quack/src/GW/qsRGW.f90

356 lines
11 KiB
Fortran

subroutine qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
singlet,triplet,eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO, &
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
! Perform a quasiparticle self-consistent GW calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: dophBSE2
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: doppBSE
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(inout):: ERI_MO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(inout):: dipole_int_MO(nBas,nBas,ncart)
! Local variables
integer :: nSCF
integer :: nBasSq
integer :: ispin
integer :: ixyz
integer :: n_diis
double precision :: ET
double precision :: EV
double precision :: EJ
double precision :: EK
double precision :: EqsGW
double precision :: EcRPA
double precision :: EcBSE(nspin)
double precision :: EcGM
double precision :: Conv
double precision :: rcond
double precision,external :: trace_matrix
double precision :: dipole(ncart)
logical :: dRPA = .true.
logical :: print_W = .false.
double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: c(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: P(:,:)
double precision,allocatable :: F(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: K(:,:)
double precision,allocatable :: SigC(:,:)
double precision,allocatable :: SigCp(:,:)
double precision,allocatable :: Z(:)
double precision,allocatable :: err(:,:)
! Hello world
write(*,*)
write(*,*)'*******************************'
write(*,*)'* Restricted qsGW Calculation *'
write(*,*)'*******************************'
write(*,*)
! Warning
write(*,*) '!! ERIs in MO basis will be overwritten in qsGW !!'
write(*,*)
! Stuff
nBasSq = nBas*nBas
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamical screening!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Memory allocation
allocate(eGW(nBas),c(nBas,nBas),cp(nBas,nBas),P(nBas,nBas),F(nBas,nBas),Fp(nBas,nBas), &
J(nBas,nBas),K(nBas,nBas),SigC(nBas,nBas),SigCp(nBas,nBas),Z(nBas), &
Aph(nS,nS),Bph(nS,nS),Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nBas,nBas,nS), &
err(nBas,nBas),err_diis(nBasSq,max_diis),F_diis(nBasSq,max_diis))
! Initialization
nSCF = -1
n_diis = 0
ispin = 1
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
rcond = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Build Hartree-exchange matrix
call Hartree_matrix_AO_basis(nBas,P,ERI_AO,J)
call exchange_matrix_AO_basis(nBas,P,ERI_AO,K)
! AO to MO transformation of two-electron integrals
do ixyz=1,ncart
call AOtoMO(nBas,c,dipole_int_AO(:,:,ixyz),dipole_int_MO(:,:,ixyz))
end do
call AOtoMO_ERI_RHF(nBas,c,ERI_AO,ERI_MO)
! Compute linear response
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@RHF','singlet',nS,Om)
! Compute correlation part of the self-energy
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI_MO,XpY,rho)
if(regularize) call GW_regularization(nBas,nC,nO,nV,nR,nS,eGW,Om,rho)
call GW_self_energy(eta,nBas,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
! Make correlation self-energy Hermitian and transform it back to AO basis
SigC = 0.5d0*(SigC + transpose(SigC))
call MOtoAO(nBas,S,c,SigC,SigCp)
! Solve the quasi-particle equation
F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
! Compute commutator and convergence criteria
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
if(nSCF > 1) Conv = maxval(abs(err))
! Kinetic energy
ET = trace_matrix(nBas,matmul(P,T))
! Potential energy
EV = trace_matrix(nBas,matmul(P,V))
! Hartree energy
EJ = 0.5d0*trace_matrix(nBas,matmul(P,J))
! Exchange energy
EK = 0.25d0*trace_matrix(nBas,matmul(P,K))
! Total energy
EqsGW = ET + EV + EJ + EK
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBasSq,nBasSq,n_diis,err_diis,F_diis,err,F)
end if
! Diagonalize Hamiltonian in AO basis
Fp = matmul(transpose(X),matmul(F,X))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nBas,cp,eGW)
c = matmul(X,cp)
call AOtoMO(nBas,c,SigCp,SigC)
! Density matrix
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
! Print results
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_qsRGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,SigCp,Z,ENuc,ET,EV,EJ,EK,EcGM,EcRPA,EqsGW,dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Deallocate memory
deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis)
! Perform BSE calculation
if(dophBSE) then
call GW_phBSE(dophBSE2,TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eGW,eGW,EcBSE)
if(exchange_kernel) then
EcBSE(1) = 0.5d0*EcBSE(1)
EcBSE(2) = 1.5d0*EcBSE(2)
end if
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
if(doACFDT) then
write(*,*) '------------------------------------------------------'
write(*,*) 'Adiabatic connection version of BSE correlation energy'
write(*,*) '------------------------------------------------------'
write(*,*)
if(doXBS) then
write(*,*) '*** scaled screening version (XBS) ***'
write(*,*)
end if
call GW_phACFDT(exchange_kernel,doXBS,.true.,TDA_W,TDA,dophBSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
end if
if(doppBSE) then
call GW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eHF,eGW,EcBSE)
EcBSE(2) = 3d0*EcBSE(2)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF total energy = ',ENuc + ERHF + sum(EcBSE),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
! Testing zone
if(dotest) then
call dump_test_value('R','qsGW correlation energy',EcRPA)
call dump_test_value('R','qsGW HOMO energy',eGW(nO))
call dump_test_value('R','qsGW LUMO energy',eGW(nO+1))
end if
end subroutine