quack/src/LR/phULR_A.f90

171 lines
3.9 KiB
Fortran

subroutine phULR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nSa,nSb,nSt,lambda,eHF,ERI_aaaa,ERI_aabb,ERI_bbbb,Aph)
! Compute linear response
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dRPA
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC(nspin)
integer,intent(in) :: nO(nspin)
integer,intent(in) :: nV(nspin)
integer,intent(in) :: nR(nspin)
integer,intent(in) :: nSa
integer,intent(in) :: nSb
integer,intent(in) :: nSt
double precision,intent(in) :: lambda
double precision,intent(in) :: eHF(nBas,nspin)
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_aabb(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_bbbb(nBas,nBas,nBas,nBas)
! Local variables
double precision :: delta_dRPA
double precision,external :: Kronecker_delta
integer :: i,j,a,b,ia,jb
! Output variables
double precision,intent(out) :: Aph(nSt,nSt)
! Direct RPA
delta_dRPA = 0d0
if(dRPA) delta_dRPA = 1d0
!----------------------------------------------
! Build A matrix for spin-conserved transitions
!----------------------------------------------
if(ispin == 1) then
! aaaa block
ia = 0
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
ia = ia + 1
jb = 0
do j=nC(1)+1,nO(1)
do b=nO(1)+1,nBas-nR(1)
jb = jb + 1
Aph(ia,jb) = (eHF(a,1) - eHF(i,1))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
+ lambda*ERI_aaaa(i,b,a,j) - (1d0 - delta_dRPA)*lambda*ERI_aaaa(i,b,j,a)
end do
end do
end do
end do
! aabb block
ia = 0
do i=nC(1)+1,nO(1)
do a=nO(1)+1,nBas-nR(1)
ia = ia + 1
jb = 0
do j=nC(2)+1,nO(2)
do b=nO(2)+1,nBas-nR(2)
jb = jb + 1
Aph(ia,nSa+jb) = lambda*ERI_aabb(i,b,a,j)
end do
end do
end do
end do
! bbaa block
ia = 0
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
ia = ia + 1
jb = 0
do j=nC(1)+1,nO(1)
do b=nO(1)+1,nBas-nR(1)
jb = jb + 1
Aph(nSa+ia,jb) = lambda*ERI_aabb(b,i,j,a)
end do
end do
end do
end do
! bbbb block
ia = 0
do i=nC(2)+1,nO(2)
do a=nO(2)+1,nBas-nR(2)
ia = ia + 1
jb = 0
do j=nC(2)+1,nO(2)
do b=nO(2)+1,nBas-nR(2)
jb = jb + 1
Aph(nSa+ia,nSa+jb) = (eHF(a,2) - eHF(i,2))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
+ lambda*ERI_bbbb(i,b,a,j) - (1d0 - delta_dRPA)*lambda*ERI_bbbb(i,b,j,a)
end do
end do
end do
end do
end if
!-----------------------------------------
! Build A matrix for spin-flip transitions
!-----------------------------------------
if(ispin == 2) then
Aph(:,:) = 0d0
! abab block
ia = 0
do i=nC(1)+1,nO(1)
do a=nO(2)+1,nBas-nR(2)
ia = ia + 1
jb = 0
do j=nC(1)+1,nO(1)
do b=nO(2)+1,nBas-nR(2)
jb = jb + 1
Aph(ia,jb) = (eHF(a,2) - eHF(i,1))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
- (1d0 - delta_dRPA)*lambda*ERI_aabb(i,b,j,a)
end do
end do
end do
end do
! baba block
ia = 0
do i=nC(2)+1,nO(2)
do a=nO(1)+1,nBas-nR(1)
ia = ia + 1
jb = 0
do j=nC(2)+1,nO(2)
do b=nO(1)+1,nBas-nR(1)
jb = jb + 1
Aph(nSa+ia,nSa+jb) = (eHF(a,1) - eHF(i,2))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
- (1d0 - delta_dRPA)*lambda*ERI_aabb(b,i,a,j)
end do
end do
end do
end do
end if
end subroutine