Mz,Mx))
! T(3,2) = trace_matrix(nO,matmul(Mz,My))
! T(3,3) = trace_matrix(nO,matmul(Mz,Mz))
! lambda = trace_matrix(nO,PP - matmul(PP,PP))
! write(*,'(A,F10.6)') 'Tr(P - P^2) = ',lambda
! vec(:,:) = T(:,:)
! call diagonalize_matrix(3,vec,val)
! write(*,'(A,3F10.6)') 'Eigenvalues of T = ',val
! T(1,1) = - T(1,1) + lambda
! T(2,2) = - T(2,2) + lambda
! T(3,3) = - T(3,3) + lambda
! vec(:,:) = T(:,:)
! call diagonalize_matrix(3,vec,val)
! write(*,'(A,3F10.6)') 'Eigenvalues of A = ',val
! deallocate(PP,Mx,My,Mz)
! Dump results
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A33)') ' Summary '
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' One-electron energy = ',ET + EV,' au'
write(*,'(A33,1X,F16.10,A3)') ' Kinetic energy = ',ET,' au'
write(*,'(A33,1X,F16.10,A3)') ' Potential energy = ',EV,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Two-electron energy = ',EJ + EK,' au'
write(*,'(A33,1X,F16.10,A3)') ' Hartree energy = ',EJ,' au'
write(*,'(A33,1X,F16.10,A3)') ' Exchange energy = ',EK,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Electronic energy = ',EGHF,' au'
write(*,'(A33,1X,F16.10,A3)') ' Nuclear repulsion = ',ENuc,' au'
write(*,'(A33,1X,F16.10,A3)') ' GHF energy = ',EGHF + ENuc,' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.6,A3)') ' GHF HOMO energy = ',eHF(HOMO)*HaToeV,' eV'
write(*,'(A33,1X,F16.6,A3)') ' GHF LUMO energy = ',eHF(LUMO)*HaToeV,' eV'
write(*,'(A33,1X,F16.6,A3)') ' GHF HOMO-LUMO gap = ',Gap*HaToeV,' eV'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.6)') ' <Sx> = ',Sx
write(*,'(A33,1X,F16.6)') ' <Sy> = ',Sy
write(*,'(A33,1X,F16.6)') ' <Sz> = ',Sz
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.6)') ' <Sx^2+Sy^2> = ',S2 - Sz2
write(*,'(A33,1X,F16.6)') ' <Sz**2> = ',Sz2
write(*,'(A33,1X,F16.6)') ' <S**2> = ',S2
write(*,'(A50)') '---------------------------------------'
write(*,'(A36)') ' Dipole moment (Debye) '
write(*,'(10X,4A10)') 'X','Y','Z','Tot.'
write(*,'(10X,4F10.4)') (dipole(ixyz)*auToD,ixyz=1,ncart),norm2(dipole)*auToD
write(*,'(A50)') '---------------------------------------'
write(*,*)
! Print results
if(dump_orb) then
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' GHF orbital coefficients '
write(*,'(A50)') '---------------------------------------'
call matout(nBas2,nBas2,C)
write(*,*)
end if
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' GHF orbital energies (au) '
write(*,'(A50)') '---------------------------------------'
call vecout(nBas2,eHF)
write(*,*)
call print_GHFspin(nBas, nBas2, nO, C, S)
end subroutine
! ---
subroutine print_GHFspin(nBas, nBas2, nO, C, S)
implicit none
integer, intent(in) :: nBas, nBas2, nO
double precision, intent(in) :: C(nBas2,nBas2), S(nBas,nBas)
integer :: i, j
double precision :: Na, Nb
double precision :: nonco_z, contam_ghf
double precision :: S2, Sz, Sz2
double precision, allocatable :: Ca(:,:), Cb(:,:)
double precision, allocatable :: Paa(:,:), Pab(:,:), Pba(:,:), Pbb(:,:)
double precision, allocatable :: Mc(:,:), Eigc(:)
print *, ' Spin properties for GHF WF:'
allocate(Ca(nBas,nO), Cb(nBas,nO))
do i = 1, nO
do j = 1, nBas
Ca(j,i) = C( j,i)
Cb(j,i) = C(nBas+j,i)
enddo
enddo
! TODO DGEMM
allocate(Paa(nO,nO), Pab(nO,nO), Pba(nO,nO), Pbb(nO,nO))
Paa = matmul(transpose(Ca), matmul(S, Ca))
Pab = matmul(transpose(Ca), matmul(S, Cb))
Pba = matmul(transpose(Cb), matmul(S, Ca))
Pbb = matmul(transpose(Cb), matmul(S, Cb))
deallocate(Ca, Cb)
Na = 0.d0
Nb = 0.d0
do i = 1, nO
Na = Na + Paa(i,i)
Nb = Nb + Pbb(i,i)
enddo
nonco_z = dble(nO)
do j = 1, nO
do i = 1, nO
nonco_z = nonco_z - (Paa(i,j) - Pbb(i,j))**2
enddo
enddo
nonco_z = 0.25d0 * nonco_z
contam_ghf = 0.d0
do j = 1, nO
do i = 1, nO
contam_ghf = contam_ghf + (Pab(i,i)*Pba(j,j) - Pab(i,j)*Pba(j,i))
enddo
enddo
Sz = 0.5d0 * (Na - Nb)
Sz2 = Sz*Sz + nonco_z
S2 = 0.5d0 * (Na + Nb) * (Sz + 1.d0) + nonco_z + contam_ghf
print *, 'Sz, Sz^2 = ', Sz, Sz2
print *, 'S^2 = ', S2
! --- --- --- --- --- --- --- --- ---
! calculate the axis of Collinearity
! --- --- --- --- --- --- --- --- ---
allocate(Mc(3,3), Eigc(3))
Mc(:,:) = 0.d0
Mc(1,1) = 0.25d0 * dble(nO)
Mc(2,2) = 0.25d0 * dble(nO)
Mc(3,3) = 0.25d0 * dble(nO)
do j = 1, nO
do i = 1, nO
Mc(1,1) = Mc(1,1) - 0.25d0 * (Pba(i,j) + Pab(i,j))**2
Mc(2,2) = Mc(2,2) - 0.25d0 * (Pba(i,j) - Pab(i,j))**2
Mc(3,3) = Mc(3,3) - 0.25d0 * (Paa(i,j) - Pbb(i,j))**2
Mc(1,3) = Mc(1,3) - 0.25d0 * (Pab(i,j) + Pba(i,j))*(Paa(j,i) - Pbb(j,i))
enddo
enddo
Mc(3,1) = Mc(1,3)
call diagonalize_matrix(3, Mc, Eigc)
print *, ' eigenvalues of Collinearity matrix:', Eigc
deallocate(Mc, Eigc)
! --- --- --- --- --- --- --- --- ---
! --- --- --- --- --- --- --- --- ---
deallocate(Paa, Pab, Pba, Pbb)
end