quack/src/GT/qsUGTpp.f90

428 lines
14 KiB
Fortran

subroutine qsUGTpp(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE, &
TDA_T,TDA,dBSE,dTDA,spin_conserved,spin_flip,&
eta,regularize,nBas,nC,nO,nV,nR,nS,nNuc,ZNuc,rNuc,ENuc,EUHF,S,X,T,V,Hc,ERI_AO,ERI_aaaa,&
ERI_aabb,ERI_bbbb,dipole_int_AO,dipole_int_aa,dipole_int_bb,PHF,cHF,eHF)
! Perform a quasiparticle self-consistent GT calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: BSE
logical,intent(in) :: TDA_T
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: spin_conserved
logical,intent(in) :: spin_flip
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
integer,intent(in) :: nBas
integer,intent(in) :: nC(nspin)
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin)
integer,intent(in) :: nS(nspin)
double precision,intent(in) :: ENuc
double precision,intent(in) :: EUHF
double precision,intent(in) :: eHF(nBas,nspin)
double precision,intent(in) :: cHF(nBas,nBas,nspin)
double precision,intent(in) :: PHF(nBas,nBas,nspin)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(in) :: dipole_int_aa(nBas,nBas,ncart)
double precision,intent(in) :: dipole_int_bb(nBas,nBas,ncart)
! Local variables
integer :: nSCF
integer :: nBasSq
double precision :: dipole(ncart)
integer :: n_diis
double precision :: rcond(nspin)
double precision,external :: trace_matrix
double precision :: Conv
double precision :: ET(nspin)
double precision :: EV(nspin)
double precision :: EJ(nsp)
double precision :: Ex(nspin)
double precision :: EqsGT
integer :: ispin,is
integer :: iblock
integer :: nH_sc,nH_sf,nHaa,nHab,nHbb
integer :: nP_sc,nP_sf,nPaa,nPab,nPbb
double precision :: EcRPA(nspin),Ecaa,Ecbb
double precision :: EcBSE(nspin)
double precision :: EcAC(nspin)
double precision :: EcGM(nspin)
double precision,allocatable :: Om1ab(:),Om1aa(:),Om1bb(:)
double precision,allocatable :: X1ab(:,:),X1aa(:,:),X1bb(:,:)
double precision,allocatable :: Y1ab(:,:),Y1aa(:,:),Y1bb(:,:)
double precision,allocatable :: rho1ab(:,:,:),rho1aa(:,:,:),rho1bb(:,:,:)
double precision,allocatable :: Om2ab(:),Om2aa(:),Om2bb(:)
double precision,allocatable :: X2ab(:,:),X2aa(:,:),X2bb(:,:)
double precision,allocatable :: Y2ab(:,:),Y2aa(:,:),Y2bb(:,:)
double precision,allocatable :: rho2ab(:,:,:),rho2aa(:,:,:),rho2bb(:,:,:)
double precision,allocatable :: c(:,:,:)
double precision,allocatable :: cp(:,:,:)
double precision,allocatable :: P(:,:,:)
double precision,allocatable :: F(:,:,:)
double precision,allocatable :: Fp(:,:,:)
double precision,allocatable :: J(:,:,:)
double precision,allocatable :: K(:,:,:)
double precision,allocatable :: SigT(:,:,:)
double precision,allocatable :: SigTp(:,:,:)
double precision,allocatable :: Z(:,:)
double precision,allocatable :: eGT(:,:)
double precision,allocatable :: eOld(:,:)
double precision,allocatable :: error_diis(:,:,:)
double precision,allocatable :: e_diis(:,:,:)
double precision,allocatable :: F_diis(:,:,:)
double precision,allocatable :: error(:,:,:)
! Hello world
write(*,*)
write(*,*)'***********************************'
write(*,*)'* Unrestricted evGTpp Calculation *'
write(*,*)'***********************************'
write(*,*)
! Dimensions of the pp-URPA linear reponse matrices
nPaa = nV(1)*(nV(1)-1)/2
nPbb = nV(2)*(nV(2)-1)/2
nHaa = nO(1)*(nO(1)-1)/2;
nHbb = nO(2)*(nO(2)-1)/2;
nPab = nV(1)*nV(2)
nHab = nO(1)*nO(2)
nP_sc = nPab
nH_sc = nHab
nP_sf = nPaa + nPbb
nH_sf = nHaa + nHbb
nBasSq = nBas*nBas
! Memory allocation
allocate(SigT(nBas,nbas,nspin),SigTp(nBas,nbas,nspin), &
Z(nBas,nspin),eGT(nBas,nspin),eOld(nBas,nspin), &
error_diis(nBas,max_diis,nspin),e_diis(nBasSq,max_diis,nspin), &
F_diis(nBasSq,max_diis,nspin),error(nBas,nBas,nspin),&
c(nBas,nBas,nspin),cp(nBas,nBas,nspin),P(nBas,nBas,nspin),F(nBas,nBas,nspin), &
Fp(nBas,nBas,nspin),J(nBas,nBas,nspin),K(nBas,nBas,nspin))
allocate(Om1ab(nPab),X1ab(nPab,nPab),Y1ab(nHab,nPab), &
Om2ab(nHab),X2ab(nPab,nHab),Y2ab(nHab,nHab), &
rho1ab(nBas,nBas,nPab),rho2ab(nBas,nBas,nHab), &
Om1aa(nPaa),X1aa(nPaa,nPaa),Y1aa(nHaa,nPaa), &
Om2aa(nHaa),X2aa(nPaa,nHaa),Y2aa(nHaa,nHaa), &
rho1aa(nBas,nBas,nPaa),rho2aa(nBas,nBas,nHaa), &
Om1bb(nPbb),X1bb(nPbb,nPbb),Y1bb(nHbb,nPbb), &
Om2bb(nPbb),X2bb(nPbb,nPbb),Y2bb(nHbb,nPbb), &
rho1bb(nBas,nBas,nPbb),rho2bb(nBas,nBas,nHbb))
!Initialization
nSCF = -1
n_diis = 0
Conv = 1d0
P(:,:,:) = PHF(:,:,:)
e_diis(:,:,:) = 0d0
error_diis(:,:,:) = 0d0
eGT(:,:) = eHF(:,:)
eOld(:,:) = eHF(:,:)
c(:,:,:) = cHF(:,:,:)
Z(:,:) = 1d0
rcond(:) = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Buid Hartree matrix
do ispin=1,nspin
call Hartree_matrix_AO_basis(nBas,P(:,:,ispin),ERI_AO(:,:,:,:), &
J(:,:,ispin))
end do
! Compute exchange part of the self-energy
do ispin=1,nspin
call exchange_matrix_AO_basis(nBas,P(:,:,ispin),ERI_AO(:,:,:,:), &
K(:,:,ispin))
end do
! AO to MO transformation of two-electron integrals
! 4-index transform for (aa|aa) block
call AOtoMO_ERI_UHF(1,1,nBas,c,ERI_AO,ERI_aaaa)
! 4-index transform for (aa|bb) block
call AOtoMO_ERI_UHF(1,2,nBas,c,ERI_AO,ERI_aabb)
! 4-index transform for (bb|bb) block
call AOtoMO_ERI_UHF(2,2,nBas,c,ERI_AO,ERI_bbbb)
!----------------------------------------------
! alpha-beta block
!----------------------------------------------
ispin = 1
iblock = 3
! iblock = 1
! Compute linear response
call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPab,nHaa,nHab,nHbb,nHab,1d0,eGT,ERI_aaaa, &
ERI_aabb,ERI_bbbb,Om1ab,X1ab,Y1ab,Om2ab,X2ab,Y2ab,EcRPA(ispin))
! EcRPA(ispin) = 1d0*EcRPA(ispin)
!----------------------------------------------
! alpha-alpha block
!----------------------------------------------
ispin = 2
iblock = 4
! Compute linear response
call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPaa,nHaa,nHab,nHbb,nHaa,1d0,eGT,ERI_aaaa, &
ERI_aabb,ERI_bbbb,Om1aa,X1aa,Y1aa,Om2aa,X2aa,Y2aa,EcRPA(ispin))
Ecaa = EcRPA(2)
!----------------------------------------------
! beta-beta block
!----------------------------------------------
ispin = 2
iblock = 7
! Compute linear response
call ppULR(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPbb,nHaa,nHab,nHbb,nHbb,1d0,eGT,ERI_aaaa, &
ERI_aabb,ERI_bbbb,Om1bb,X1bb,Y1bb,Om2bb,X2bb,Y2bb,EcRPA(ispin))
Ecbb = EcRPA(2)
EcRPA(2) = Ecaa + Ecbb
EcRPA(1) = EcRPA(1) - EcRPA(2)
EcRPA(2) = 3d0*EcRPA(2)
!----------------------------------------------
! Compute T-matrix version of the self-energy
!----------------------------------------------
!alpha-beta block
iblock = 3
call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHab,nPab,ERI_aaaa,ERI_aabb,ERI_bbbb,X1ab,Y1ab, &
rho1ab,X2ab,Y2ab,rho2ab)
!alpha-alpha block
iblock = 4
call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHaa,nPaa,ERI_aaaa,ERI_aabb,ERI_bbbb,X1aa,Y1aa, &
rho1aa,X2aa,Y2aa,rho2aa)
!beta-beta block
iblock = 7
call UGTpp_excitation_density(iblock,nBas,nC,nO,nV,nR,nHbb,nPbb,ERI_aaaa,ERI_aabb,ERI_bbbb,X1bb,Y1bb, &
rho1bb,X2bb,Y2bb,rho2bb)
call UGTpp_self_energy(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nPaa,nPab,nPbb,eGT,Om1aa,Om1ab,Om1bb,&
rho1aa,rho1ab,rho1bb,Om2aa,Om2ab,Om2bb,rho2aa,rho2ab,rho2bb,EcGM,SigT,Z)
! Make correlation self-energy Hermitian and transform it back to AO basis
do ispin=1,nspin
SigT(:,:,ispin) = 0.5d0*(SigT(:,:,ispin) + transpose(SigT(:,:,ispin)))
end do
do ispin=1,nspin
call MOtoAO(nBas,S,c(:,:,ispin),SigT(:,:,ispin),SigTp(:,:,ispin))
end do
! Solve the quasi-particle equation
do ispin=1,nspin
F(:,:,ispin) = Hc(:,:) + J(:,:,ispin) + J(:,:,mod(ispin,2)+1) + K(:,:,ispin) &
+ SigTp(:,:,ispin)
end do
! Compute commutator and convergence criteria
do ispin=1,nspin
error_diis(:,:,ispin) = matmul(F(:,:,ispin),matmul(P(:,:,ispin),S(:,:))) &
- matmul(matmul(S(:,:),P(:,:,ispin)),F(:,:,ispin))
end do
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
if(minval(rcond(:)) > 1d-7) then
do ispin=1,nspin
if(nO(ispin) > 1) call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, &
error_diis(:,1:n_diis,ispin), &
F_diis(:,1:n_diis,ispin),&
error_diis(:,:,ispin),F(:,:,ispin))
end do
else
n_diis = 0
end if
! Transform Fock matrix in orthogonal basis
do ispin=1,nspin
Fp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(F(:,:,ispin),X(:,:)))
end do
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
cp(:,:,:) = Fp(:,:,:)
do ispin=1,nspin
call diagonalize_matrix(nBas,cp(:,:,ispin),eGT(:,ispin))
end do
! Back-transform eigenvectors in non-orthogonal basis
do ispin=1,nspin
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
end do
! Back-transform self-energy
do ispin=1,nspin
SigTp(:,:,ispin) = matmul(transpose(c(:,:,ispin)),matmul(SigTp(:,:,ispin),c(:,:,ispin)))
end do
! Compute density matrix
do ispin=1,nspin
P(:,:,ispin) = matmul(c(:,1:nO(ispin),ispin),transpose(c(:,1:nO(ispin),ispin)))
end do
! Save quasiparticles energy for next cycle
Conv = maxval(abs(eGT(:,:) - eOld(:,:)))
eOld(:,:) = eGT(:,:)
!------------------------------------------------------------------------
! Compute total energy
!------------------------------------------------------------------------
! Kinetic energy
do ispin=1,nspin
ET(ispin) = trace_matrix(nBas,matmul(P(:,:,ispin),T(:,:)))
end do
! Potential energy
do ispin=1,nspin
EV(ispin) = trace_matrix(nBas,matmul(P(:,:,ispin),V(:,:)))
end do
! Hartree energy
EJ(1) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,1)))
EJ(2) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,1),J(:,:,2))) &
+ 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,1)))
EJ(3) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,2)))
! Exchange energy
do ispin=1,nspin
Ex(ispin) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,ispin),K(:,:,ispin)))
end do
write(*,*) 'EcGM', EcGM(1)
! Total energy
EqsGT = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(Ex(:))
! Print results
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_qsUGT(nBas,nO,nSCF,Conv,thresh,eHF,eGT,c,SigTp,Z,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGT,dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Free memory
deallocate(Om1ab,X1ab,Y1ab,Om2ab,X2ab,Y2ab,rho1ab,rho2ab, &
Om1aa,X1aa,Y1aa,Om2aa,X2aa,Y2aa,rho1aa,rho2aa, &
Om1bb,X1bb,Y1bb,Om2bb,X2bb,Y2bb,rho1bb,rho2bb)
deallocate(c,cp,P,F,Fp,J,K,SigT,SigTp,Z,error,error_diis,F_diis)
! Testing zone
if(dotest) then
call dump_test_value('U','qsGTpp correlation energy',sum(EcRPA))
call dump_test_value('U','qsGTpp HOMOa energy',eGT(nO(1),1))
call dump_test_value('U','qsGTpp LUMOa energy',eGT(nO(1)+1,1))
call dump_test_value('U','qsGTpp HOMOa energy',eGT(nO(2),2))
call dump_test_value('U','qsGTpp LUMOa energy',eGT(nO(2)+1,2))
end if
end subroutine